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Abstract 

The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by 
evaluating advanced automotive technologies in a systems context. ANL has developed a unique set of 
compatible simulation tools and test equipment to perform an integrated systems analysis project from 
modeling through hardware testing and validation.  This project utilized these capabilities to demonstrate 
the trade-off in fuel economy and Oxides of Nitrogen (NOx) emissions in a so-called `pre-transmission´ 
parallel hybrid powertrain.  The powertrain configuration (in simulation and on the dynamometer) 
consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable Transmission 
(CVT) and an electric drive motor coupled to the CVT input shaft.  The trade-off is studied in a simulated 
environment using PSAT© with different controllers (fuzzy logic and rule based) and engine models 
(neural network and steady state models developed from ANL data).  “Copyrightⓒ 2002 EVS19” 
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1. Introduction 
The search for improved fuel economy and reduced emissions, without sacrificing performance, safety, 
reliability, and affordability has made the hybrid vehicles a challenge for the automotive industry. Diesel 
engines offer high fuel economy, but produce undesirable emissions (particulate matter and NOx) in 
conventional vehicles. Hybridization, i.e., by adding a traction motor and energy storage, can potentially 
reduce these emissions by operating the engine in the optimum efficiency range and capturing 
regenerative braking during deceleration. 

To better understand the potential benefits of hybridization, ANL has developed an integrated set of tools 
for modeling, simulating and testing propulsion components, systems and vehicles.  The first phase of this 
study, described in this paper, demonstrates the fuel economy versus NOx emissions trade-off in 
simulation.  The second phase, still in process, will attempt to demonstrate similar results in hardware 
using the Hardware-In-the-Loop (HIL) test cell at the APRF. 

PSAT, developed under Matlab/Simulink, was used in this study because it is a forward-looking model, 
allowing realistic control strategies to be developed that can be translated directly for use with the 
hardware in the APRF. PSAT is a command-based model, meaning that vehicle performance is estimated 
from the calculated component torque response to realistic commands, such as throttle for the engine, 
displacement for the clutch, gear number for the transmission, or mechanical braking for the wheels. 
Essentially, a driver model attempts to follow a pre-defined speed cycle.  Since the simulated components 
react realistically to the commands and transient effects are taken into account (such as engine starting, 
clutch engagement/disengagement, or shifting), realistic control strategies can be developed. 

Several PSAT characteristics, previously described [2, 3], have been useful in the study: 
•	 Flexibility to exchange control strategies while the rest of the powertrain model remains the same 
•	 Easily exchanged component models to facilitate the comparison of steady-state and neural network 

engine models 
•	 Capability to run batch mode  



Conventional Pre-Transmission Parallel Hybrid 
Vehicle 
Characteristics 

Mass = 1100 kg 
Frontal Area = 1.5 m2 

Coefficient of Drag = 0.2 

Mass = 1297 kg 
Frontal Area = 1.5 m2 

Coefficient of Drag = 0.2 
Engine 1.7L CIDI Mercedes Benz (75kW) 1.7L CIDI Mercedes Benz (75kW) 
Motor UQM Permanent Magnet (32kW continuous) 
Transmission 4 gear automatic (3:1, 1.7:1, 1:1, 0.7:1) Modified Nissan CVT (ratio range 0.5 to 2.5) 
Final Drive 3.24:1 3.1:1 
Battery 12v Pb-Acid (SLI) Li-Ion 14Ah 96 elements – ANL prototype  
Accessories Mechanical = 500W 

Electrical = 200W 
Mechanical = 500W 
Electrical = 700W 

• Validated component and vehicle models [1] 

The characteristics of the conventional (reference) and hybrid vehicles are listed in the following table 
and Figure 1 shows the PSAT Simulink model of the pre-transmission parallel hybrid powertrain used in 
this study. 

Table 1: Comparison of Reference and Hybrid Vehicle Characteristics 

Figure 1: PSAT model – Pre-transmission CVT parallel hybrid 



2. Comparison of Control Strategies 
The philosophy behind the control strategies is that the energy in the system should be managed such 
that: 
1.	 Driver inputs (from brake and accelerating pedals) are satisfied consistently (driving the hybrid 

vehicle should not “feel” different from driving a conventional vehicle),  
2.	 The battery is sufficiently charged (to meet performance requirements) and  
3.	 The overall system efficiency is optimal (based on the engine, motor, battery, and transmission). 

The power controller implements this philosophy (in the form of control rules or adaptive strategies) to 
determine how much power is needed to drive the wheels, how much to charge the battery and the power 
demand allocated to the engine and motor.  If the battery needs to be charged, negative power is assigned 
to the electric motor, and the engine provides the power for both driving and charging the battery.  To 
determine the optimal power split and the power generation/conversion of the individual components, 
efficiency maps of the components are used. Rule based and fuzzy logic strategies, described in the 
following paragraphs, were developed, simulated and compared in this paper. 

2.1. Rule Based Control 
Rule based control attempts to optimize engine efficiency by staying on the best efficiency curve.  The 
engine can provide the required wheel power plus, depending upon state-of-charge (SOC), power to 
recharge the battery.  Engine speed is regulated by the CVT ratio and the electric motor provides power to 
improve the overall drivetrain efficiency (e.g., used alone at low vehicle power demands). 

2.2. Fuzzy Logic Control  
Fuzzy logic is similar to rule-based control, in that the best efficiency curve (Figure 2) is used to define 
the optimal speed and torque for a given power level as well as the CVT ratio determining engine speed. 
The difference is that fuzzy logic attempts to optimize system efficiency whereas rule based control (as 
implemented) optimizes engine efficiency. 

Best Efficiency 
Curve 

Example of 
Emission Curve 

Figure 2: MB 1.7L Engine Map (ANL data) 



The CIDI engine efficiency is highest for engine speeds between 180 and 260 rd/s on the optimal curve, 
corresponding to an engine power between 25 and 50 kW, with the absolute optimum at 44 kW. 
Therefore, the power-split strategy should preferably result in an engine power in this range.  A similar 
approach has been used to analyze the efficiency of the permanent magnet motor/generator, however 
motor speed is directly related to vehicle speed and the efficiency can only be optimized by optimizing 
motor power at a given motor speed. 

To study the trade-off between fuel economy and emissions, two strategies were tuned and analyzed: 
1. Fuel economy optimization (cf. Figure 2 upper curve) 
2. NOx emissions optimization (cf. Figure 2 lower curve). 

Figure 3 presents a simplified overview of the power controller. The first block converts the driver inputs 
from the brake and accelerator pedals to a driver power command. The signals from the pedals are 
normalized to a value between zero and one (zero: pedal is not pressed, one: pedal fully pressed). The 
braking pedal signal is then subtracted from the accelerating pedal signal, so that the driver input takes a 
value between –1 and +1. 
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Figure 3: Fuzzy Logic Controller Block Diagram 

The fuzzy energy management strategy described below has been implemented using a Takagi-Sugeno 
fuzzy logic controller [10]. A fuzzy logic controller relates the controller outputs to the inputs using a list 
of if-then statements called rules (example in Table 2).  The if-part of the rules refers to adjectives that 
describe regions (fuzzy sets) of the input variable. A particular input value belongs to these regions to a 
certain degree, represented by the degree of membership (see Figure 4 for examples of membership 
functions that define the degree of membership).  The then-part of the rules of a Takagi-Sugeno controller 
refers to values of the output variable.  To obtain the output of the controller, the degrees of membership 
of the if-parts of all rules are evaluated, and the then-parts of all rules are averaged, weighted by these 
degrees of membership. 

1 If SOC is too high then Pgen is 0 kW 
2 If SOC is normal and Pdriver is normal and ωEM is optimal then Pgen is 10 kW 
3 If SOC is normal and ωEM is not optimal then Pgen is 0 kW 
4 If SOC is low and Pdriver is normal and ωEM is low then Pgen is 5 kW 
5 If SOC is low and Pdriver is normal and ωEM is not low then Pgen is 15 kW 
6 If SOC is too low then Pgen is Pgen,max 

7 If SOC is too low then scale factor is 0 
8 If SOC is not too low and Pdriver is high then Pgen is 0 kW 
9 If SOC is not too low then scale factor is 1 

Table 2: Example Rules of the Fuzzy Logic Controller 
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If the SOC is too high (rule 1) the desired generator power 
(Pgen) will be zero, to prevent overcharging the battery. If 
the SOC is normal (rules 2 and 3), the battery will only be 
charged when both the EM speed is optimal and the driver 
power is normal. If the SOC drops too low, the battery will 
be charged at a higher power level. This will result in a 
relatively fast recovery to a normal SOC. If the SOC drops to 
too low (rules 6 and 7), the SOC is increased as fast as 
possible to prevent battery damage.  To achieve this, the 
generator power is maximized and the scaling factor is 
decreased from one to zero. Rule 8 prevents battery 
charging when the driver power demand is high and the SOC 
is not too low. Charging in this situation moves the engine 
power outside the optimum range (25-50 kW). Finally, 
when the SOC is not too low (rule 9), the scaling factor is 

Figure 4: Example of Membership one. 
Functions 

3. Comparison of Engine Models 

3.1. Neural Network 
Neural network (NN) models were generated to simulate the transient behavior of fuel rate and NOx 
using a Pierburg Emissions Bench.  The models were trained using selected transient data inputs recorded 
from a Mercedes 1.7L CIDI engine.  The resultant neural network was validated using unique transient 
data recorded from the same engine.   

3.2. Steady State Engine Map 
To further quantify the simulation accuracy of the trained fuel rate NN model, an engine map (EM) model 
was generated using a locus of steady state operating point data recorded from the same engine.  The 
model was instructed to simulate the same transient training and validation cycles previously submitted to 
the neural network model for simulation. Equivalent error plots and statistical error calculations were 
generated from the subsequent EM model simulation data results.  The simulation accuracy of a NN 
model was then compared to the accuracy of the steady state EM model.  The results are summarized in 
the following paragraph and details of the model generation and validation are included in the Appendix. 

Figures 5 and 6 illustrate the differences in using fuel rate neural network and engine map models on the 
US06 validation cycle.  The NN model simulation output was continuous and maintained minimal phase 
differential compared to the measured data.  By contrast, the EM model simulation output contained 
magnitude errors and multiple discontinuities in addition to a time shift error with respect to the measured 
data. The EM model discontinuities are due to transient operation outside the bounds of the steady state 
data range, upon which the map model is predicated.  The phase shift is likely due to measurement time 
delays in the test cell.  Since the EM model is generated on mean steady state data, simulations using this 
model incorporate no time delay, and subsequently lead the measured data in time.  The NN model not 
only simulated the volumetric fuel rate with accurate magnitude predictions, but also matched the phasing 
of the fuel rate data vector. 



Figure 5: NN vs. EM Model Validation Cycle Figure 6: EM Simulation vs. Measured US06 data  

(ANL data - red, EM - blue, NN - green) (ANL data - red, EM - blue, NN - green)


4. Results 
The vehicle was simulated on urban and highway driving cycles using the two control strategies (rule 

based and fuzzy logic) and the neural network model (based on the previous comparison).  Fuel economy

and NOx emissions were compared taking into account battery SOC.  Due to the significant impact of 

SOC on fuel economy and emissions, the method used in this study is presented first.  


4.1. Influence of SOC on Fuel Economy and NOx Emissions 
Initial and final SOC of the electrical energy storage device must be considered to accurately account for 

the total energy used when evaluating hybrid vehicle fuel economy.  Either the initial SOC must equal the 

final SOC or a correction must be made.  Figure 7, based on the following calculations, graphically

illustrates the strong relationship between SOC difference and fuel economy (i.e., measured/estimated 

gasoline equivalent versus ‘hybrid gasoline equivalent’): 


FEgasoline _ equivalent = 
Dis tan ce(miles) 

Eq _ gal _ of _ gasoline 

Eq _ gal _ of _ gasoline = 
fuel _ heating _ value * fuel _ consum.(kg) * liters2gal *1000 

gasoline _ fuel _ heating _ value fuel _ density 

FE _ hybrid_ gasoline_ eq = 
Distance(miles) 

Eq_ gal _ of _ gasoline+Wh_cons/Wh_ per_ gal / Battery_ eff /Charg_eff / Engine_eff 

The hybrid gasoline equivalent fuel economy estimates the energy necessary to recharge the battery to its 

initial SOC.  The figure shows comparable values when initial and final SOC are close, but differences 

can be significant as the difference increases. Using the same methodology, Figure 8 demonstrates that 

NOx emissions can also be SOC corrected. 




Gasoline FE versus Hybrid Gasoline Equivalent FE 
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Figure 7: Fuel Economy Correction for SOC 	 Figure 8: NOx Correction for SOC 

4.2. Influence of Control Strategy on Fuel Economy and NOx Emissions 
Figure 9 illustrates the impact of SOC and control strategy on fuel economy and NOx emissions:   

•	 SOC significantly affects the results on the urban cycle; for rule based control, changing the SOC 
goal from 0.5 to 0.7 increases fuel economy by almost 20% as well as reduces NOx emissions.  

•	 Fuzzy logic needs to be refined for the highway cycle since better results are obtained with rule based 
control. 

•	 Variation of -/+ 10% in fuel economy and NOx emissions can be obtained by varying control strategy 
philosophy and parameters 

•	 In addition to control strategy, initial conditions and overall system efficiency induce a variation of 
fuel economy and NOx results.  When developing a control strategy, trade-offs other than fuel 
economy and emissions should be taken into account.  For example, battery life considerations could 
dictate SOC lower than 0.7 even if fuel economy and NOx might be penalized. 



Trade off between Fuel Economy and NOx Emissions 
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Figure 9: Influence of Control Strategy on Fuel Economy and NOx Emissions 

4.3. Influence of Hybridization on Fuel Economy and NOx Emissions 
Hybridization can increase fuel economy by keeping the engine in an optimum efficiency range.  In 
general, and in particular for the engine considered in this study, this means higher average load and 
speed which leads to higher average operating temperature and higher NOx emissions.  The following 
figures compare the operating points for the same engine in conventional (Figure 10) and hybrid (Figure 
11) vehicle applications to illustrate this point. 

Figure 10: Operating points (conventional) Figure 11: Operating points (hybrid)  



This comparison supports the results of the analysis in this study, illustrated in Figure 12, that 
hybridization without changing engine size can increase fuel economy (18% in the example), but increase 
NOx emissions (25% in the example).  However, if the engine had ideal characteristics for a hybrid 
vehicle with larger islands of high efficiency and low emissions (originally developed for the PNGV 
program), the result could be a fuel economy increase of about 13% accompanied by a NOx decrease of 
almost 40%. 

Figure 12: Trade-off between Fuel Economy and NOx Emissions  

5. Conclusion 
A neural network model was developed to realistically assess NOx emission.  We demonstrated that 
hybridization allows both the diminution of both fuel consumption and NOx emission.  Moreover, control 
strategies philosophies as well as parameter values also play an important part of the trade-off between 
fuel economy and emission.  However, even if hybridization and control play an important role, 
optimizing the entire system remains the ultimate solution.  To do so, each component has to be chosen 
and calibrated based on a system prospective.  In order to validate the tools developed, control strategies 
will be integrated and tested on a bench with real component using Hardware-in-the-Loop. 
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APPENDIX - Engine Model Development 

Neural Network Model 
Neural Network (NN) models were generated to simulate the transient behavior of fuel rate and NOx 
obtained from a Pierburg emissions bench.  The Neural Network models were trained using selected 
transient data inputs recorded from a Mercedes 1.7L CIDI engine.  The resultant neural network was 
validated using unique transient data recorded from the 1.7L CIDI engine. 

Neural Network Training Data 

Training data, recorded from transient operation of the 1.7L CIDI engine, was submitted to the NN 
models in contiguous block form.  The training data consisted of a collection of (4) geometric transient 
cycles, and (3) drive cycles.  The training data was selected to encompass the widest range of engine 
operation, first in simulated drive cycle operation, and second through augmentation of drive cycle data 
with geometric transient cycles.  The combination of both transient cycle data topologies provided wide 
engine map coverage. 

mailto:arousseau@anl.gov


 

Neural Network Training 

The training data was presented to the NN a series of times, and training was discontinued at the point of 
diminishing return.  In particular, once the simulation error no longer decreased, following exposure to 
another training set session, the training session was terminated.  The inputs to the NN model were 
engine speed, map torque and time delayed map torque.  The fuel rate neural models incorporated a total 
of nine hidden neurons, in addition to the output fuel rate neuron, and the input vector neurons, whereas 
the NOx neural model has a total of ten hidden neurons, in addition to the output NOx neuron, and the 
input vector neurons. 

Evaluation of Training Effectiveness 

The trained NN model was presented with the training set data and instructed to simulate said data 
accordingly.  Comparison of simulated vs. measured data was plotted against time, in addition to 
simulated data vs. measured data.  Error calculations were performed; the quality of the simulation was 
defined by the error plots and forthcoming statistical error calculations.  Figure X illustrates the 
simulation accuracy through comparison to the measured data.  The simulation data is identified in green, 
and the measured data in blue. 

Figure A-1: NOx NN Model Validation Figure A-2: NOx Simulated Vs. Measured Training 
(measured - blue, simulated - green) Data 

Steady State Model 
To further quantify the simulation accuracy of the trained fuel rate NN model, an engine map (EM) model 
was generated using a locus of steady state operating point data recorded from the same engine.  The 
model was instructed to simulate the same transient training and validation cycles previously submitted to 
the neural network model for simulation. Equivalent error plots and statistical error calculations were 
generated from the subsequent EM model simulation data results.  The simulation accuracy of a NN 
model was then compared to the accuracy of the steady state EM model.  Figures A-3 and A-4 show the 
NN model vs. EM model comparison using the US06 Validation cycle. 



Figure A-3: US06 VFF EMM Validation Drive Figure A-4: EMM Simulation vs. Measured US06  
Cycle (Measured data - blue, EM model data 
simulation - green) 

Validation of Neural Network Model using Transient Test Data 
The trained NN model, having predicted the training data with a high degree of precision, was next 
evaluated with data never before introduced to this model.  Each cycle was individually presented to the 
trained NN model, and subsequent comparison and error plots were generated.  Error calculations 
revealed the simulation coefficient of determination (R2) deviation from ideal was in the range of 0.9691 
to 0.9946 for the fuel rate model and 0.8453 to 0.9947 for the Pierburg NOx model. 

Figures A-5 through A-8 illustrate an example of the simulation of a US06 validation driving cycle using 
the volumetric fuel rate NN model as well as the Pierburg NOx NN model. 

Figure A-5: Zoom Plot US06 Fuel Rate NN Figure A-6: Fuel Rate Simulated Vs. Measured 
Validation US06 



Figure A-7: Zoom Plot US06 NOx NN Validation Figure A-8: NOx Simulated Vs. Measured US06 
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