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Define PHEVs Component Requirements
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PHEYV Battery Modeling is More Complex than for

Conventional HEVs

B Discharge requirements for long periods resulting in considerable
diffusion over-voltage.

B Available data from large capacity SAFT cells applied to SAFT
VL41 M cell.

B These data were modeled and are the basis of the impedance
equations used in the PHEV vehicle simulation study.
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Optimum Battery Power and Energy Defined

for Several Vehicle Platforms and AER
Power Usable Energy
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— Short term 10 miles AER (3.4 kWh, 50 kW) ) ¢
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Current PHEYV Battery Requirements

Characteristics at EOL (End of Life) Short-'TtErm. Long-Term Commercialization
Commercialization

Commercialization Target Year 2012 2016
Peak Pulse Discharge Power (10 sec) kW 45 38
Peak Regen Pulse Power (10 sec) kW 30 25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate kWh 34 11.6
Available Energy for CS (Charge Sustaining) Mode kWh 0.5 0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cycle) % 90 90
Cold cranking power at -30°C, 2 sec - 3 Pulses kW 7 7
CD Life / Discharge Throughput Cycles/MWh 5,000/ 17 5,000 / S8
CS HEV Cycle Life, 50 Wh Profile Cycles 300,000 300,000
Calendar Life, 40°C year 15 15
Maximum System Weight kg 60 120
Maximum System Volume Liter 40 80
Maximum Operating Voltage Vdc 400 400
Minimum Operating Voltage Vdc >(.55 x Vmax >(.55 x Vmax
Maximum Self-discharge Wh/day 50 50
System Recharge Rate at 30°C kW 1.4 (120V/15A) 1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range °C -30 to +52 -30 to +52
Survival Temperature Range °C -46 to +66 -46 to +66
Maximum System Production Price @ 100k units/yr $ $1,700 $3,400
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Electric Machine Power Required within

FreedomCAR Target
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Outline

B Development of Current Requirements

B Impact of Standard Drive Cycles
— PHEV Sizing Based on UDDS for 10, 20 40 AER.
— Control Strategy Options when Engine is ON

— What is the Maximum Share of the Standard Drive Cycle
than can be Run in EV?

— What is the Share of the Standard Drive Cycle than can
be Run in EV when Engine is Used at Best Efficiency?

— PHEV Sizing Based on Various Driving Cycles.

B Impact of Real World Drive Cycles




PSAT Modeling Assumptions
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Drag Coefticient 0.31
Parameter Unit Value Wheel Radius m 0.317
0—60mph g 9+/-0.1 Rolling Resistance 0.008
0—-30mph S 3
Grade at 60 mph % 6
Maximum Speed mph > 100
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Vehicle Sized to Meet Requirements

Vehicle Assumptions Associated
l l Requirements
! ) Drive Cycle in
Motor Power y
. ) EV Mode
4 ‘ N
Battery Power Perfo:
. ) IVM-60 mph
Engine Power Grade:
. 7 ) 60 mph 6% grade
No <>Convergence

l Yes




Component Sizing on UDDS
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Cycle Characteristics : SC03, LA92 and
USO06 are More Aggressive
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B Development of Current Requirements

B Impact of Standard Drive Cycles
— PHEV Sizing Based on UDDS for 10, 20 40 AER.
— Control Strategy Options when Engine is ON

— What is the Maximum Share of the Standard Drive Cycle
than can be Run in EV?

— What is the Share of the Standard Drive Cycle than can
be Run in EV when Engine is Used at Best Efficiency?

— PHEYV Sizing Based on Various Driving Cycles.

B Impact of Real World Drive Cycles




Two PHEV Controls Were Considered

AP:P,  —P,. . b B Engine Minimum Assist :
— — _PGB—’” Engine is turned on when Motor
| Pngine = AL T PMC—O”’ torque reaches its maximum power
Eng_Out curve. Engine provides the delta
Pric_iax power between required power at
— - T Pong_ses_trr the gearbox input and maximum
motor power

B Engine Assist at Best Efficiency :
Engine is turned on when Motor
""""""""" power reaches its maximum power

] curve. The engine operates at the
best efficiency region. The surplus

power from the engine is used to
I P, =AP charge the battery.
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B Development of Current Requirements

B Impact of Standard Drive Cycles
— PHEV Sizing Based on UDDS for 10, 20 40 AER.
— Control Strategy Options when Engine is ON

— What is the Maximum Share of the Standard Drive Cycle
than can be Run in EV?

— What is the Share of the Standard Drive Cycle than can
be Run in EV when Engine is Used at Best Efficiency?

— PHEYV Sizing Based on Various Driving Cycles.

B Impact of Real World Drive Cycles




Charge Depleting (CD) Capability Decreases as
Drive Cycle Aggressiveness Increases
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Engine Used Only When Electric Machine
ReaChes its Limit ----  Maximum Power Required

at Gearbox Input for UDDS (~67.4kW)
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Energy Consumption of Engine Increases as the
Aggressiveness of Cycle Increases
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B Development of Current Requirements

B Impact of Standard Drive Cycles
— PHEV Sizing Based on UDDS for 10, 20 40 AER.
— Control Strategy Options when Engine is ON

— What is the Maximum Share of the Standard Drive Cycle
than can be Run in EV?

— What is the Share of the Standard Drive Cycle than can
be Run in EV when Engine is Used at Best Efficiency?

— PHEYV Sizing Based on Various Driving Cycles.

B Impact of Real World Drive Cycles




How does Engine Assist at Best Efficiency
Control Strategy Affects Energy Consumption?

Engine Hot Efficiency Map
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Engine Assist at Best Efficiency Increases
AER for Aggressive Cycles
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Energy Consumption of Engine Increases as
the Aggressiveness of Cycle Increases
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B Development of Current Requirements

B Impact of Standard Drive Cycles
— PHEV Sizing Based on UDDS for 10, 20 40 AER.
— Control Strategy Options when Engine is ON

— What is the Maximum Share of the Standard Drive Cycle
than can be Run in EV?

— What is the Share of the Standard Drive Cycle than can
be Run in EV when Engine is Used at Best Efficiency?

— PHEV Sizing Based on Various Driving Cycles.

B Impact of Real World Drive Cycles
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Sizing based on Each Driving Cycle Decreases
Energy Consumption for Aggressive Cycles
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Conclusion

B The choice of driving cycles influences PHEV design
decisions.

M All standard drive cycles considered are less aggressive
than real-world driving conditions.

B All electric operation can be achieved on aggressive drive
cycles with small additional battery power (10 to 15 kW)
compared to the UDDS. However, considering Li-ion
technology, available power might not be an issue.

B Should the batteries be designed on UDDS to satisfy
CARB requirements when it is not representative of real-
world driving conditions?
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Objective: Impact of Real World Drive Cycles
on Power and Energy Requirements

Real World :"@ " Automated Analysis
Drive Cycles =< Sizing (Distribution)
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Drive cycle

Analysis of Vehicle Speed Tra

ces at Different Levels
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Daily Driving Characteristics

m 111 different drivers — All based on Conventional Vehicles

Distribution of Distance for Daily Drives
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Trips Characteristics
m 364 trips (trip = get in and out of the car)

Distribution of Distance for Trips
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50% of the Daily Trips Require >100 kW

Distribution of Pess max discharging for Daily Drives
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Distribution of Discharging Peak Power Per Trip

Distribution of Pe$s max discharging for Trips
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Distribution of Discharging Power (All Points)

Distribution of Power max continuous for Trips
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Distribution of Charging Peak Power Per Daily
Driving

Distribution of Pess max charging for Daily Drives
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Distribution of Charging Power (All Points)

Distribution of Power continuous charging for Trips
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Number of occurences (%)

12 kWh Usable is Required to Complete 50% of the Daily Drives

Distribution of Batter Energy out for Daily drives
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UDDS Represents only 10% of the Electrical Consumption

Distribution of Energy Consumed per mile
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Maximum UDDS Power Reached Shortly After Departure

Distribution of time until the power demand fi rst exceeds 50 kW for Trips
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Number of occurences (%)

Power Demand >50 kW Occurs for Short Periods of Time

Distribution of total time where power demand is greater than 50 kW for all cycles
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Maximum Power Demand Occurs at Highway Speeds

Distribution of vehicle speed while power demand is greater than 50k W
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EV Distance Greatly Varies Depending Upon Cycles
Ag%ressivenes
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Conclusion

m The PHEV requirements analysis is only valid for the set of drive
cycles considered and should not be generalized to the US

market.

m Aggressive driving will put limits on all EV range, which in turn
favors a blended mode operational strategy.

m When the battery is sized for the UDDS,

m 3% of the daily driving and 20% of the trips can be completed in EV
due to power limitation. However, the power requirements are

sufficient 97% of the time.

m 1.5% (short term goal) and 50% (long term goal) of the daily driving
can be completed in EV due to energy limitation

m The real world drive cycles are more aggressive than the UDDS,
resulting in larger energy requirements to drive the same
distance.

m LA92 better represents current drive cycle aggressiveness.
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