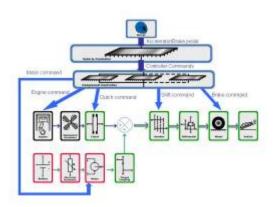
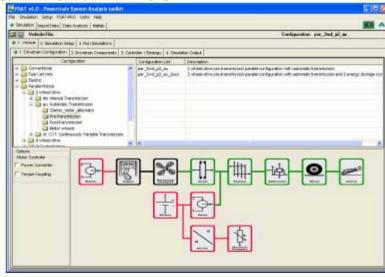
Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains

S. Pagerit, P. Sharer, A. Rousseau Argonne National Laboratory

Work sponsored by Lee Slezak, Ro Sullivan OFCVT/EERE/DOE

This Study Involves Knowing

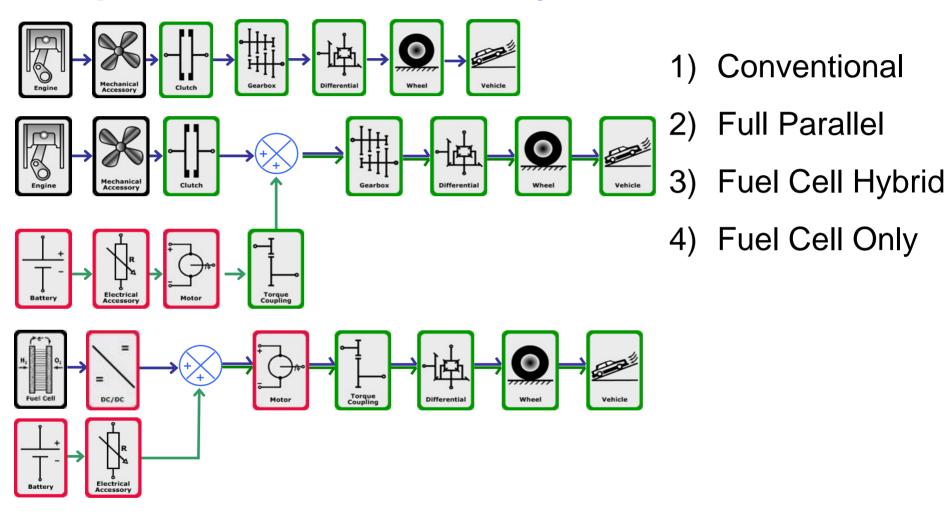

- Our Sensitivity Definition: dX/dm
- Platforms: Compact, Midsize, SUV
- Drive Cycles: UDDS, HWFET
- Configuration: Conv, Parallel, Fuel Cell, Fuel Cell HEV
- Powertrain no resizing
- Powertrain with resizing
- Controller no retuning



Simulations Performed with PSAT

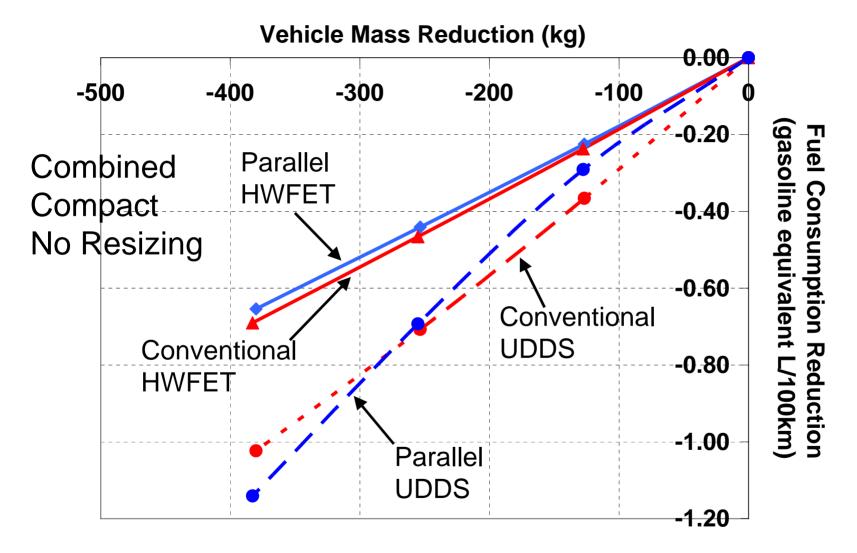
- Powertrain Systems Analysis Toolkit
- Argonne National Laboratory
- Models Matlab & Simulink
- Graphical User Interface C# .Net Framework
- Software Architecture Ideal for Vehicle Level Controller Design
- Primary Vehicle Model FreedomCAR & 21st Century Truck Partnership

Research & Development Magazine 100 Award in 2004



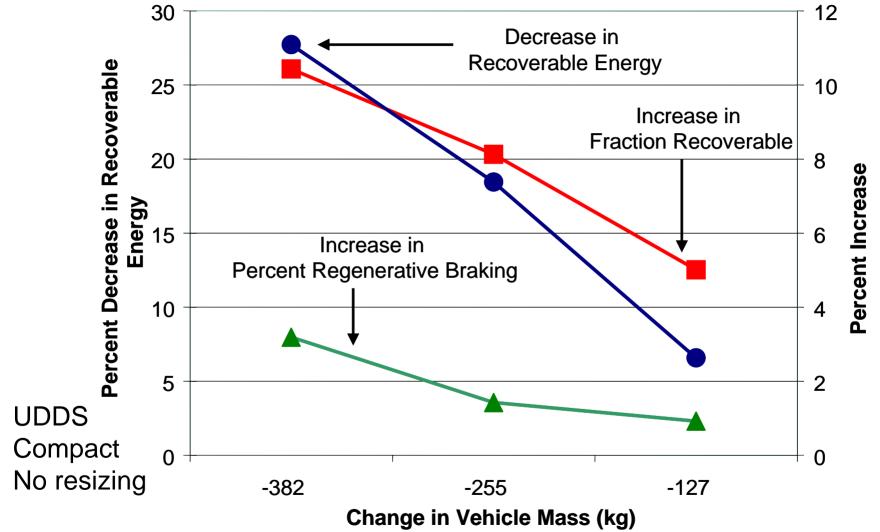
FreedomCAR Goals

Representatives of Today and Tomorrow

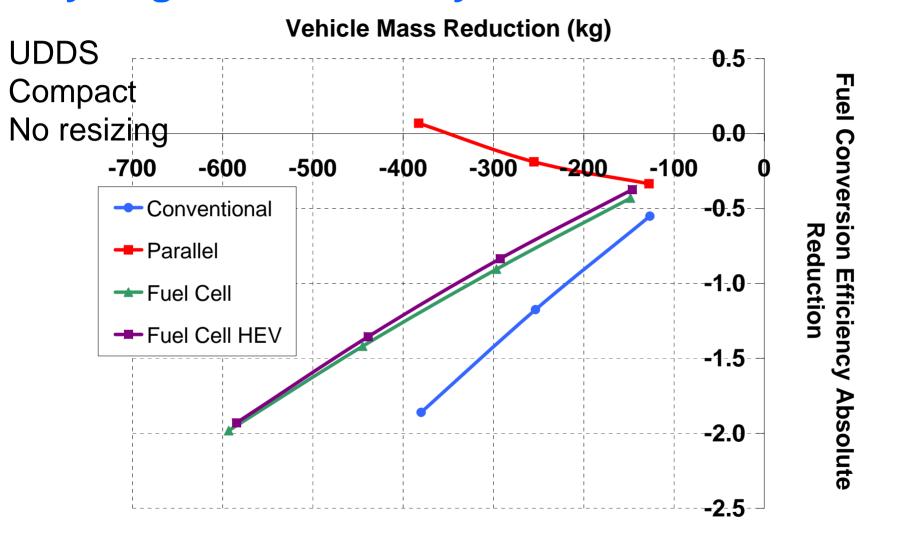


Vehicle Platform – Minimal Effect

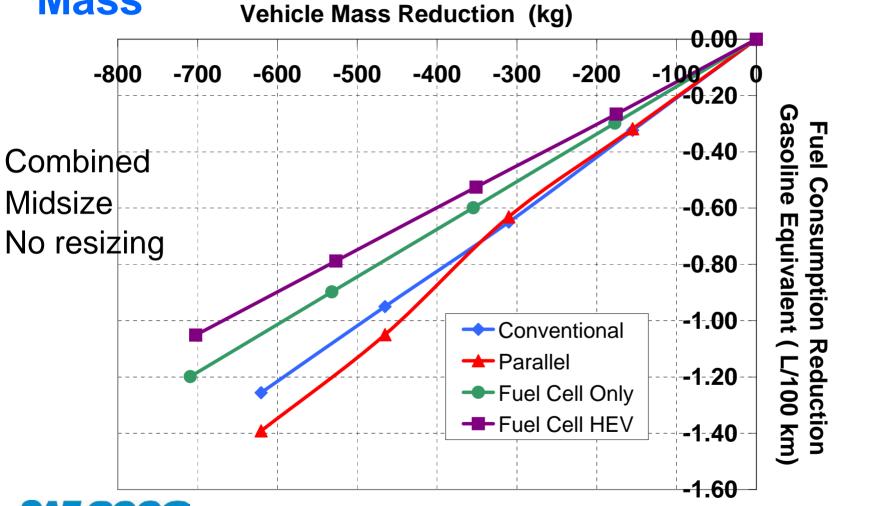
Mass Reduction (kg) 0.00 -600 -500 -300 -200 -700 -400 -100 0.20 gasoline equivalent L/100km Fuel Consumption Reduction Compact Conventional → Midsize Conventional -0.40 SUV Conventional -0.60 Combined No resizing -0.80 -1.00 -1.20 -1.40



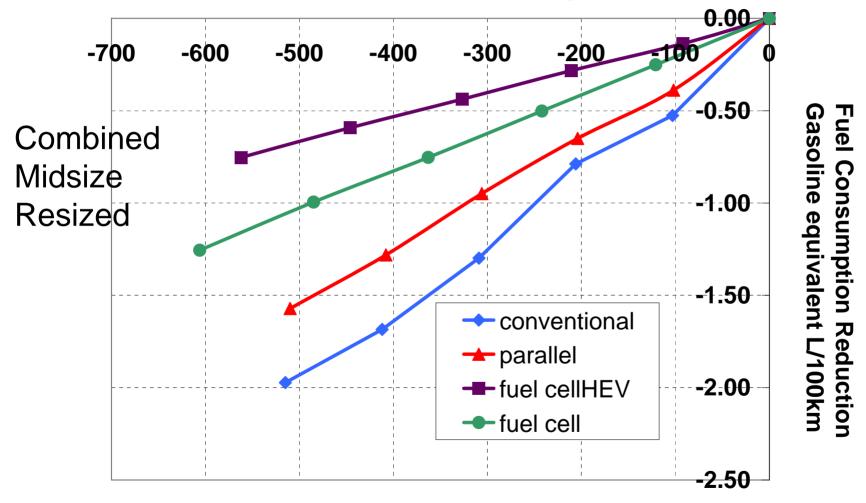
Sensitivity UDDS > Sensitivity HWFET



Vehicle Mass Decrease Significantly Affects Regenerative Braking Energy



Parallel: Regen Insensitivity Partially Canceled by Engine Insensitivity



Configurations with Higher FCV Efficiency are Less Sensitive to Change in Vehicle Mass Vehicle Mass Reduction (kg)

Resizing Reveals Repercussions of Regen

Reduction in Vehicle Mass (kg)

Scratching the Surface

$$\eta_{\it driveline} \eta_{\it fcv} P_{\it fuel} + \eta_{\it driveline} P_{\it ess} = P_{\it veh}$$

$$\frac{d}{dm} \left(\eta_{driveline} \eta_{fcv} P_{fuel} + \eta_{driveline} P_{ess} \right) = \frac{d}{dm} \left(P_{veh} \right)$$

$$\int_{0.00}^{\infty} \frac{d}{dm} \left(\eta_{driveline} \eta_{fcv} P_{fuel} + \eta_{driveline} P_{ess} \right) dt = \int_{a>0}^{\infty} \frac{d}{dm} \left(P_{veh} \right) dt$$

Aggressive cycles will lead to higher sensitivity

$$\frac{dE_{fuel}}{dm_{vehicle}} = \int_{a\geq 0} \frac{P_{veh}^{'}}{\eta_{driveline}\eta_{fcv}} dt - \int_{a\geq 0} \frac{\eta_{driveline}^{'}P_{fuel}}{\eta_{driveline}} dt - \int_{a\geq 0} \frac{\eta_{fcv}^{'}P_{fuel}}{\eta_{fcv}} dt$$

The greater the fuel converter and driveline efficiencies, the lower the sensitivity

$$\frac{dE_{fuel}}{dm_{vehicle}} = \int_{a\geq 0}^{P_{veh}} \frac{P_{veh}}{\eta_{driveline} \eta_{fcv}} dt - \int_{a\geq 0}^{\eta_{driveline}} \frac{\eta_{driveline} P_{fuel}}{\eta_{driveline}} dt - \int_{a\geq 0}^{\eta_{fcv}} \frac{\eta_{fcv} P_{fuel}}{\eta_{fcv}} dt - \int_{a\geq 0}^{\eta_{driveline}} \frac{\eta_{fcv} P_{fuel}}{\eta_{fcv}} dt - \int_{a\geq 0}^{\eta_{driveline}} \frac{P_{ess}}{\eta_{fcv}} dt$$

The greater the variation of fuel converter and driveline efficiencies, the lower the sensitivity

$$\frac{dE_{fuel}}{dm_{vehicle}} = \int_{a\geq 0}^{a\geq 0} \frac{P_{veh}}{\eta_{driveline}} dt - \int_{a\geq 0}^{a\geq 0} \frac{\eta_{driveline}}{\eta_{driveline}} P_{fuel} dt - \int_{a\geq 0}^{a\geq 0} \frac{\eta_{fcv}}{\eta_{fcv}} dt$$
$$- \int_{a\geq 0}^{a\geq 0} \frac{\eta_{driveline}}{\eta_{driveline}} P_{ess} dt - \int_{a\geq 0}^{a\geq 0} \frac{P_{ess}}{\eta_{fcv}} dt$$

Battery Partially Eclipses a Mass Increase

$$\frac{dE_{fuel}}{dm_{vehicle}} = \int_{a\geq 0} \frac{P_{veh}^{'}}{\eta_{driveline}} dt - \int_{a\geq 0} \frac{\eta_{driveline}^{'} P_{fuel}}{\eta_{driveline}} dt - \int_{a\geq 0} \frac{\eta_{fcv}^{'} P_{fuel}}{\eta_{fcv}} dt - \int_{a\geq 0} \frac{\eta_{driveline}^{'} P_{ess}}{\eta_{fcv}} dt - \int_{a\geq 0} \frac{P_{ess}^{'}}{\eta_{fcv}} dt$$

Sensitivity for NO Resizing

Configuration		nicle Mass uction		icle Mass iction	30% Vehicle Mass Reduction	
	% based on mpgge	% based l/100km	% based on mpgge	% based I/100km	% based on mpgge	% based I/100km
Conventional	4.2	4.1	8.9	8.2	13.5	11.9
Parallel	5.1	4.8	10.6	9.6	19	16
Fuel Cell	6.2	5.8	13.2	11.6	21.1	17.4
Fuel Cell HEV	6.1	5.7	12.7	11.3	20.3	16.9

Sensitivity for Resizing

Configuration	10% Glider Mass Reduction			20% Glider Mass Reduction			30% Glider Mass Reduction		
	% vehicle mass	% based on mpgge	% based I/100km	% vehicle mass	% based on mpgge	% based I/100km	% vehicle mass	% based on mpgge	% based I/100km
Conventional	6.6	6.6	7	13.3	10	11	19.9	16.4	19.6
Parallel	6.5	6	6.3	13	10	11	19.6	14.5	17
Fuel Cell	5.2	4.7	5	12	9.5	10.4	18.6	14.2	16.5
Fuel Cell HEV	6.7	3.2	3.3	13.3	6.6	7	20	10.2	11.4

From these simulations

- Platform Minimal Effect
- Drive cycle Aggressive Cycles
- No Resizing
 - 1) Conventional: No Regen, ICE Drops
 - 1) Parallel: Regen, ICE Constant
 - 2) Fuel Cell: No Regen, FCV Higher
 - 2) Fuel Cell HEV: Regen, FCV Higher

From these simulations

- With Resizing
 - 1. Conventional: No Regen, ICE Constant
 - 2. Parallel: Regen, ICE Constant
 - 3. Fuel Cell: No Regen, FCV Higher
 - 4. Fuel Cell HEV: Regen, FCV Higher
- FreedomCAR goals => lower mass sensitivity
 - ICE η ↑, FCV η ↑

Contact Info

www.transporation.anl.gov

Aymeric Rousseau: arousseau@anl.gov

