

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PHEV Battery Requirements

Uncertainty Based on Real World Drive Cycles and Impact on Fuel Efficiency

International Conference on Li-ion Batteries for Automotive Applications

September 15, 2008

Aymeric Rousseau, Mohamed Fellah, Neeraj Shidore, R. "Barney" Carlson

Argonne National Laboratory

Ed Nam

US. EPA

Sponsored by Lee Slezak (U.S. DOE)

How are The Current Power and Energy Requirements Impacted by Real World Drive Cycles?

How does the Temperature Impacts Fuel Efficiency?

Characteristics at EOL (End of Life)		Short-Term Commercialization	Long-Term Commercialization
Commercialization Target	Year	2012	2016
Peak Pulse Discharge Power (10 sec)	kW	45	38
Peak Regen Pulse Power (10 sec)	kW	30	25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cvcle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 40°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80
Maximum Operating Voltage	Vdc	400	400
Minimum Operating Voltage	Vdc	>0.55 x Vmax	>0.55 x Vmax
Maximum Self-discharge	Wh/day	50	50
System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range	°C	-30 to +52	-30 to +52
Survival Temperature Range	°C	-46 to +66	-46 to +66
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

Battery Requirements Evaluation Process

371 Facil

<u>Objective:</u> Impact of Real World Drive Cycles on Power and Energy Requirements

Argoni

Analysis of Vehicle Speed Traces at Different Levels

50% of the Daily Trips Require >100 kW

Distribution of Discharging Peak Power Per Trip

Distribution of Discharging Power (All Points)

Distribution of Charging Peak Power Per Daily Driving

Distribution of Charging Peak Power Per Trip

Distribution of Charging Power (All Points)

12 kWh Usable is Required to Complete 50% of the Daily Drives

12

Evolution of Available Energy as a Function of Distance

<u>Objective:</u> Impact of Temperature on Efficiency (Powertrain Unchanged)

Evaluation of Battery In An Emulated Vehicle System

AER Decreases with Temperature

AER Drops by 13% at -7C

AER Decrease Mostly Due to Regen Energy and Other Losses than Internal Resistance

Battery Losses at Lower Temperature

Initial Temperature	Battery kWh	\Delta kWh
20	6.2	0
0	5.6	0.53
—7	5.5	0.73

Source

Initial Temperature	Δ <i>Wh</i> compared to Wh delivered at 20°C	$\Delta Regen Energy$ as % of ΔWh	ΔFRt as % of ΔWh	$\Delta Other Losses$ as % of ΔW
0C	530	34%	8%	58%
-7C	730	34%	12%	54%

<u>Objective:</u> Impact of Temperature on Vehicle Efficiency

Battery Temperature Impact During On-Road Testing

Hymotion Escape PHEV 7 kWh Li-ion (A123)

Fuel Economy Still Increases After 20 miles!

Higher Li-ion Temperature Leads to Increased Battery Usage and Lower Fuel Consumption

Most of the Fuel Consumption Increase Due to Cold Battery

Percent increase in fuel consumption over steady-state fuel consumption -5°C

Impact of Cold Battery Mostly Due to Discharge Energy

Regenerative Braking Difference only Due to NiMH

Conclusion

- The PHEV requirements analysis is only valid for the set of drive cycles considered and should not be generalized to the US market.
- Aggressive driving will put limits on all EV range, which in turn favors a blended mode operational strategy.
- When the battery is sized for the UDDS,
 - 3% of the daily driving and 20% of the trips can be completed in EV due to power limitation. However, the power requirements are sufficient 97% of the time.
 - 1.5% (short term goal) and 50% (long term goal) of the daily driving can be completed in EV due to energy limitation
- The real world drive cycles are more aggressive than the UDDS, resulting in larger energy requirements to drive the same distance.
- LA92 better represents current drive cycle aggressiveness.

Conclusion (cont'd)

- Testing a battery in an emulated vehicle, the AER decreases by 9% at 0°C and by 13% at -7°C, as compared with 20°C conditions. Decreases in regenerative braking energy combined with "other losses" explain the changes.
- For the PHEV conversion tested, the on-road test results demonstrated that:
 - The powertrain warm-up causes most of the losses during the early stage of the drive cycle (10 minutes)
 - The battery pack then accounts for most of the changes in fuel consumption
- At cold temperatures, control limitations, especially discharging energy, are the main reason for lower fuel economy.

Contact Information

Modeling & Simulation Aymeric Rousseau – <u>arousseau@anl.gov</u>

Battery Hardware In Emulated Vehicle System Neeraj Shidore – <u>nshidore@anl.gov</u>

Vehicle Testing Richard "Barney" Carlson – <u>rwcarlson@anl.gov</u>

