

... for a brighter future

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Impact of Drive Cycle Aggressiveness and Speed on HEVs Fuel Consumption Sensitivity

April 19, 2007

Phillip Sharer, Romain Leydier, Aymeric Rousseau, **Argonne National Laboratory**

Argonne Study Demonstrated HEV's Have Higher Fuel Consumption Sensitivity to Aggressive Driving

- Many anecdotal reports from HEV owners that in-use fuel economy does not match the US EPA estimates
 - "Investigating Vehicle Fuel Economy Robustness of Conventional and Hybrid Electric Vehicles", M. Duoba et al. in EVS 21 (2005) paper
 - Chassis dynamometer testing
 - 6 vehicles (2 HEVs and 4 conventional)
 - UDDS, HWFET, US06, ATDS
 - Cycle multiplier factor
 - HEV's higher sensitivity

Cycle Multiplier Factor

Initial Argonne Studied Demonstrated that Prius was More Sensitive

Simulation Study Conducted to Determine the Factors Affecting Sensitivity

Chose Vehicles

- Ford Focus (2004)
- Toyota Prius (2004)
- Chose Cycles:
 - UDDS (Urban Dynamometer Driving Schedule City)
 - HWFET (Highway Fuel Economy Test Highway)
- Used Argonne's <u>Powertrain</u> <u>Systems</u> <u>Analysis</u> <u>Toolkit</u>
- Correlated Models with Test Results
- Updated Definition of Sensitivity

Things which Could Make a Big Difference which We Didn't Look at

- Air Conditioning
- Thermal Behavior
 - Cold Start
 - Elevated Operating Temperatures
- Component Wear and Maintenance
 - Tire Type, Air Pressure
 - Oil Changes
 - Tune ups
- Weather Conditions
- Road Way Conditions

PSAT Drivetrain Models Correlated with Test Results

Ford Focus

Drive Cycle	APRF Test (L/100 km)	PSAT (L/100km)	Percent Difference
UDDS	8.8	8.9	1.1%
HWFET	6.2	6.2	~0%

Toyota Prius

Drive Cycle	APRF Test (L/100 km)	PSAT (L/100km)	Percent Difference	
UDDS	3.3	3.2	-3.0%	
HWFET	3.5	3.5	~0%	
US06	5.6	5.1	-9.8%	
Japan1015	3.1	3.0	-3.2%	
NEDC	3.4	3.4	~0%	

Fuel Economy Trends are Verified

Ford Focus

Toyota Prius

Correlation is Limited by Uncertainty of Tests and Models

Pedal position leads to unexpected engine ON/OFF

Why Update the Definition?

- Cycle multiplier systematic way transform the cycle to vary vehicle Load
- Many other ways to transform the cycle
- $\frac{\Delta E_{Load}}{\Delta \gamma}$ Mixes in the sensitivity of the cycle to cycle Multiplier
- Drivetrain's mass sensitivity is special case (SAE 06 paper)

So, Why is the Prius More Sensitive to Aggressive Driving?

Powertrain Factors Influencing Sensitivity

Engine Efficiency

- High efficiency -> low sensitivity
- Engine Efficiency Rate of Change
 - Increased efficiency with increased load -> low sensitivity
 - Decreased efficiency with decreased load -> low sensitivity
- Regenerative Braking
 - Any regenerative braking -> lowers sensitivity
 - Saturated regenerative braking -> lowers sensitivity

High Engine Efficiency Makes the Prius <u>Less</u> Sensitive to Aggressive Driving than the Focus

Ford Focus

Toyota Prius

Slow Rate of Change of the Engine Efficiency Makes the Prius <u>More</u> Sensitive to Aggressive Driving than the Focus

Regenerative Braking Makes the Prius <u>Less</u> Sensitive to Aggressive Driving than the Focus

Focus Engine Becomes More Efficient During Aggressive Driving Offsetting the Increase in Demand

Prius Engine Efficiency > Focus Engine Efficiency

= Prius <u>Less</u> Sensitive

- Prius Change in Engine Efficiency < Focus Change in Engine Efficiency
 - = Prius <u>More</u> Sensitive
- Prius Regenerative Braking
 - = Prius Less Sensitive

The Change in Engine Efficiency is the Dominant Effect

	UDDS		HWFET	
	Focus	Prius	Focus	Prius
Engine Peak Efficiency	0	-	0	-
Engine Efficiency Variation		0		-
Regenerative Energy	NA	-	NA	0

- + indicates increase in sensitivity
- indicates decrease in sensitivity
- 0 no effect on sensitivity
- NA not applicable

Prius More Sensitive on the UDDS than Focus But Similar on HWFET

- For the conventional Focus, an increase in engine efficiency when the drive cycle became more aggressive leads to a decrease in sensitivity.
- For the HWFET driving cycle, both conventional and HEV vehicles behave similarly as a result of the high vehicle speed and the low regenerative braking and vehicle stop events.
- Main factors thermal effects, air conditioning, accessory load.

This study was funded by Lee Slezak from the U.S.DOE

