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How are The Current Power and Energy Requirements
Impacted by Real World Drive Cycles?

How does the Temperature Impacts Fuel Efficiency?

2012

Short-T C e L.
Characteristics at EOL (End of Life) or . e:rm. Long-Term Commercialization
Commercialization
Commercialization Target Year

2016

Peak Regen Pulse Power (10 sec)

Available Energy for CD (Charge Depleting) Mode, 10 kW Rate

Cold cranking power at -30°C, 2 sec - 3 Pulses

CD Life / Discharge Throughput Cycles/MWh 5,000 /17 5,000 /58
CS HEV Cycle Life, 50 Wh Profile Cycles 300,000 300,000
Calendar Life, 40°C year 15 15
Maximum System Weight kg 60 120
Maximum System Volume Liter 40 80
Maximum Operating Voltage Vdc 400 400
Minimum Operating Voltage Vdc >(0.55 x Vmax >(0.55 x Vmax
Maximum Self-discharge Wh/day 50 50
System Recharge Rate at 30°C kW 1.4 (120V/15A) 1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range °C -30 to +52 -30 to +52
Survival Temperature Range °C -46 to +66 -46 to +66
Maximum System Production Price @ 100k units/yr $ $1,700 $3,400
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Battery Requirements Evaluation Process

/ffi’ﬂmnpdz' I l
L4 Vehicle | Battery Hardware I
Simulation l " I
| |
+1)50C (@t +1)fd o I I
G | |
{P, (t+1)s0C ,.(t + 1)}J w0 I I >
GIobaI Optimization I - : I e oo
wwwwwww ¢ o % < " i \ L]
%M% I S . I - .
e | - X |
| , | lated Vehi | - T
Real World “‘]j : Emulated Vehicle : « Natural Cold Test Chamber
Drive Cycles ™ W _J
V
| Energy & Power | Temperature Effects I

100% Modeling 100% Hardware

AAAAAAAAAAAAAAAAAA



Objective: Impact of Real World Drive Cycles
on Power and Energy Requirements

Real World @™ Automated Analysis
Drive Cycles%%@f Sizing (Distribution)

Vehicle Assumptions
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Analysis of Vehicle Speed Traces at Different Levels
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50% of the Daily Trips Require >100 kW

Distribution of Pess max discharging for each Daily drive

107”””””””‘ ””””””” r””””””"r”””””’”j"””””””"””””””’;100
-190
= Mean =115 kW

2 T | -70 __
* ‘ Median =100 kW S
0 | | | | ~
o ! | | | S
se ./ Std=48kw: e
B | | | | o
: | | | . . : m
§ Number of Daily drives =111 50 @
..6 I I E
s 41 HuNAE W N ®» -40 3
8 =
- 3

> 30

2. —20

-10

.
100 150 200 250 300
P __ (kW)
ess

- DOE Requirement (50 kW) => 3.5%
AAAAAAAAAAAAAAAAAA DOE Requirement (46 kW) => 2.9% I




Distribution of Discharging Peak Power Per Trip

Distribution of P_. max discharging for each trip °
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Distribution of Discharging Power (All Points)

Dlstrlbutlon of Pess for contlnuous dlschargmg for all trips

cumulative power (%)
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Distribution of Charging Peak Power Per Daily

UDDS, 21% of the
cycles can be
completed

Driving
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Distribution of Charqging Peak Power Per Trip

Dlstrlbutlon of Pegs max charglng for each tr|p
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Distribution of Charging Power (All Points)
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12 kWh Usable is Required to Complete 50% of the Daily Drives

Distribution of Battery Energy out for each Daily Drive
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Evolution of Available Energy as a Function of

Distance
40— L o o R~ e |

- Energy out tot=f(Distance)
35 | —Linear regression

— Energy UDDS <
30 | —Energy US06 @0

— Energy LA 92

=2 e e AT L _
é > Close to the simulation
< until 50 miles

§ 20 e B D I i Y ) e g g

3

15~ WP e 7

>

e

wio— oy N AR

|
0 10 20 30 40 50 60 70 80 90
Distance (mile)




Objective: Impact of Temperature on Efficiency

(Powertrain Unchanged)
Evaluation of Battery In An Emulated Vehicle System

JCS VL41M
260V, 41Ah

Parameters:
Vehicle mass, drive cycle,
Architecture, Component
Power ratings, etc
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Y
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Vehicle S
Controller Mode -

Feedback via CAN: voltage, current, temperature, SOC, available power , etc




AER Decreases with Temperature
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AER Drops by 13% at -7C
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AER Decrease Mostly Due to Regen Energy
and Other Losses than Internal Resistance

Battery Losses at Lower Temperature

Initial Battery kWh AkWh
Temperature
20 6.2 0
0 5.6 0.53
-7 5.5 0.73
Source
Initial AWh compared to Wh | 4 Regen Energy as | AFPRt as % of A Other Losses
Temperature delivered at 20°C % of A Wh A Wh as % of AW
0C 530 34% 8% 58%
-7C 730 34% 12% 54%




Objective: Impact of Temperature on
Vehicle Efficiency

Battery Temperature Impact During On-Road Testing

Hymotion/A123 7kWh Pack
20kW 315VDC
DC/DC Li-lon
Escape <—‘ Converter
P W rtrai Escape
Powertrai
Inverter <:> Escape NiMH 340 VDC
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Hymotion Escape PHEV
/7 KWh Li-ion (A123)




Fuel Economy Still Increases After 20
miles!

T Hymotion Escape PHEV :f_"f’i"e;imf ] . ::;i::‘; SttpeedT[mp“]C
-5 degC Ambient Temperature "5 " S
(COId Initial BatterY) @ Fu_el Economy [mpg] —a— Elec Consump [DC Whr/mi]
804 | | 1320
208.4 ' | | ‘
55 | E
£ ? °0 240 é
. igms | &
AN - ; ' 5
ggam . e 7 3f 70 A 36. 80 : 39 2 i3 41 00 0 160.‘%
1A o é
" U\M M (1 -
i || il
LI TBES
A8 'W ) i i H il 1] I | ;; “ -'-“ i }ulm;w wnwvwl;l 'l1||1\}llllllhlll (NG
I:" i3 i:'l il Hl ! bodld ot l ‘ i, || ‘
Imitil il Il [ ] i Wil Battery Temperature
| Still Increasing After

60 minutes!

Entire Vehicle Was Cold




Higher Li-ion Temperature Leads to Increased
Battery Usage and Lower Fuel Consumption
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Most of the Fuel Consumption Increase
Due to Cold Battery
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Impact of Cold Battery Mostly Due to

Discharge Energy
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Conclusion

m The PHEV requirements analysis is only valid for the set of drive
cycles considered and should not be generalized to the US

market.

m Aggressive driving will put limits on all EV range, which in turn
favors a blended mode operational strategy.

m When the battery is sized for the UDDS,

m 3% of the daily driving and 20% of the trips can be completed in EV
due to power limitation. However, the power requirements are
sufficient 97% of the time.

m 1.5% (short term goal) and 50% (long term goal) of the daily driving
can be completed in EV due to energy limitation

m The real world drive cycles are more aggressive than the UDDS,
resulting in larger energy requirements to drive the same

distance.
m LA92 better represents current drive cycle aggressiveness.




Conclusion (cont’d)

m Testing a battery in an emulated vehicle, the AER decreases
by 9% at 0°C and by 13% at -7°C, as compared with 20°C
conditions. Decreases in regenerative braking energy
combined with “other losses” explain the changes.

m For the PHEV conversion tested, the on-road test results
demonstrated that:

— The powertrain warm-up causes most of the losses
during the early stage of the drive cycle (10 minutes)

— The battery pack then accounts for most of the changes
in fuel consumption

m At cold temperatures, control limitations, especially
discharging energy, are the main reason for lower fuel

economy.




Contact Information

m Modeling & Simulation
Aymeric Rousseau — arousseau@anl.gov

m Battery Hardware In Emulated Vehicle System
Neeraj Shidore — nshidore@anl.gov

m Vehicle Testing
Richard “Barney” Carlson — rwcarlson@anl.gov
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