

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Plug-in Hybrid Electric Vehicle Control Strategy: Comparison between EV and Charge-Depleting Options

Phil Sharer, Aymeric Rousseau, Dominik Karbowski, Sylvain Pagerit Argonne National Laboratory

Sponsored by Lee Slezak, U.S. DOE

Can Using a Charge Depleting Strategy Further Decrease a PHEV's Fuel Consumption When Trip Distance Exceeds All Electris Range?

A Charge Depleting Strategy Can Use A Priori Knowledge of Trip Distance to Choose when to Use the Engine V

This Is a Specific Case, How Much Can It Be Generalized?

- I Configuration Power Split
- PHEV with 10 mile Range on the UDDS
- Trip Distances 10, 20, 30, 40, 60 miles on the UDDS
- 3 Control Strategies
- I Control Parameter was adjusted (Engine On Power Threshold)
- Did Not Include
 - Temperature Effects Cold or Hot Battery

Emisssions

PSAT Modeling Assumptions

Class	Midsize
Curb Weight	1432 kg
Battery Type	Li-Ion JCS - Saft 19 Ah
0 to 60 mph	9 sec
Grade	6% at 65 mph
Range	10 miles on UDDS
Delta SOC	90% to 30% SOC
Charge Sustaining at	30%

Each of the Three Control Strategies Partitions the Demanded Road Load between the Engine and Battery Differently

Eng power < Road Load

Eng power = Road Load

Engine Power > Road Load

Decreasing the Control Parameter (<u>Engine On</u> <u>Power Threshold</u>) Increases the Trip Distance

Driving 32 km with a PHEV 10 in Blended Mode Would Save 9% More Fuel Than in EV Mode!

10 miles AER vehicle run on several UDDS cycles

Four Factors Affecting Consumption

Increased Engine Efficiency

Increased Excess Battery Charging T

Increased Transmission Efficiency

Increased Regenerative Braking

Changing the <u>Engine On Power Threshold</u> to Get a Longer Trip Has a Great Effect on the Differential Engine Power Strategy

Even Though the Optimal Engine Strategy Has the Highest Average Efficiency, Its Greater **Excess Charging Reduces This Advantage**

As Trip Distance Increases, the Transmission Efficiency for the Optimal Engine Strategy Drops below the CS Strategy Transmission Efficiency

As Trip Distance Increases Regenerative Braking over the Cycle Decreases

Regenerative Braking Decreases Because the Battery Discharges Slower

Conclusion

- A Charge Depleting strategy can improve a PHEV's fuel economy by up to 9% for a power split configuration
- Most of the gain is from operating the engine more efficiently
- The full engine strategy showed the most benefit as a charge depleting strategy
- Engine benefits are cancelled by excess charging, decreased transmission efficiency and decreased regenerative braking
- The Optimal engine strategy suffered the most from excess charging
- The Differential engine strategy suffered from low engine efficiency

