Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

Ye Wu¹, Michael Wang¹, Anant Vyas¹, David Wade², Temitope Taiwo²

¹ Center for Transportation Research, Energy Systems Division ² Nuclear Engineering Division

Argonne National Laboratory

2004 International Congress on Advances in Nuclear Power Plants Pittsburgh, June 13-17, 2004

Argonne National Laboratory

Office of Science U.S. Department of Energy A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Background

- Key motivations for seeking alternative sources to meet our energy needs:
 - Potential shortage of petroleum
 - Potential climate changes by greenhouse gases
 - H_2 can be produced from many sources

• Nuclear energy could be an important choice

- Current H₂ production from steam methane reforming generates emissions and consumes natural gas
- Nuclear ore is more abundant than fossil fuels
- Fuel-cell vehicles, undergoing extensive R&D efforts, could use nuclear-based H₂

The GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model

- GREET estimates emissions of greenhouse gases
 - CO_2 , CH_4 , and N_2O
 - VOC, CO, and NO_X as optional GHGs
- GREET estimates emissions of five criteria pollutants
 - VOC, CO, NO_X, SO_X, and PM₁₀
- GREET separates energy use into
 - All energy sources
 - Fossil fuels (petroleum, natural gas, and coal)
 - Petroleum
- GREET has more than 30 fuel pathway groups, including H₂ fuel pathways
- GREET is posted at http://greet.anl.gov and available free of charge; there are >1,200 registered GREET users now

Four Nuclear H₂ Pathways Were Analyzed

Nuclear H₂ Pathways Have Several Well-to-Pump Stages

Uranium Can Come From Different Locations

This study simulates the domestic uranium ore supply only.

Project Team Researched Key Input Parameters

- LWR electricity generation and electrolysis H₂ production
 - U235 concentration of nuclear fuels: 3.5% (155 kg SWU/kg U235)
 - Station electrolysis efficiency: 71.5%
- HTGR electricity generation and H₂ production
 - U235 concentration of nuclear fuels: 10.0% (209 kg SWU/kg U235)
 - U235 concentration of nuclear fuels: 19.8% (229 kg SWU/kg U235)
 - Central plant high-temperature electrolysis efficiency: 80%
 - Station electrolysis efficiency: 71.5%
- Electricity generation intensity
 - LWR: 6.9 MWh/g U235 (3.5% U235)
 - HTGR-A: 8.7 MWh/g U235 (10.0% U235)
 - HTGR-B: 8.1 MWh/g U235 (19.8% U235, source-General Atomics)
- Electricity requirements for uranium fuel enrichment
 - Gas diffusion process: 2,400 kWh/kg SWU
 - Centrifuge process: 50 kWh/kg SWU

ioneering

cience and

Share of Gaseous Diffusion and Centrifuge Enrichment Technologies

• Average split between 1996 and 2002:

Gaseous diffusion vs. centrifuge =55%: 45%

• Future trend:

Gaseous diffusion vs. centrifuge =0%: 100%

Well-To-Pump Results: Total Energy Use (MJ per MJ of H₂ at Fuel Pump)

Well-To-Pump Results: Fossil Energy Use (MJ per MJ of H₂ at Fuel Pump)

Well-To-Pump Results: GHG Emissions (Grams per MJ of H₂ at Fuel Pump)

Well-To-Wheels Results: Total Energy Use (kJ/km)

Well-To-Wheels Results: Fossil Energy Use (kJ/km)

Well-To-Wheels Results: GHG Emissions (g/km)

Gas Diffusion Enrichment Has the Large Energy Use

Conclusions

- Significant reductions in GHG emissions and fossil fuel use are achieved by nuclear-based H₂ compared to NG-based H₂
 - GHG emission reductions: 73-98%
 - Fossil energy use reductions: 81-99%
- Well-to-wheels results also show large reductions by nuclearbased H₂ FCVs
 - Compared to gasoline ICE Vehicles, nuclear H₂ FCVs achieve
 - GHG emission reductions of 88-99%
 - Fossil energy use reductions of 89-99%
 - Compared to NG H₂ FCVs, nuclear H₂ FCVs achieve
 - GHG emission reductions of 74-98%
 - Fossil energy use reductions of 82-98%
- Key factors determining energy and GHG effects of nuclear H₂ FCVs
 - Uranium enrichment technologies and their energy requirements
 - Electricity use for H₂ transportation and compression and electricity supply sources

Limitations of This Study

- Nuclear waste transportation and disposal were not analyzed
- Mining, milling, and transportation of uranium ore and fuel from non-U.S. sources were not included
- Helium gas (used as coolant in HTGR) production and leakage (if any) were not considered
- Energy use and emissions of infrastructure-related activities (such as construction of plants) were not included for all fuel pathways
- Other reactor technologies were not evaluated

