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User Manual for Stochastic Simulation Capability in GREET 
 

1. Introduction 
 
This tool incorporates stochastic simulation capability into the GREET model. GREET is a 

complex model for estimating the full fuel-cycle energy and emission impacts of various 

transportation fuels and vehicle technologies. The GREET model incorporates large number of 

input parameters and a wide variety of output results. Many of the input parameter assumptions 

involve uncertainties, which require probability distributions to represent the trend of occurrence 

of the parameter over a specific range that define the uncertainty. Since the parameters in 

GREET are uncertain, the resulting output variables consequently have to be represented by 

distributions.  

 

To address these uncertainties, a stochastic simulation tool has been developed to incorporate 

various sampling techniques. The tool has been built as a Microsoft® Excel add-in file, to assign 

probability distributions and perform sampling on the input parameters. The add-in file can be 

loaded whenever you need to perform a stochastic simulation within the GREET model. Broadly 

speaking, the software add-in tool allows you to:  

1) Assign probability distribution functions to the input variables; 

2) Specify the number of samples required and the sampling technique to be used; 

3) Define the forecast variables (the tool provides you with various options to narrow down 

your preferences for forecast variables from approximately 3,000 choices);  

4) Propagate the uncertainties; and 

5) Statistically analyze the outputs.  

 
Figure 1 shows a more detailed overview of the stochastic simulation process using the Excel 

add-in tool. 
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Figure 1.  Overview of the stochastic simulation process 

Load stochastic simulation Excel add-in tool.

Select the cell for which input distribution is required. 

Click on “Cell Input” in the stochastic simulation command bar. 

Does the cell 
already have an 
input distribution?

The pop-up windows displays the specified 
distribution and its parameters. 

The distribution gallery window 
pops-up from which user can select 
any distribution.

Click on “OK” to specify the 
input parameters for the selected 
distribution.

To change the type of distribution, click on 
“Gallery” to open the distribution gallery and 
select the required distribution. 

All input 
distributions 
completed?

Click on “Sampling” in the stochastic simulation command bar. 

In the pop-up window, select the required sampling 
techniques and enter the number of samples in the 
textbox.

Click on “Forecast Cells” in the 
stochastic simulation command bar. 

Select the vehicle type in the pop-up window and specify the 
fuel type, the scenario and the emission type. 

Run simulation. 

Yes 

Yes 

No 

No 
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2. Loading the Stochastic Simulation Tool into GREET  
 
To load the stochastic simulation tool into the GREET model, perform the following steps: 

1) Open the GREET Excel file that you are using for stochastic simulations. 

2) Go to View>Toolbars.  

3) Select the “Stochastic Simulation” toolbar, as shown in Figure 2. 

 

 

Figure 2.  Loading the “Stochastic Simulation” toolbar 
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4) A command bar with all the command buttons required for the stochastic simulation 

process appears as shown in Figure 3. The stochastic capability of the GREET model has 

been interfaced as a command bar containing five buttons for the five main steps of the 

uncertainty analysis process. Section 5 provides a detailed explanation of the 

functionality of each button in the stochastic simulation command bar. 

 

 

 

Figure 3.  Stochastic simulation command bar 
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3. Overview of Probability Distribution Functions 
 
The tool contains eleven built-in probability distributions. The following paragraphs provide a 

brief description of each probability distribution.  

 

3.1 Beta Distribution 
 
An important application of the Beta distribution is its use as a conjugate distribution for the 

parameter of a Bernoulli distribution. It is also used to describe empirical data. The general 

formula for the probability density function of the Beta distribution is  
( 1) ( 1)

1
( ) 0 ; 0; 0

( , )

x x
s sf x x s

Beta

α β

α β
α β

− −
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= < < > >     

Where,  

α and β are the shape parameters,  

‘s’ is the scale, and  

Beta(α , β) is the Beta function. The Beta function has the formula:  
1

1 1

0

( , ) (1 )Beta t t dtα βα β − −= −∫  

 

3.2 Normal Distribution 
 
The normal distribution is the most commonly used distribution in the field of probability and 

statistics. The general formula for the probability density function of the normal distribution is  
2

2
( )
21( )

( 2 )

x

f x e x
μ

σ

π σ

− −

= −∞ < < ∞   

Where, μ is the mean and σ is the standard deviation. The case where μ = 0 and σ =1 is called the 

standard normal distribution.  
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3.3 Lognormal Distribution 
 
A variable x is log-normally distributed if the natural logarithm of x, ln(x), is normally 

distributed. The general formula for the probability density function of the Lognormal 

distribution is  
2

2
(ln( ) )

21( ) 0
( 2 )

x
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μ
σ
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− −

= < < ∞  

 

Where, 

μ is the logarithmic mean, and  

σ is the logarithmic standard deviation. 

 

3.4 Uniform Distribution 
 
In this distribution, all the values between the minimum and maximum have equal chance of 

occurrence. The general formula for the probability density function of the uniform distribution 

is  

1( )f x A x B
B A

= ≤ ≤
−

 

Where,  

A is the location parameter, and 

(B − A) is the scale parameter.  

The case where A = 0 and B = 1 is called the standard uniform distribution. 

 

3.5 Triangular Distribution 
 
Triangular distribution is usually used when there is insufficient data to fit any other distribution 

but the minimum, maximum and most likely values are known. The probability density function 

for a triangular distribution is given as:  
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Where, 

a is the minimum value, 

b is the likeliest value, and 

c is the maximum value. 

 

3.6 Weibull Distribution 
 
Weibull distribution is commonly used in reliability studies and it is a flexible distribution which 

can assume the properties of other distributions based on its input parameters. The formula for 

the probability density function of the general Weibull distribution is  

1

( )
x Lx Lf x e for x L

ββ
αβ

α α

− −⎛ ⎞−⎜ ⎟
⎝ ⎠−⎛ ⎞⎛ ⎞= ≥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Where, 

L is the location parameter, 

α is the scale parameter, and 

β is the shape parameter. 

When β = 1, Weibull reduces to the Exponential distribution (to be discussed later). 

 

3.7 Gamma Distribution 
 
The gamma distribution is commonly used in Bayesian reliability analysis. It is a flexible 

distribution and is related to other distributions like the lognormal and exponential distributions. 

The general formula for the probability density function of the gamma distribution is  
1

( )
( )

x Lx L e
f x for x L

β
α

α
β α

−− ⎛ ⎞−⎜ ⎟
⎝ ⎠−⎛ ⎞

⎜ ⎟
⎝ ⎠= ≥

Γ
  

 



 10

Where, 

L is the location parameter, 

α is the scale parameter,  

β is the shape parameter, and 

Г(β) is the gamma function given by: 

1

0

( ) tt e dtββ
∞

− −Γ = ∫  

 

3.8 Extreme Value Distribution 
 
The extreme value distribution has two forms. One is based on the smallest extreme (skewed to 

the left) and the other is based on the largest extreme (skewed to the right).  

For skew to the minimum: 

 1( ) exp exp expx xf x for xα α
β β β

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
= − ∞ < < ∞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

For skew to the maximum: 

 1( ) exp exp expx xf x for xα α
β β β

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
= − ∞ < < ∞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Where, 

α is the mode parameter, and 

β is the scale parameter. 

 

3.9 Exponential Distribution   
 
The exponential distribution is usually used to depict events which occur at random like the time 

between the failures of equipment. The general formula for the probability density function of 

the exponential distribution is  

( ) 0xf x e for xλλ −= ≥  

Where, 

λ is the rate parameter. 
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3.10 Pareto Distribution 
 
The Pareto distribution is generally used to describe empirical phenomena like birth rate, income 

growth rate, etc. The general formula for the probability density function of the Pareto 

distribution is: 

( 1)( ) Lf x for x L
x

β

β

β
+= >  

Where, 

L is the location parameter, and 

β is the shape parameter. 

 

3.11 Logistic Distribution 
 
The logistic distribution is used to model binary responses (e.g., Gender) and is commonly used 

in logistic regression. The logistic distribution is defined as:  

2( )

1

x

x

ef x for x

e

μ
α

μ
αα

−⎛ ⎞−⎜ ⎟
⎝ ⎠

−⎛ ⎞−⎜ ⎟
⎝ ⎠

= −∞ < < ∞
⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

 

Where, 

μ is the mean parameter, and 

α is the scale parameter. 
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4. Overview of Sampling Techniques  
 
The stochastic simulation tool has four sampling techniques incorporated into it [1]: 1) Monte 

Carlo Sampling; 2) Latin Hypercube Sampling; 3) Hammersley Sequence Sampling; and 4) 

Latin Hypercube Hammersley Sampling. The following paragraphs explain each sampling 

technique in more detail. 

 

4.1 Monte Carlo Sampling (MCS) 
 
One of the most widely used techniques for sampling from a probability distribution is the Monte 

Carlo sampling technique, which is based on a pseudo-random generator used to approximate a 

uniform distribution (i.e., having equal probability in the range from 0 to 1). The specific values 

for each input variable are selected by inverse transformation over the cumulative probability 

distribution. A Monte Carlo sampling technique also has the important property that the 

successive points in the sample are independent. 

 

4.2 Median Latin Hypercube Sampling (MLHS) 
 
Latin Hypercube sampling is one form of stratified sampling that can yield more precise 

estimates of the distribution function. In Latin Hypercube sampling, the range of each uncertain 

parameter Xi is sub-divided into non-overlapping intervals of equal probability. In LHS, one 

value from each interval is selected at random with respect to the probability distribution in the 

interval. In MLHS, this value is the mid-point of the interval. The ‘n’ values thus obtained for X1 

are paired in a random manner (i.e., equally likely combinations) with ‘n’ values of X2. These n 

values are then combined with n values of X3 to form n-triplets, and so on, until ‘n’ k-tuplets are 

formed. The MLHS technique is used in the stochastic modeling tool that we developed. 
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4.3 Hammersley Sequence Sampling (HSS) 
 
In the late 1990s, an efficient sampling technique, Hammersley Sequence Sampling, based on 

Hammersley points, was developed [2], which uses an optimal design scheme for placing the ‘n’ 

points on a k-dimensional hypercube. Unlike Monte Carlo Sampling, the Latin Hypercube and 

its variant (the Median Latin Hypercube), the HSS sampling technique ensures that the sample 

set is more representative of the population, showing uniformity properties in multi-dimensions. 

Figure 4 graphs the samples generated by different techniques on a unit square. This provides a 

qualitative picture of the uniformity properties of the different techniques. It is clear from Figure 

4 that the Hammersley points have better uniformity properties compared to other techniques. 

The main reason for this is that the Hammersley points are an optimal design for placing n points 

on a k-dimensional hypercube. In contrast, other stratified techniques such as the Latin 

Hypercube are designed for uniformity along a single dimension and then randomly paired for 

placement on a k-dimensional cube.  

 

One of the main advantages of the Monte Carlo method is that the number of samples required to 

obtain a given accuracy of estimates does not scale exponentially with the number of uncertain 

variables. HSS preserves this property of Monte Carlo. Hammersley Sequence Sampling is 

estimated to be 3 to 100 times faster than the LHS and MCS and hence, is a preferred technique 

for uncertainty analysis as well as optimization under uncertainty [2, 3]. Recent findings show 

that the uniformity property of HSS for higher dimensions (more than 30 uncertain variables) 

gets distorted. HSS (and LHSS given below) is generated based on prime numbers as bases. In 

order to break this distortion, we introduced leaps in prime numbers for higher dimensions. This 

‘leaped’ HSS and LHHS technique showed better uniformity than the basic HSS and LHHS 

techniques. For simplicity, we have leaped HSS and LHHS as a part of the HSS and LHHS 

techniques in the stochastic modeling capability. When the number uncertain variables exceeds 

30, the switch occurs automatically. GREET applies this sampling method as the default 

sampling technique.  
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Figure 4.  Sample points (100) on a unit square using four sampling techniques 

 
 

4.4 Latin Hypercube Hammersley Sampling (LHHS) 
 
Latin Hypercube Hammersley Sampling [4] is a combination of HSS and LHS. It utilizes the 

one-dimensional uniformity of LHS and k-dimensional uniformity of HSS.  
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5. Stepwise Description of the Stochastic Simulation Process  
 
The stochastic simulation command bar contains five buttons as shown in Figure 3, one for each 

step in the stochastic simulation process. The following paragraphs explain the functionality of 

each button in detail. 

 

5.1 Cell Input 
 
The first button, “Cell Input,” is for the specification of input probability distribution for each 

uncertain variable. Select one of the parametric assumption cells for which a probability 

distribution is to be specified, and click on “Cell Input.” The selected cell should have a 

nominal value and it shouldn’t be blank. If the cell is blank, an appropriate error message appears. 

Otherwise, a gallery window containing the built-in bank of probability distributions appears, as 

shown in Figure 5. You can select a type of distribution and click “OK.” The input parameter 

specification window for the particular distribution opens up. Once a cell has been assigned an 

input distribution, it turns green. The following paragraphs explain the input specification for 

each distribution. 

 
Figure 5.  Gallery of built-in distributions 
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5.1.1 Normal Distribution 
 
Figure 6 shows a sample input parameter specification window for the normal distribution. The 

Probability Distribution Function (PDF) is plotted by taking the value of the active cell as the 

mean and standard deviation to be 10% of the mean. There are four portions in the input 

specification window:  

1) Input Specification frame at the right hand side: This portion consists of radio buttons 

which can be used to select the type of inputs specification. As seen from the figure, the 

normal distribution requires two input parameters, which can be selected from one of the 

following five input specification choices:  

i. Mean and Standard deviation  

ii. 1st and 99th percentile 

iii. 20th and 80th percentile 

iv. 5th and 95th percentile 

v. 10th and 90th percentile 

A “percentile” can be defined as a score location below which a specified percentage of the 

population falls. For example, if the 20th percentile of a test score in a class was 65, this 

means 20% of the class scored below 65. When the inputs are in terms of percentile, the 

code automatically estimates the values of the mean and standard deviation. When inputs 

are defined in terms of percentiles, care should be taken to provide feasible percentile 

values. 

2) Input Parameters boxes above the control buttons: Once the type of input parameter is 

selected, the selected parameter automatically appears beside the input specification boxes. 

For example, in Figure 6, the mean and standard deviation input specification option has 

been selected and so they appear as labels of the input text boxes. There are certain 

requirements for proper input specification:  

i. The inputs must be numeric, 

ii. When inputs are specified in terms of percentiles, the input value for a lower 

percentile must be less than the input value for a greater percentile, and  

iii. The standard deviation must be greater than 0. 
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3) Minimum and Maximum cut-off specification boxes below the PDF plot: The default 

minimum and maximum cut-off values, in case of the normal distribution are “–Infinity” 

and “+Infinity,” respectively. These values are used in case you want to sample from the 

whole distribution. If you want to truncate the distribution so that samples cannot be less or 

greater than a particular value, you can truncate the distribution by specifying the particular 

values in these boxes. For example, when the uncertain variable is the efficiency of a 

process (which cannot be greater than 1), the maximum value of the distribution can be 

specified as 1 and the plot is truncated at this value. Figure 7 shows an example of such a 

scenario where a lower cut-off has also been specified at 0.936 for the purpose of 

demonstration. During execution, the samples for this particular uncertain variable would 

be between 0.936 and 1.00. If the minimum cut-off value is mistakenly specified to be 

greater than the maximum cut-off value, a message will pop-up indicating the error in the 

input specification. 

 
 

Probability Density 
Function plot 

Input specification 
options 

Min cut-off Max cut-offMean  

Mean Line 

 
Figure 6.  Input specification window for normal distribution 
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4) PDF plot portion in the middle: Once the input parameters for the probability distribution 

has been specified, you can visualize the shape of the plot by clicking on the button 

captioned “Enter.” The plot is automatically redrawn according to the current input 

parameters. This is useful if you want to see the variation in the plot for various input 

parameters. The plot window also has a mean line that specifies the mean of the probability 

distribution function. For the full normal distribution plot, the mean line is right in the 

center of the graph. However, when the plot is truncated on the left side, the mean line 

shifts to the right; and vice-versa. In Figure 7, the plot is truncated on both sides, but the 

truncation in the right is greater than that in the left, and therefore, the net effect is the 

shifting of the mean line to the left.  

 

 

 
Figure 7.  Normal distribution truncated on both sides 
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Once all values pertinent to the specified distribution have been entered, click “OK” to confirm 

the input distribution for the uncertain parameter. Note that it is not necessary to press “Enter” 

before clicking “OK.” The “Enter” button is intended only to update and visualize the plot for 

the specified distribution inputs. If you decide to specify another type of distribution for the input 

parameter, you can click on the “Gallery” button, which displays a window containing all the 

available distributions as shown in Figure 5, and choose the desired probability distribution for 

that parameter.  

 

5.1.2 Lognormal Distribution 
 
When you select the Lognormal distribution in the gallery window and click “OK,” the input 

specification window for that distribution will be displayed as shown in Figure 8. The 

distribution is plotted by taking the active cell value as the mean, and 10 percent of mean as the 

standard deviation. All aspects of the Lognormal distribution are similar to those discussed above 

for the normal distribution, except for the fact that the values of samples of the lognormal 

distribution cannot be less than zero, and therefore, the minimum cut-off value is set to 0 instead 

of “–Infinity” as was the case for the normal distribution. This is because the equation for the 

lognormal distribution (see section 3.3) contains a natural logarithm term, ln(x), which goes to 

infinity for negative values of x. The following guidelines must be observed when specifying the 

inputs for the lognormal distribution: 

i) The inputs must be numeric, 

ii) The minimum cut-off value must be greater than 0, and  

iii) The standard deviation must be greater than 0. 

 

As shown in Figure 9, the lognormal distribution can be truncated on either side. 
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Figure 8.  Lognormal input specification window 

 

 
Figure 9.  Lognormal distribution truncated on the left side 
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5.1.3 Beta Distribution 
 
Figure 10 illustrates the input specification window for the beta distribution. Unlike the normal 

and lognormal, the beta distribution is a three-parameter distribution, i.e., it requires three 

parameters to define its shape. The default parameters are alpha, beta, and scale. The active cell 

value is taken as the default scale value, while 2 and 3 are taken as the default alpha and beta 

values, respectively. As with the normal distribution, the inputs for the beta distribution can be 

defined in terms of percentiles. Note that the minimum value of the beta distribution is zero and 

cannot be less than zero, as shown in Figure 10. Beta is a highly flexible distribution and can be 

used to simulate other distribution shapes based on the values of alpha and beta. When alpha = 

beta = 5, the shape is similar to the normal distribution. When alpha = beta = 1, the shape is 

similar to the uniform distribution. When alpha = 1 and beta = 2, the shape is similar to the 

triangular distribution. 

 

 
Figure 10.  Input specification window for beta distribution 
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While alpha and beta define the shape of the beta distribution; the scale defines the range 

covered by the plot. Therefore, if alpha and beta were held constant and the scale was varied, the 

distribution shape would remain fixed and only the values in the x-axis would vary proportional 

to the scale. For example, if alpha = 2, beta = 5, and scale = 1, then the mean = 0.28, the 0th 

percentile = 0, and the 99th percentile = 0.87. If the scale was increased to 2, keeping alpha and 

beta the same, then the mean = 0.56, the 0th percentile = 0, and the 99th percentile = 1.74, while 

the distribution shape remains constant. The scale is essentially the maximum value of the 

distribution, assuming that the distribution is not truncated. The inputs for the beta distribution 

can be specified in one of three ways:  

1) Alpha, beta, and scale  

2) Three percentiles (10th, 50th and 90th percentiles or 5th, 50th and 90th percentile) 

3) Two percentiles and scale (10th, 90th percentiles and scale or 5th, 95th percentiles and scale)  

 
The distribution can be truncated on either side and the mean line would shift to either side 

depending on the level of truncation.  

 
Tips for proper input specification of the beta distribution: 

a) Alpha > 0 

b) Beta > 0 

c) Scale > 0 

d) Minimum cut-off > 0 

e) When the input is specified in terms of 10th percentile, 90th percentile and Scale or 5th 

percentile, 95th percentile and scale, the value of scale must be greater than both percentile 

values. 

 

5.1.4 Weibull Distribution 
 
The Weibull distribution is widely used in reliability and life data analysis. Figure 11 shows the 

input specification window for the Weibull distribution.  
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Figure 11.  Input specification window for the Weibull distribution 

 

 

As shown in Figure 11, the default input parameters for the Weibull distribution are the location, 

scale and shape. The location is the minimum value of the distribution (the 0th percentile). When 

you first select this distribution, the active cell value is taken as the location, which is also the 

minimum cut-off value of the distribution. The default values for the scale and shape are 1 and 2, 

respectively. The shape parameter alone defines the shape of the plot, while the scale parameter 

defines the range covered by the PDF and the location parameter defines the minimum value of 

the distribution.  As was the case with the beta distribution, there are three types of input 

specification:  

1) Location, Scale and Shape  

2) Three percentiles (10th, 50th and 90th percentiles or 5th, 50th and 95th percentile) 

3) Location and Two percentile (location, 10th and 90th percentiles or location, 5th and 95th 

percentiles) 
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When the value of the shape parameter is less than 1, the curve takes a concave shape, as shown 

in Figure 12, with f(x) tending to infinity as ‘x’ tends to the location value. Also note that there is 

a very long tail for the Weibull distribution. When the shape parameter = 1, the Weibull looks 

like an exponential distribution. 

  

 
Figure 12.  Weibull distribution for shape parameter less than 1 

 

 

Tips for proper input specification of the Weibull distribution: 

a) Scale > 0 

b) Shape > 0 

c) When the input is specified in terms of 10th percentile, 90th percentile, and Location; or 5th 

percentile, 95th percentile, and Location, the value of Location must be less than both 

percentile values. 
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5.1.5 Triangular Distribution  
 
Triangular distribution is usually used when there are insufficient data to use any other type of 

distribution but the minimum, maximum, and most likely values are known. Figure 13 shows the 

input parameter specification window for the Triangular distribution.  

 

 
Figure 13.  Input specification window for triangular distribution 

 

 
There are three ways to specify the input parameters for the triangular distribution: 

1) Minimum, Likeliest, and Maximum  

2) Three percentiles (10th, 50th,and 90th percentiles or 5th, 50th, and 90th percentile) 

3) Likeliest and two percentiles (10th and 90th percentiles, or 5th and 95th percentiles) 

 
Note that the minimum and maximum cut-off default values are equal to the minimum and 

maximum inputs specified for the distribution. If the minimum cut-off specified is lower than the 
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minimum input, then it will be ignored. If the minimum cut-off value specified is greater than the 

minimum input or the maximum cut-off value specified is lower than the maximum input, the 

distribution will be truncated at these values. 

 
It is possible to have triangular distributions where the likeliest can be equal to the maximum or 

the minimum value, as shown in Figure 14. 

 

 
Figure 14. Triangular distribution in which the likeliest value equal to the maximum value 

 

Tips for proper input specification of the triangular distribution:  

a) Minimum ≤ Likeliest ≤ Maximum 

b) When the inputs are specified in terms of percentiles, the specified values should fall between 

the minimum and maximum values. 

 



 27

5.1.6 Extreme Value Distribution  
 
The extreme value distribution is usually used to describe the largest value of a response over a 

period of time. There are two forms of the extreme value distribution: one is based on the 

smallest extreme (skewed to the left) and the other is based on the largest extreme (skewed to the 

right). Figure 15 shows the input specification for the extreme value distribution of the first type. 

The distribution takes two standard inputs: mode and scale. The mode is the most likely value for 

the variable (the highest point on the probability distribution). The scale is proportional to the 

range of values covered by the distribution. Input parameters can also be specified in terms of 

percentiles. The distribution can be truncated on either side by specifying the minimum and 

maximum cut-off values. 

 

 
Figure 15.  Input specification window for extreme value distribution (Type 1) 
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Tips for proper input specification of the extreme value distribution:  

a) Scale > 0 

b) When the input is specified in terms of mode and 90th or mode and 95th percentile, the value of 

mode must be lesser than the percentile value. 

 

5.1.7 Pareto Distribution  
 
The Pareto distribution is generally used to describe empirical phenomena like birth rate, income 

growth rate, etc. Figure 16 shows the input specification window for the Pareto distribution. Note 

that the Pareto distribution has a long tail to the right, which decreases as the shape parameter 

increases. 

 

 
Figure 16.  Input specification window for the Pareto distribution 
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The Pareto distribution features two standard parameters: location and shape. The location 

parameter is the lower bound for the distribution, while the shape parameter defines the 

distribution shape. As the shape parameter decreases, the concavity of the distribution increases, 

i.e., the curve becomes inwardly steeper. Inputs can also be specified in terms of:  

1) Percentiles (5th and 95th percentiles or 10th and 95th percentiles) 

2) Location and a percentile 

 

Tips for proper input specification of the Pareto distribution: 

a) Location > 0 

b) Shape > 0 

c) Minimum cut-off value > 0 

d) When the input is specified in terms of location and 90th or location and 95th percentile, the 

value of location must be less than the percentile value. 

 

5.1.8 Gamma Distribution  
 
The Gamma distribution can be used to fit failure data. It occurs naturally as the time-to-first 

failure distribution for a system with standby exponentially distributed backups. Figure 17 shows 

the input specification window for this distribution. There are three standard parameters for the 

Gamma distribution specification: location, scale, and shape. The shape parameter alone defines 

the shape of the plot, while the scale parameter defines the range covered by the PDF and the 

location parameter defines the minimum value of the distribution (the lower bound of the 

distribution). When the shape parameter = 1, the gamma distribution reduces to the exponential 

distribution. The input parameters can also be specified as: 

1) Three percentiles (10th, 50th, and 90th percentiles, or 5th, 50th, and 95th percentile) 

2) Location and two percentile (10th and 90th percentiles, or 5th and 95th percentiles) 
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Tips for proper input specification for the Gamma distribution:  

a) Scale > 0 

b) Shape > 0 

c) When the input is specified in terms of 10th percentile, 90th percentile and Location or 5th 

percentile, 95th percentile and Location, the value of Location must be less than both 

percentile values. 

 

 
Figure 17.  Input specification window for the Gamma distribution 

 

 

5.1.9 Logistic Distribution  
 
The logistic distribution is used to describe growth of population. Figure 18 shows the input 

specification window for the logistic distribution. The logistic distribution is specified by two 

standard parameters: mean and scale. The distribution is a symmetric distribution and hence 

mode = median = mean. Scale denotes the range of values covered by the distribution.  
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Inputs can also be specified in terms of: 

1) Two percentiles (10th and 90th percentiles, or 5th and 95th percentiles) 

2) Mean and 90th percentile or mean and 95th percentile  

 

Tips for proper input specification of the logistic distribution:  

a) Scale > 0 

b) When the input is specified in terms of mean and 90th or mean and 95th percentile, value of 

mean must be less than the percentile value. 

 

 
Figure 18.  Input specification window for the logistic distribution 
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5.1.10 Exponential Distribution  
 
The exponential distribution is used to depict events which occur at random, like the time 

between failures of equipment. Figure 19 illustrates the input specification window for the 

exponential distribution. The distribution can also be truncated by either specifying the 

truncation value at the minimum cut-off box, maximum cut-off box, or both. The samples are 

then chosen only from the shaded region. 

 

The standard input for the exponential distribution is the rate. The active cell value is taken as the 

rate parameter to construct the distribution curve. Input can also be specified as 10th, 50th, or 90th 

percentile. The lower bound for the distribution = 0. 

 

Tips for proper input specification of the exponential distribution: 

a) Rate > 0 

b) Minimum cut-off > 0 

 

 
Figure 19.  Input specification window for the exponential distribution 
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5.1.11 Uniform Distribution  
 
The uniform distribution is used when there is equal probability of occurrence of an event 

between a minimum and maximum values. Figure 20 shows the input specification parameter 

window for this distribution. 

 

Tip for proper input specification of the uniform distribution: 

Minimum value < Maximum value 

 

 

 
Figure 20.  Input specification window for the uniform distribution 
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General guidelines to be followed during any distribution input specification 

Improper input values are met with appropriate error messages. Proper input requirements 

common to all distribution include the following:  

a) Inputs must be numeric. 

b) When inputs are specified in terms of percentiles, input value for a less percentile must be less 

than input value for a greater percentile.  

c) Minimum cut-off value must be less than maximum cut-off value. 

 

5.2 Sampling 
 
Once the distributions for all the uncertain parameters have been specified, the next step is to 

specify the sampling technique to be used and the number of samples required. When you click 

on “Sampling” in the stochastic simulation command bar, the window shown in Figure 21 

appears. You can select from one of four sampling techniques: 

a) Hammersley Sequence Sampling [Default number of samples = 1000] 

b) Monte Carlo Sampling [Default number of samples = 4000] 

c) Latin Hypercube Sampling [Default number of samples = 2000] 

d) Latin Hypercube Hammersley Sampling [Default number of samples = 1000] 

 

The sampling techniques have been explained in detail in section 4. MCS is the conventional 

sampling technique in many stochastic simulations. The new and efficient HSS sampling 

technique typically requires 1/4th the number of samples required by the MCS technique. Latin-

hypercube sampling performs better than MCS but is not as efficient as HSS. Most of the time, 

LHHS performs better than HSS. However, unlike MCS or HSS, the performance measure for 

LHHS is not independent of number of variables or type of functionality used to compute the 

output distributions. When you select a sampling technique, the default number of samples 

(based on the assumption that number of uncertain variables are more than 100 and less than 500) 

required automatically appears in the corresponding textbox. You can change the number of 

samples according to your preference.  
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Figure 21.  Window to specify the sampling technique and the number of samples 

 

You can also retrieve the specified sampling technique and number of samples at any time 

during the stochastic simulation by clicking the “Sampling” button in the command bar. 

5.3 Forecast Cells 
 
The next step is to select those variables whose values will be forecasted. GREET includes 

approximately 3,000 forecast variables. A special algorithm has been created to enable you to 

easily select the forecast variables for the pathways of interest through four simple steps: 

1. Select the vehicle technologies. 

2. Specify the transportation fuels.  

3. Specify the well-to-wheels (WTW) simulations and/or well-to-pump (WTP) simulations.  

4. Select the energy and emission forecast groups.  

 

To begin, click on “Forecast Cells” in the command bar, to display the forecast window as 

shown in Figure 22. Step 1 of the forecast selection provides a list of vehicle types.  

 

When you select a checkbox for a particular vehicle technology, e.g., “Conventional Spark 

Ignition,” the window shown in Figure 23 is displayed. This window contains three frames:  

a) Fuel type specification  

b) WTW simulation option and/or WTP simulations option 

c) Energy and emission groups 
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For any fuel type, the WTW and WTP boxes, and the energy and GHG forecasts are selected by 

default. If you do not select any fuel type before clicking “OK,” these default selections will be 

ignored when the stochastic simulation is executed.  

 

After making the necessary selections in this window, click “OK” and repeat the process for 

other vehicle technologies as needed.  

 

Once you finish defining the forecasts, click on the button captioned “add forecasts to list” in 

the "Forecast Definition" window to add the defined forecasts to the “Selected” listbox (see 

Figure 22). This adds the selected forecasts to the “selected” listbox, enabling you to remove/add 

individual forecasts as needed using the “Remove =>” and “<= Add” buttons in that window. 

This process is shown in Figure 24.  

 

Once the forecasts are added to the “Selected” listbox, individual forecasts can be moved back 

and forth to and from the “Deleted” listbox. When a vehicle technology is unchecked, the 

corresponding forecasts are automatically deleted from the list.  

 

The naming convention for the forecasts is “Vehicle Technology – Transportation Fuel – WTW 

and/or WTP – Energy and Emission Forecast.” For example, “CIDI-DME-WTW-N2O” can be 

interpreted as the well-to-wheels N2O emission results for the CIDI vehicle fueled with DME. 

The forecasts listed in the list box titled “Selected” are the forecasts which would be predicted at 

the end of the stochastic simulation.  

 

After completing the forecast selection process, click the “OK” button to confirm the list of 

selected forecasts.  
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Vehicle Types
List of selected forecasts

List of deleted forecasts

To add selected forecasts to the list  Delete all the forecasts
 

Figure 22.  Stage 1 of forecast definition: window listing all the vehicle types 
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Figure 23.  Forecast definition example for the “Conventional Spark Ignition” vehicle type 
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Figure 24.  Removal and addition of individual forecasts 
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5.4 Delete Distributions 
 
For any parametric assumption cell with a probability distribution, if you decide to just assign a 

point value to that cell, the probability distribution can be deleted by selecting the cell and 

clicking on the “Deleted Distribution” button. The input distribution is automatically deleted and 

the cell color turns from green to white. 

 

5.5 Run Simulation 
 
After all the required inputs and forecast selections have been finalized, the “Run Simulation” 

button is enabled to click to begin execution of the stochastic simulation. When the “Run 

Simulation” is clicked, you will be asked to confirm that the simulation should begin, as shown 

in Figure 25.  

 

 
Figure 25.  Confirmation window to begin simulation 

 

 

After the simulation run is completed, the forecasts are exported to another Excel file and 

statistical values like the mean, standard deviation, and 0th to 100th percentile are calculated 

automatically for each forecast as shown in Figure 26. You can save the output file in the 

directory of your choice.  
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Nomenclature for Figure 26 

Column A 
Label 
 

Description 

Mean Value of mean for the forecast. 
S.D. Value of standard deviation.  
P0 Value of 0th percentile. The value means that there is a probability of zero that actual 

values would be equal to or below the P0 value. 
P10 Value of 10th percentile. The value means that there is a probability of 10% that 

actual values would be equal to or below the P10 value. 
P20: Value of 20th percentile. The value means that there is a probability of 20% that 

actual values would be equal to or below the P20 value. 
P30 Value of 30th percentile. The value means that there is a probability of 30% that 

actual values would be equal to or below the P30 value. 
P40 Value of 40th percentile. The value means that there is a probability of 40% that 

actual values would be equal to or below the P40 value. 
P50 Value of 50th percentile. The value means that there is a probability of 50% that 

actual values would be equal to or below the P50 value. 
P60 Value of 60th percentile. The value means that there is a probability of 60% that 

actual values would be equal to or below the P60 value. 
P70 Value of 70th percentile. The value means that there is a probability of 70% that 

actual values would be equal to or below the P70 value.    
P80 Value of 80th percentile. The value means that there is a probability of 80% that 

actual values would be equal to or below the P80 value.    
P90 Value of 90th percentile. The value means that there is a probability of 90% that 

actual values would be equal to or below the P90 value. 
P100 Value of 100th percentile. The value means that there is a probability of 100% that 

actual values would be equal to or below the P100 value.  
 

 

Note that it may take several minutes to more than an hour to finish a particular stochastic 

simulation run depending on many factors, such as the number of forecast cells selected, the 

number of samples selected, and the hardware configuration of your computer. 
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Figure 26.  Format for forecast values listing in the output file 
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