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Abstract 

Hybrid Electrical Vehicle (HEV) fuel economy highly depends on power allocation between the different 
power sources — engine and fuel cell — and the energy storage system(s).  A generic global optimization 
algorithm has been developed to minimize fuel consumption by optimizing the powertrain power flows. 
This algorithm was applied on a Fuel Cell Hybrid Vehicle, and results were generated for several driving 
cycles.  By using these results, a real-time control strategy was developed and implemented in PSAT 
(Powertrain System Analysis Toolkit).  Methodology, as well as control strategy differences, will be 
discussed. 
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1 Introduction 
Hybrid Electrical Vehicles (HEVs) are undergoing extensive research and development because of their 
potential for high efficiency and low emissions.  Their controls, like those for any other vehicle, have to 
maximize fuel economy, which in this case, is highly dependent on the power allocation between the fuel 
converters (engine and fuel cell) and the energy storage system(s). 

Different instantaneous and global optimization algorithms have been defined in the past to understand the 
behavior of such control for HEVs [1–5].  For instantaneous optimization, the results can lead to local 
minima, with control behavior different from the global optimum.  Moreover, the global optimization 
considered is specific to a given vehicle configuration and cannot be easily adapted. 

In this paper, a generic global optimization algorithm on the powertrain flows has been developed on the 
basis of the Bellman optimality principle.  The most efficient power flow control for a given cycle can 
then be computed for different powertrain configurations.  The optimization algorithm was then applied to 
a fuel cell hybrid vehicle with a fixed transmission ratio.  This configuration allows for a reduced state and 
command space, thereby reducing the computation time needed to validate the algorithm and find the 
optimal command.  For the same purpose, the vehicle is simulated by using static component models and 
backward simulation. 

The optimization results are used to isolate control patterns, both dependent and independent of the cycle 
characteristics in order to develop real-time control strategies in Simulink/Stateflow.  These controllers are 
then implemented in PSAT to validate their performances. 

PSAT is a “forward-looking” model that simulates fuel economy and performance in a realistic manner by 
taking into account transient behavior and control system characteristics. It can simulate an unrivaled 
number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and 
power split hybrid). Because of its forward architecture, PSAT component interactions are “real world.” 



PSAT has been validated within 5% accuracy by using testing results from several vehicles and is 
currently the preferred vehicle simulation tool for DOE’s FreedomCAR& Fuels Partnership activities. 

2 HEV Power Flows Modeling and Control 

2.1 Static Power Flow Modeling 
When using optimization algorithms, the number of computations is a critical factor that must be 
minimized to find a solution within a reasonable amount of time. For this reason, simplified static 
component models can be used for backward simulation of the HEV. 

Hence, focusing only on the power flow, most components can be modeled as shown in Figure 1: 

Pin 	 fin=fout / ρ(e,f) Pout 

ein = eout . ρ(e,f) + L(e,f) / fin 

Figure 1: 1st Order Static Model for Backward Simulation 

Where P = e.f is the power, e is the effort (e.g., torque), f is the flow (e.g., rotational speed), ρ is the 
reduction ratio, and L is the Power Loss. 

The other components consist of three different groups: 
•	 Power Source (Fuel Cell or Engine): 

Pout
Pcmd = Pout + L(e,f) 

•	 Energy Storage (again, to reduce computation time and as a first approach, the voltage is 
considered about constant, but the ratio and losses are different, pending the energy storage 
system [ESS] state — charging or discharging): 

U ~ cst Pout
I = (Pout / ρ(U,I) + L(U,I)) / U 
∆SOC = F(∆I) 

•	 Transmission ( i ∈[0, Ng]  0: neutral, Ng: number of gears: 
Pi,in=ωi.Ti 	 ωi,in=ωout / ρi(ωout,Tout) Pout 

Ti,in = Tout . ρi(ωout,Tout) + Li(ωout,Tout) / ωi,in 

Therefore, by using these static models, most HEV power flows can be represented as a combination of 
the following layout (Figure 2): 
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Figure 2: HEV Power Flows 

Where: 
Eng FC• MPS: Mechanical Power Source, which consists of either or PP E/M C 



•	 EPS: Electrical Power Source, which consists of either FC or Eng 

•	 Eng: Engine 
PP E/M C 

•	 FC: Fuel Cell 
•	 PP: Power Path, which consists of a combination of components described in Figure 1, as well as 

transmissions 
•	 ESS: Energy Storage System 

EM PP•	 E/M C: Electrical/Mechanical Converter, which consists of  PP 

•	 EM: Electrical Machine, namely a motor or a generator 
•	 WhA: Wheel Axle 
•	 Veh: Vehicle 

Other combinations are possible on: 
•	 The Electrical Node E, by duplicating the Power Flow (2) (e.g., dual energy storage), (3), and/or 

(4) (e.g., split); 
•	 The Mechanical Node M1, by duplicating the Power Flow (1) and/or a combination of (2) and/or 

(3) with (4) (e.g., parallel, split,…); and 
•	 The Wheel Axle Node M2, by duplicating (1), (2), and (3) with (4) for each axle (e.g.: two times 

two wheel drive,…). 

Consequently, for static backward simulation, the HEV state X(t), in terms of Power Flow, is completely 
characterized by: 

X ( )t = {{P( )t }i ,{η( )t } j ,{SOC(t)}k | i ∈[0, N PS ], j ∈[0, NTx ], k ∈[0, N ESS ]}

Where {P( )t } is the power from each power source, {η(t)} is the gear ratio of each transmission (Tx), 

{SOC( )t } is the state of charge of each ESS, N PS  is the number of power source in the vehicle, NTx  is 

the number of transmission, and N ESS  is the number of Energy Storage System. Variables i, j, and k can 
take a value of 0 if there is no power source, transmission, or energy storage. 

2.2 Power Flow Control 
Most HEV controls have two different objectives: (1) minimizing the fuel consumption while (2) 
balancing the battery state of charge (SOCinit = SOCfinal). 

In term of Power Flow, minimizing the fuel consumption is equivalent to minimizing the powertrain 

losses. The control problem is then: 

Criterion min J = ∑Ploss       (1) 


P,η 

Where Ploss  is the power loss of each component. 

Constraints: 
•	 Power: Pmin ≤ P ≤ Pmax for each power source 

Pchg ≤ P ≤ Pdis  for each energy storage system; max ess max 

• Tx: η ∈[η0 ,η1 ,...,ηNg ] for automatic and manual transmission, with Ng the number of gear  

η ∈[0,ηmax ] for CVT and planetary transmission, with ηmax  their maximum ratio; and 
• ESS: SOCmin ≤ SOC ≤ SOCmax , and SOC(0) = SOC(T ) , where T is the cycle length. 

To reach this criterion, the control is performed on the power sources, the energy storage system, and the 
transmissions. The command space is then: 



regenU ( )t = {{Pcmd (t)}i ,{ηcmd ( )  t } j ,{Pess (t)}k | i ∈[0, N PS ], j ∈[0, NTx ], k ∈[0, N ESS ]} 
Where Pcmd	  is the power command of the power sources, ηcmd is the ratio command of the transmissions, 

and Pregen	 is the amount of power each ESS is saving during regenerative mode. ess

Hence: 
U (t )X (t ) ⎯ ( +⎯⎯→ X t 1) 

where {P(t +1)}i = {Pcmd ( )  t }i , {η(t +1)} j = {ηcmd (t )} j , and {SOC(t +1)}k = {SOC( )  t + ΔSOC(t)}k . 

ΔSOC  is a direct consequence of Pess , which is either the power differences between the power demand 
regenand the power sources at the corresponding electrical node for the propelling mode or Pess  for the 

regenerative mode. 

From the criterion (1), the optimum control can be computed in two different ways: 
•	 Local / instantaneous: 


for each t ∈[0,T −1], min J = ∑Ploss (t) (2)

( )U t 

• Global: 
T 

lossmin J = ∑ ∑( P ( )t )	 (3)
U ( )0 ,...,U (T −1) t=0 

Most of the control actually developed relies on the local criteria (2) for instantaneous optimization of the 
power flow and can be directly implemented in a real-time controller. This control will lead to good but 
not globally optimal results. On the other hand, the global criterion (3) provides globally optimal results, 
but it requires non-causal knowledge of the cycle, which usually cannot be implemented for a real-time 
controller without using Global Positioning System (GPS) or specific estimation algorithms. However, 
such control can display optimum command patterns, which can be used to develop real-time controllers. 

3 Global Optimization 

3.1 Implementation 
Bellman Principle of Optimality states that: From any point on an optimal trajectory, the remaining 
trajectory is optimal for the corresponding problem at that point. 

Applied for the global Power Flow optimization of an HEV for a given cycle, the principle becomes: 
∀t ∈[0,T −1] , for each possible state X (t ) the HEV can be at time t, ∃U o (t ) such that: 

∑ loss 

1 ,...,U T 1 ∑ ∑  loss 

( )  U T ∑ ∑  lossP + min 
T 

( P ( )r ) = min 
T 

( P ( )) (4)(t)
U (t+ ) ( − ) r =t+1 U t ,..., ( )  r=t

r 

to go from	 X (t)  to X (T )  on an optimal trajectory. 

To implement this algorithm, the entire state and command spaces must be sampled so that at each time 
step t, all the possible commands are computed from each states X (t)  to all the possible states X (t +1) , 
allowing the command U o (t)  minimizing the criterion (3) to be found. 
Beginning at t = T, following the cycle backward and knowing X (0) = ( )X T  (no power and 
SOC(0)=SOC(T)), this algorithm will certainly find a global solution, if it exists, which minimizes the 
criterion (3). 



For instance, by using a Fuel Cell Hybrid vehicle with a fixed transmission ratio, the state space consists 
of only two variables: the power delivered by the Fuel Cell and the battery SOC. After sampling them 
along the span of their possible values, each state X (t)  can be represented as the pair {Pm ( ), SOCn (t )}t 
and the command by the value Pm ( ) , where m [ M ] with P0 = 0 and PM = Pfc , and n ∈[0, N ]t ∈ 0, Max 

with SOC0 = SOCmin and SOCN = SOCmax . 

During the optimization computation, the value J m,n (t ), which corresponds to the minimum power loss 


from {Pm ( ) SOCn ( )  to X (T )  as stated in the criterion (3), is added to each state. At each time step t, 
t , t } 
all of the possible Fuel Cell commands are computed for each state, but only the one minimizing J m,n (t ) 
is saved (Figure 3). 
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Figure 3: Computing All Possible commands from the State {Pm (t ), SOCn (t )}. SOCi '  (Corresponds 
to the new SOC because of the power variation on ESS when using Pi  from the fuel cell.) 

oHence, U ( )t =U i ( )t = Pi ( )t such that ∀j ∈[0, M ] : 
loss loss ,chg loss ,dis loss loss ,chg loss ,disPfc,i ( )t + Pess ,i ' ( )t + Pess ,i ' (t)+ J i,i ' ≤ Pfc, j (t)+ Pess , j ' (t)+ Pess , j ' ( )  t + J j , j ' 

When X(0) is reached, the command history can then be traced forward to X(T) if, and only if, a solution 
exists. 

3.2 Results 
The vehicle is based upon a midsize vehicle platform. The vehicle’s characteristics are listed in Table 1. 

Parameter Value Units 
Vehicle mass 1236 kg 
Fuel cell power 70 kW 
Motor power Peak: 70, Cont.: 35 kW 
Energy storage system 16.7 kW 
Fixed transmission ratio 1.6 / 
Final drive ratio 4.07 / 
Wheel radius 3.07 m 
Frontal area 2.18 m2 

Drag coefficient 0.3 / 
Rolling resistance 0.008 / 
Acceleration (IVM-60 mph) 10 s 

Table 1: Characteristics of Fuel Cell Hybrid Vehicle  



The components were sized to achieve performance similar to that of existing midsize vehicles.  The 
algorithm was applied for four different drive cycles, including the Elementary Urban Cycle (ECE), New 
European Driving Cycle (NEDC), Urban Dynamometer Driving Schedule (UDDS), and the Highway Fuel 
Economy Driving Schedule (HWFET). To generate rules independent from the SOC, several initial SOC 
conditions were applied. The fuel cell powertrain is described in Figure 4. 

Figure 4: Configuration of Fuel Cell Hybrid  

Before running the algorithm, the following constraints were added on the state and command spaces 
because of the physics of the components: 

Pdmd• If mc (t) ≤ 0	 (regenerative mode),  

o	 Then Pfc
cmd (t) = 0 

3 dmd dis ,max cmd dmd chg ,maxo Else max(3.10 , Pmc (t) − Pess (SOC(t))) ≤ Pfc (t) ≤ Pmc (t) + Pess (SOC(t)) 

Pchg ,max (• ess SOC(t)) = 0  if the vehicle speed is below 2 mph. 

The fuel consumption results from the optimization algorithm are presented in Table 2. 

SOC Init (0–1) Fuel Economy (mpgge) 
ECE 0.7 106.8 
NEDC 0.6 99.6 

0.7 98.5 
HWFET 0.7 100.1 
UDDS 0.7 99.9 

Table 2: Fuel Economy from Optimization Algorithm 

Figure 5 provides an example of the optimization algorithm outputs. The upper graph describes the 
vehicle speed in m/s, the middle one the component powers (mc = motor, fc = fuel cell, ess = energy 
storage system), and the last one the battery SOC. 



Figure 5: Drive Cycle in m/s, Power Demand and Power Command in W, and SOC for an ECE Cycle 

4 Real-Time Controller Design 

4.1 Default PSAT Controller 
Because of the fuel cell system’s high efficiency, it appears natural not to use energy storage as the 
primary power source.  Indeed, when the efficiency of the fuel cell system is compared with that of the 
internal combustion engine (ICE), as shown in Figure 6, the fuel cell system is found to have high 
efficiency at low power.  For a hybrid ICE, it is interesting to use the battery at low and medium power 
levels and the ICE at high power levels — that is not, however, the case for fuel cell vehicles. 
Consequently, the default control strategy has been developed so that the main battery function is to store 
the regenerative braking energy from the wheel and return it to the system when the vehicle operates at 
low power demand (low vehicle speed).  The battery also provides power during transient operations 
when the fuel cell is unable to meet driver demand. 

Component limits, such as maximum speed or torque, are taken into account to ensure the proper behavior 
of each component. Battery state-of-charge (SOC) is monitored and regulated so that the battery stays in 
the defined operating range. The three controller outputs are fuel cell ON/OFF, fuel cell power, and motor 
torque. 

To minimize the impact of the SOC variation, the same values were selected for both the initial conditions 
and the target. As shown in Figure 7, the consequence is that the battery will supply the system with the 



energy that it had just recovered from regenerative braking. For instance, the SOC will increase after 
regenerative braking, and this recuperated energy will be returned to the vehicle during the next 
acceleration, thus returning the SOC back to its target value. In other words, to maintain the SOC target, 
the battery does not store any net energy over the cycle. The energy that is recovered during braking is 
immediately returned to the vehicle during the next acceleration. 
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Figure 6: Fuel Cell System Efficiency vs. Internal 
Combustion Engine Efficiency 

Figure 7: PSAT Default Control Strategy 

The motor torque is defined by: 

Tmot = min(Tdemand _ at _ wheel,T̂mot,T̂available _ from _ electrical _ side) with 


T̂available _ from _ electrical _ side = function(Wmot, P̂fuel _ cell + P̂energy _ storage − P̂elec _ acc)

if the energy storage system is above the SOC threshold. Otherwise, 

T̂available _ from _ electrical _ side = function(Wmot, P̂fuel _ cell − P̂elec _ acc) . 


The fuel cell is turned ON if (a) the SOC < threshold, or if (b) the fuel cell power demand > threshold for 
a sufficient amount of time, or if (c) the fuel cell needs to be maintained ON for a minimum amount of 
time. The fuel cell power demand is defined by: 
Pfuel _ cell = min(P̂fuel _ cell, Pfuel _ cell _ demand) with 
Pfuel _ cell _ demand = Pmot _ electrical + Pelec _ acc − ΔPsoc and 
ΔPsoc = function(SOC) to regulate the battery SOC. 

The values used for thresholds are defined in Table 3. 

Parameter Description Value Unit 
Minimum power demand to turn the fuel cell ON 0 W 
SOC below which the fuel cell is turned ON 0.5 [0–1] 
SOC above which the fuel cell is turned OFF 0.7 [0–1] 
Minimum time the power demand has to be above 
the threshold to turn the fuel cell ON 

1 s 

Minimum time the fuel cell should stay ON 2 s 
SOC below which discharging is forbidden 0.3 [0–1] 
SOC above which discharging is allowed 0.35 [0–1] 

Table 3: Parameters Used in the Default Control Strategy 



Figure 8 displays the additional power demand to the fuel cell used to regulate the energy storage system 
SOC. 

Figure 8: Additional Power ( ΔPsoc ) Requested for the SOC Control 

To compare the simulation results with the optimized ones, a SOC correction algorithm was used in 
PSAT. The dichotomy method was selected among several options in PSAT. In this case, the initial SOC 
is modified until the tolerance (difference between initial and final SOC) is met. To characterize and 
compare the different strategy performances, their efficiency is computed as the ratio between the PSAT 
and the optimized fuel economies. For example, for the ECE cycle in Table 4, the default PSAT strategy 
has a fuel economy of 70.3 mpgge, when the optimized one is 106.8 mpgge, leading to an efficiency of 
70.3 / 106.8 = 78.5%. This measure has the advantage to be independent of the strategy types, 
hypothesizes and parameters.  Table 4 compares the fuel economy results between the initial PSAT 
simulation and the optimized algorithm.

 PSAT Simulations Optimization algorithm 
(mpgge) 

Efficiency of default 
strategy (%) SOC Init (0-1) Default PSAT Strategy 

(mpgge) 
ECE 0.718 70.3 106.8 78.5 
NEDC 0.715 77.3 98.5 65.8 
HWFET 0.7 88.4 100.1 88.3 
UDDS 0.717 79.0 99.9 79.1 

Table 4: Comparison between Optimization and PSAT Default Control Strategy 

4.2 Controller Implementation 
The optimization algorithm provides control patterns similar to those of the default PSAT controller, 
where the fuel cell is turned ON on the basis of a power demand threshold and the SOC is regulated by 
asking more or less power to the fuel cell.  However, differences appear related to the power demand 
level. Figure 9 shows that, for high power demand, both controls provide similar results.  However, for 
low power, differences appear, as shown in Figure 10.  In this case, the fuel cell is used during steady-state 
and low vehicle speed for the PSAT default controller.  In addition, during higher power demand, the 
optimization  results demonstrate a higher power requested by the fuel cell. 



To conclude, (a) the power level threshold used to start the fuel cell should be increased for the default 
controller and (b) the SOC algorithm should be tightened to request additional power from the fuel cell 
with in use. 

Figure 9: High Power Demand – Part of HWFET Cycle 

Figure 10: Low Power Demand – Part of NEDC Cycle 

When trying to optimize HEV, one should keep in mind all of the energy sources (in our case, the fuel cell 
and the battery).  On the basis of the optimization results analysis, the first approach used to improve the 
simulated fuel economy from PSAT involves using different values for the minimum power demand used 
to turn the fuel cell ON. The results, summarized in Table 5, demonstrate the potential improvements in 
fuel economy when using a higher value (e.g., 91.2 mppge vs. 88.4 mppge for the 5kW case). 



One major issue, however, appears as the initial SOC varies from case to case.  Table 2 already has shown 
that the initial SOC used for the optimization has an impact on fuel economy. As the fuel economy varies 
with initial SOC, the optimization should be rerun for each value (e.g., SOC = 63.5) to figure out how 
close the simulated and the optimized fuel economies are for the same SOC.  The process then becomes 
iterative. 

Minimum Power demand to 
turn the fuel cell ON (kW) 

Initial SOC Fuel Economy 
(mpgge) 

5 63.5 91.2 
10 71.3 88.7 
15 71.7 88.1 
20 71.7 88.1 

Table 5: PSAT Results for HWFET Cycle with Power Threshold Sweep 

Increasing the power threshold is, however, not sufficient.  The next steps consist of modifying both the 
fuel cell power threshold and the SOC control curve. Figure 11 shows the comparison between the 
optimized and simulated fuel cell powers for the ECE cycle after modifications of the control parameters. 
The main difference remains during the first time the fuel cell is ON after a vehicle stop. This behavior is 
due to the PSAT driver PI controller. 

Figure 11: Low Power Demand – Part of NEDC Cycle after PSAT Control Modifications 

The same parameters were used for all of the considered cycles to assess their impact.  As shown in 
Table 6, using the optimization algorithm allowed a significant increase in the simulation fuel economy. 
However, one clearly notices that despite some increase in fuel economy, some driving cycles (e.g., 
NEDC) still have potential for improvements.  Consequently, different parameters should be considered 
for different driving cycles. 



 PSAT Simulations Optimization 
algorithm (mpgge) 

Efficiency of 
default 

strategy (%) 

Efficiency of 
modified 

strategy (%) 
 Default PSAT 

Strategy (mpgge) 
Modified PSAT 

Strategy (mpgge) 
ECE 70.3 100.8 106.8 65.8 94.4 
NEDC 77.3 81.5 98.5 78.5 82.7 
HWFET 88.4 92.3 100.1 88.3 92.2 
UDDS 79.0 91.3 99.9 79.1 91.4 

Table 6: Comparison between Simulation and Optimization after Modification 

Manually modifying the control parameters to match the component behaviors, while maintaining a 
similar initial SOC, is tedious and time-consuming.  For this reason, an automated process will be 
developed to populate the default controllers by using results from optimization for several drive cycles 
and battery SOC. 

5 Conclusion 
A generic global optimization algorithm has been developed to minimize fuel consumption by optimizing 
the powertrain power flows.  This algorithm was applied to a Fuel Cell Hybrid Vehicle, and results have 
been generated for several driving cycles.  By using these results, a real-time control strategy was 
developed and implemented in PSAT, resulting in fuel economy improvements for all of the driving 
cycles. However, as hybrid electric vehicle fuel economy is highly dependant upon battery SOC, extensive 
computation is required to generate optimized results for different cases. Even if it is possible to 
significantly increase the simulated fuel economy by using the optimize results, an automated process is 
required to process all of the information needed to optimize the control independently of its initial SOC 
or driving schedule. 
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