

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Prospects on Fuel Efficiency Improvements for Hydrogen Powered Vehicles

October 07, 2008 Chicago

Aymeric Rousseau, Thomas Wallner

Sponsored by Lee Slezak U.S. DOE

Initial Study Performed Showed Significant Disadvantage of H2 Engine vs. Fuel Cell

Fuel Economy Vs. Fuel Cell Size

Source: NREL (Vehicle Range Impacts from Adding a Fuel Cell to a Hydrogen ICE Hybrid Vehicle, 2005)

However, On-Road Testing Showed Closer Results

Issue: Vehicles, drive cycles, test conditions different for each vehicle

Source: Berry, N. 'SCAQMD – Hydrogen ICE Projects' Weststart-Calstar Conference 'Hydrogen Internal Combustion Engines 2007 - Where do we go from here?' Los Angeles. 2007.

Outline

PSAT Modeling Assumptions

- Vehicle
- Fuel Cell System
- Hydrogen Engine
- Other Components
- Component Sizing
- Simulation Results

Vehicle Assumptions

- Midsize car platform
- Both non-hybrid and hybrid configurations considered
- All vehicles achieve similar performances (0-60mph, grade)
- All vehicles have same amount of onboard H2 (5kg) and use the same amount of H2 from the tank
- Component uncertainties taken into account
- UDDS and HWFET drive cycles considered
- Ratios based on fuel economy gasoline equivalent using 2008 EPA corrections

Parameter	Unit	Midsize Car
Glider Mass	kg	990
Frontal Area	m ²	2.1
Drag Coefficient		0.29
Wheel Radius	m	0.317
Rolling Resistance		0.008

Parameter	Unit	Value
0-60mph	S	9 +/- 0.1
0–30mph	S	3
Grade at 60 mph	%	6
Maximum Speed	mph	> 100 (1)

(1) Two gear transmission used for series

Fuel Cell System Assumptions

Parameter	Unit	Current Status	FreedomCAR Goal
Specific Power	W/kg	500	650
Peak Efficiency	%	55	60

Hydrogen Engine Characteristics for Current Technology Generated from Experimental Data

4-cylinder hydrogen engine setup

- Manufacturer Ford Motor Co. Model 2.3 Duratec Cylinders 4 Bore 87.5 mm Stroke 94 mm Compression ratio 12 Valve train **4V DOHC** Speed range 6000 RPM **Modifications** Supercharger and intercooler
 - Hydrogen port fuel injection
 - After-market ECU

Port Injected Maps Generated for Different Air/Fuel Ratios

Direct Injection Hydrogen Engine Operation Estimated from Single Cylinder Test Data

- Hydrogen Direct Injection will increase the peak torque curve
- Increased compression ratio will result in an increase in engine efficiency
- Turbo-charging will increase the engine efficiency compared to supercharging
- Lean part load operation will result in a further part load efficiency increase compared to throttled operation

Peak efficiency of 45% assumed

NOx Emissions as a Function of Air/Fuel Ratio

- NO_x emissions decrease with increased air/fuel ratio
- At λ=2.25 NO_x emissions are below 100 ppm in the entire load range
- At λ =3 NO_x emissions approach the detectability limit of the analyzer

Drive cycle emissions results of a BMW Hydrogen 7 Mono-Fuel vehicle

* Average values for several FTP75 tests on two vehicles

Outline

PSAT Modeling Assumptions

- Vehicle
- Fuel Cell System
- Hydrogen Engine
- Other Components
- Component Sizing
- Simulation Results

Vehicle Sizing Algorithm

Approach consistent with all current production HEVs based on APRF test data

Component Average Power

Vehicle Test Mass Comparison

Outline

PSAT Modeling Assumptions

- Vehicle
- Fuel Cell System
- Hydrogen Engine
- Other Components
- Component Sizing
- Simulation Results

Reference Gasoline Vehicle Compared to Vehicles on the Market

Distribution of current midsize gasoline vehicles fuel economy (2008 EPA)

Reference Fuel Cell HEV Vehicle Compared to Vehicles on the Road

Source: NREL, Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project, 2006

Fuel Economy Comparison

Fuel Economy Ratio

Results Summary – Combined Drive Cycles

	Ref	Conv	Split	Series ICE	FC HEV
Current	23.66	20.84	34.86	26.74	43.24
Future	23.66	22.52	53.06	42.03	58.20
Average	23.66	21.68	43.96	34.39	50.72
Error bar	0.00	0.84	9.10	7.65	7.48

EPA 2008 Adjusted Fuel Economy (mpg)

EPA 2008 Adjusted Fuel Economy Ratio

	Ref	Conv	Split	Series ICE	FC HEV
Current	1.00	0.88	1.47	1.13	1.83
Future	1.00	0.95	2.24	1.78	2.46
Average	1.00	0.92	1.86	1.45	2.14
Error bar	0.00	0.04	0.38	0.32	0.32

Impact of Drive Cycles on Fuel Economy Ratios

Fuel Economy Results Analysis

- All HEVs configuration capture similar amount of energy at the wheel during deceleration (~98% on UDDS). However, the series configurations have more losses due to lower electric machine efficiencies than the power split.
- Both HEV configurations using ICE have similar average efficiencies (~31% for port injected and ~41.5% for direct injection on UDDS).
- The fuel cell system average efficiency remains higher (~47% for current case and ~51% for future case on UDDS).
- In addition, the series configuration with H2-ICE is penalized by the driveline inefficiencies (both generator ~90% and electric machine ~81%)

Conclusion

- The DI H2-ICE has been defined based on a combination of four-cylinder and single cylinder data generated for different A/F ratios.
- H2 ICE has more potential than initially thought
- H2 ICE should be used within an HEV to be competitive with fuel cell powered vehicles
- Power split configuration offers the best fuel consumption when using H2-ICE due to added inefficiencies in the series configuration.
- The study confirms DOE position that H2 ICE is bridging technology and might help the infrastructure

