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Abstract 

Plug-in hybrid electric vehicles (PHEVs) have demonstrated the potential to significantly increase fuel 
economy. However, the overall efficiency of the powertrain system of any Hybrid Electric Vehicle 
(HEV) depends on the vehicle-level control strategy. To optimize the energy flow, a global 
optimization algorithm, based on the Bellman principle, was used to generate the most efficient 
operating conditions for a parallel pre-transmission hybrid and a specific driving cycle. Several driving 
cycles were analyzed, each of them repeated a number of times to assess the impact of driving distance. 
The engine, electric machine, and transmission operating modes were then used to generate a rule-
based control strategy in PSAT, Argonne’s vehicle system modeling software. 
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Introduction 

Hybrid Electrical Vehicles (HEVs) are undergoing extensive research and development because of 
their potential for high efficiency and low emissions. Their controls, like those for any other vehicle, 
have to maximize fuel economy, which, in this case, is highly dependent on the power allocation 
between the fuel converters (engine and fuel cell) and the energy storage system(s). A global 
optimization algorithm on the powertrain flows has been developed on the basis of the Bellman 
optimality principle and applied to fuel cell HEVs [1]. This algorithm has been modified and enhanced 
to be able to manage the issues introduced by Plug-in HEV (PHEV) specificities. The optimization 
results are used to isolate control patterns, both dependent and independent of the cycle characteristics 
in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then 
implemented in Argonne National Laboratory’s Powertrain System Analysis Toolkit (PSAT) to 
validate their performances. 

PSAT [2, 3], developed with MATLAB/Simulink, is a vehicle-modeling package used to simulate 
performance and fuel economy. It allows one to realistically estimate the wheel torque needed to 
achieve a desired speed by sending commands to different components, such as throttle position for 
the engine, displacement for the clutch, gear number for the transmission, or mechanical braking for 
the wheels. In this way, we can model a driver who follows a predefined speed cycle. Moreover, as 
components in PSAT react to commands realistically, we can employ advanced component models, 
take into account transient effects (e.g., engine starting, clutch engagement/disengagement, or shifting), 
and develop realistic control strategies. Finally, by using test data measured at Argonne’s Advanced 
Powertrain Research Facility, PSAT has been shown to predict the fuel economy of several hybrid 
vehicles within 5% on the combined cycle. PSAT is the primary vehicle simulation package used to 
support the U.S. Department of Energy’s (DOE’s) FreedomCAR R&D activities. 



Component Specifications 
Engine 2.2 L, 100 kW Ford Duratec 
Electric machine 30 kW Continuous UQM 
Battery Li-ion – Saft VL41M 
Transmission 5-speed manual transmission 

Ratio: [3.42, 2.14, 1.45, 1.03, 0.77] 
Frontal Area 2.244 m2 

Final Drive Ratio 3.8 
Drag Coefficient 0.315 
Rolling Resist. 0.008 (plus speed related term) 
Wheel radius 0.3175 m 
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PHEVs introduce increased complexity because of the length of the driving cycles or the battery state-
of-charge (SOC) range considered. In addition, the selection of a parallel HEV configuration with a 
multi-gear transmission adds a degree of freedom, in comparison to the initial fuel cell hybrid vehicle 
with the gear ratio selection. In this study, we will assess the impact of the distance and characteristics 
of the drive cycle on the optimum component control. Finally, the global optimization results will then 
be used to develop a StateFlow control strategy in PSAT. 

Vehicle Assumptions 

Table 1 lists the main characteristics of the simulated midsize car. The components selected are the 
ones that have been implemented in Argonne’s Mobile Advanced Automotive Testbed (MATT). 
MATT [4] is a rolling chassis used to evaluate component technology in a vehicle system context. The 
control strategy developed on the basis of the optimization results will ultimately be implemented and 
tested on hardware. 

Table 1: Vehicle Main Specifications 

As shown in Figure 1, the configuration selected is a pre-transmission parallel hybrid, very similar to 
the one used in the DaimlerChrysler Sprinter Van [5]. 

Figure 1: Configuration Selected – Pre-Transmission Parallel HEV 



3 Global Optimization 

3.1 Static Power Flow Modeling 

Because the number of computations is critical in optimization algorithms, simplified models and 
assumptions must be used. For this reason, static component models can be used for backward 
simulation of the HEV, as illustrated in Figure 2. 
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Figure 2: Static Vehicle Model 

For this phase, the component models used are based on look-up tables, including engine fuel rate, as 
well as electric machine, transmission, and gear ratio torque losses. A specific battery model has been 
developed to take into account the specificities of PHEVs [6]. 

3.2 Algorithm Principle 

3.2.1 Generic Algorithm — Bellman Principle 

The battery state-of-charge (SOC) is the key parameter in the algorithm, as it determines the level of 
charging and discharging. It is sampled and can take m values: SOC ∈ [SOC1 ,..., SOCk ,..., SOCm ]. 
The command is defined by the engine torque and the gear number. The motor torque and the battery 
power are defined by the engine torque demand because the motor is assumed to provide the 
difference between the demand torque and the command engine torque.  

Beginning from the end, the cycle is followed backward. At each time step t , all the combinations of 
commands that comply with each component constraints are taken into account. For each 

( p) ( p,q,k )possible SOCk and combination of commands (Teng , gearq ) , the instantaneous loss Linst and the 

implied SOC at time t+1, SOCψ ( p,q,k ) , are calculated. For each SOCk  at time t, the optimal path to 
( p)the end is given by the command (Teng , gearq ) that minimizes the cumulated losses: 

( p,q,k )Jk (t) = min (Linst + Jψ ( p,q,k ) (t +1)) . Figure 3 illustrates the algorithm at step t. Finally, the
j∈{1,k ',l ',m} 

command, the implied SOCψ ( p,q,k ) , and the corresponding J k (t) are stored, in order to be used in 
computation at time t-1 and in the post-processing. 
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The path finally chosen between t and t+1 is not necessarily the optimal path between t and t+1 that 
would achieve instantaneous optimization. The algorithm indeed considers the entire drive cycle. Once 
the algorithm reaches the initial step, a post-processing algorithm collects the data previously stored at 
each step and builds the optimal command on the basis of the predetermined initial and final SOC 
values. 

Figure 3: Global Optimization Process 

3.2.2 Nature of the optimization 

The global optimization aims at minimizing the cumulative energy loss throughout the cycle: 
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The losses of the main components are taken into account with 
( )tLinst = ( )tLeng 

inst + ( )tLmotor 
inst + ( )tLbattery 

inst . 

When regenerative braking energy is used to charge the battery, ( )tLinst 0= is used to recuperate as 
much energy as possible. However, this free energy cannot be differentiated from the energy from the 
grid once it is stored in the battery and is therefore included in Linst (t)  when being discharged. 
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The losses due to other components are indirectly accounted for in Linst (t) , because higher losses in 
those components are likely to require more fuel and electricity and, thus, more losses at the engine 
and /or the battery and motor. 

The algorithm outputs the control strategy that will yield the best energy efficiency, not necessarily the 
best fuel economy – even though the differences of efficiency between the engine and the electrical 
system are such that it is usually the case. In the present optimization, we considered that one joule of 
fuel energy is equivalent to one joule of electricity from the grid, but other quantifying coefficients can 
be used to compare these two sources of energy: actual cost (gasoline costs 2.5 c/MJ [$3/gal], 
electricity costs 2.2 c/MJ [8 c/kWh]), environmental cost (obtained by a well-to-pump analysis, for 
example), and emissions, among others. 

3.2.3 Main Parameters and Methodology 

One of the main algorithm constraints is the initial and final battery SOC, which were respectively 
selected to be 90% and 30%. In addition, to evaluate the impact of driving cycles, the New European 
Driving Cycle (NEDC), Urban Driving Dynamometer Schedule (UDDS), and Japan 1015 were 
selected. Each cycle has been repeated several times to assess the impact of distance on the control. 

3.3 Results 

3.3.1 Blended versus Electric Only Control Strategy 

When considering PHEVs, one major issue is whether to use the battery as much as possible before 
operating in charge-sustaining mode (electric-only strategy) or use the engine throughout the driving 
cycle (blending strategy). Figure 4 shows the battery SOC as a function of different driving cycles. For 
illustration, an example of electric-only control based on the default simulation control is provided 
from the simulation. When analyzing the optimization results, one notices that the lower SOC value is 
only reached at the end of the cycle. The algorithm clearly favors the blending control strategy.  

Figure 4: Evolution of Battery SOC for Different Driving Cycles 

3.3.2 Evolution of Engine ON Frequency 

When considering charge-sustaining HEVs, the optimization results provide similar behaviors when 
the same cycle is repeated successively because of the low energy available from the battery. PHEVs 
add another degree of freedom. As a consequence, one may ask whether the optimum behavior is 
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Figure 5: Evolution of Engine ON Frequency 

similar from one cycle to another. Figure 5 shows the evolution of the engine ON when the NEDC is 
repeated 6 times. Note that the first cycle is performed in electric-only mode. During the second cycle, 
the engine is started more often to finally start at the same times for the remaining cycles (3 to 6). 

One main reason to delay the engine start is to maximize regenerative braking energy. Because of the 
high initial SOC, the maximum charging power of the battery is limited, as shown in Figure 6. After 
the first NEDC, the regenerative braking increases to reach its maximum value during the third cycle. 
From there, lowering the SOC for regenerative braking purposes is not an issue anymore. 
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Figure 6: Regenerative Energy Increases 



Vehicle Speed 

P
ow

er
 (

kW
)

S
pe

ed
 (

m
/s

) 40 

20 

0 
0 200 400 600 800 1000 1200 

Regenerative Power from Engine at the Motor in 1st NEDC 

Regenerative Power from Engine at the Motor in 2nd NEDC 
0 

-5 

0 200 400 600 800 1000 1200 
-1 

0 

1

P
ow

er
 (

kW
)

-10 
0 200 400 600 800 1000 1200 

Time (s) 
0 200 400 600 800 1000 1200 

-20 

-10 

0

P
ow

er
 (

kW
) Regenerative Power from Engine at the Motor in 3rd to 6th NEDC 

3.3.3 Battery Charging from Engine 

One of the most difficult questions with HEVs is whether or not to recharge the battery from the 
engine and when. Indeed, the additional roundtrip efficiencies from the engine to the battery have to be 
considered, including the electric machine. The increased energy from the engine should then still be 
higher than the losses to charge the battery and then to provide the energy back to the powertrain. 
Figure 7 shows the engine power used to recharge the battery. Note that when the SOC is lower, the 
engine is used to recharge the battery at a maximum power of 10 kW on the NEDC. The algorithm 
only decided to use the engine in its best efficiency area. 

Figure 7: Battery Charging from Engine 

3.3.4 Minimum SOC Only Reached at the End 

Figure 8 shows the electrical energy consumed during each cycle of a 10 × NEDC run. When the first 
two cycles are mostly performed in electric mode (EV), note that the electrical contribution decreases 
until the 8th cycle, when it finally increases again. As shown in Figure 4, the final SOC value is only 
reached at the end of the cycle. This behavior can be explained by the increased battery losses at low 
SOC as a result of an increased current because of the lower voltage. Consequently, it is important to 
know the length of the driving cycle to operate at low SOC as little as possible. 
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Figure 8: Electrical Energy Consumed during Each NEDC 

3.3.5 Influence of Driving Cycle 

Figure 9 shows the cumulative engine ON time for several driving cycles. To compare similar 
distances, different numbers of cycles have been used. For a lower distance, the cumulative engine ON 
time varies from one cycle to another and increases with the aggressiveness of the cycle — the 
Japan1015 being the least aggressive and the NEDC the most. However, when the distance increases, 
the difference becomes negligible. 

Figure 9: Influence of Driving Cycle on Engine ON Time – 10 × Japan1015, 4 × NEDC, 4 × UDDS 



4 Real-Time Controller 

4.1 PSAT Default Control Strategy 

The adopted control strategy is based on two modes shown in Figure 10: 

1.	 Charge-depleting (CD) mode: corresponds to the discharge of the battery from its maximum SOC 
value (battery charged) to a lower threshold higher than the minimal SOC (battery discharged). 
During this mode, the controller uses the electric energy that was previously taken from the grid, 
as well as from the engine. 

2.	 Charge-sustaining (CS) mode: corresponds to a PHEV0 control; as the SOC is too low, no electric 
energy taken from the grid is available, but some energy can still be recovered from regenerative 
braking and used afterwards at selected moments. 

Charge Depleting (CD)	 Charge Sustaining (CS) 

90 

SOC (%) 

30 

Distance 

Figure 10: Global Optimization Process 

4.2 Comparison with Global Optimization 

Figure 11 compares the engine and motor energy as well as their sum. The total energy from the 
simulation is similar to the optimization, which validates both vehicle models. As the default control 
strategy in PSAT favors the electrical consumption, the motor is almost exclusively used at the 
beginning of the trip, with the engine taking over toward the end of the simulation. Once the engine 
starts, the vehicle operates in CS mode. The electrical energy decreases because of the electrical 
accessory load. The results from the optimization, on the contrary, show a more balanced repartition 
between the electrical and the thermal energies throughout the trip. 
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Figure 11: Engine and Motor Output Energy Comparison – NEDC × 10


Figure 12 shows the input energies from both the engine and the battery. The final total energy from 
the default simulation control is almost 60% higher than that from the optimization algorithm. 

Figure 12: Engine and Battery Input Energy Comparison – NEDC × 10
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The main reason for the difference in energy use is because of the operating conditions of the 
engine. As shown in Figure 13, during the optimization, the engine is only operated around its 
best efficiency area. Because the battery SOC decreases rapidly for the default simulation 
case, the powertrain is forced to operate under CS conditions, and the engine is operated in a 
larger operating area. 

 
Figure 13: Comparison of Engine Operating Conditions – NEDC × 10 

5 Conclusions 

When optimizing a CS HEV, the main parameter influencing the control strategy is the driving cycle 
— repeating the same driving cycles will not alter the control strategy patterns. For PHEVs, distance 
also needs to be carefully considered. The share between the electrical and thermal energy is 
consequently more difficult to determine because the optimum control will change on the basis of 
distance. Although we want to achieve the lowest available SOC at the end of the cycle, we also want 
to avoid running the vehicle in CS mode at lower SOC values with high battery losses. Knowing the 
destination will become an even more important factor for PHEVs. 

After the battery has been recharged, the first part of the trip should be completed in electric mode to 
quickly lower the SOC to maximize regenerative braking energy. Once this is achieved, the engine ON 
pattern is similar for the remainder of the trip. The engine should be used during high acceleration 
events and vehicle speeds. To increase overall powertrain efficiency, the engine should only be used at 
its best efficiency, which would result in the recharging of the battery. Toward the end of the driving 
cycle, less time needs to be spent at low SOC. 

To conclude, developing optimized real-time control strategies for PHEVs is more challenging than 
for CS HEVs because of distance implications. Future control strategy studies will use the 
optimization results as a reference. The controller will be based on average vehicle miles traveled 
(VMT) to focus the tuning on the distance that most people drive. Finally, the vehicle control strategy 
will be implemented in MATT to control hardware to take into account engine cold start and emissions. 
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