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Background

• Key motivations for seeking alternative 
sources to meet our energy needs:
- Potential shortage of petroleum
- Potential climate changes by greenhouse gases
- H2 can be produced from many sources

• Nuclear energy could be an important choice
- Current H2 production from steam methane reforming 

generates emissions and consumes natural gas 
- Nuclear ore is more abundant than fossil fuels
- Fuel-cell vehicles, undergoing extensive R&D efforts, 

could use nuclear-based H2
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The GREET (Greenhouse gases, Regulated 
Emissions, and Energy use in Transportation) Model

• GREET estimates emissions of greenhouse gases 
- CO2, CH4, and N2O 
- VOC, CO, and NOX as optional GHGs

• GREET estimates emissions of five criteria pollutants
- VOC, CO, NOX, SOX, and PM10

• GREET separates energy use into
- All energy sources 
- Fossil fuels (petroleum, natural gas, and coal)
- Petroleum 

• GREET has more than 30 fuel pathway groups, including 
H2 fuel pathways

• GREET is posted at http://greet.anl.gov and available free 
of charge; there are >1,200 registered GREET users now
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Four Nuclear H2 Pathways Were Analyzed
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Nuclear H2 Pathways Have Several 
Well-to-Pump Stages
Mining & Milling

Average U.S. Electricity
Is Assumed for These 
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Conversion to UF6
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Uranium Can Come From Different Locations
Former USSR 
U Fuel
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Africa Yellow CakeDomestic Ore Canadian Ore

Mining & Milling Mining & Milling
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30 km Truck
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Nuclear Plants

This study simulates the domestic uranium ore supply only.
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Project Team Researched Key Input 
Parameters

• LWR electricity generation and electrolysis H2 production
- U235 concentration of nuclear fuels: 3.5% (155 kg SWU/kg U235)
- Station electrolysis efficiency: 71.5%

• HTGR electricity generation and H2 production
- U235 concentration of nuclear fuels: 10.0% (209 kg SWU/kg U235)
- U235 concentration of nuclear fuels: 19.8% (229 kg SWU/kg U235)
- Central plant high-temperature electrolysis efficiency: 80%
- Station electrolysis efficiency: 71.5%

• Electricity generation intensity
- LWR: 6.9 MWh/g U235 (3.5% U235)
- HTGR-A: 8.7 MWh/g U235 (10.0% U235)
- HTGR-B: 8.1 MWh/g U235 (19.8% U235, source-General Atomics)

• Electricity requirements for uranium fuel enrichment
- Gas diffusion process: 2,400 kWh/kg SWU
- Centrifuge process: 50 kWh/kg SWU

SWU: Separative Work Units
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Share of Gaseous Diffusion and Centrifuge 
Enrichment Technologies

• Average split between 1996 and 2002:
Gaseous diffusion vs. centrifuge =55%: 45%

• Future trend:
Gaseous diffusion vs. centrifuge =0%: 100%

• The share of 
gaseous 
diffusion 
enrichment 
decreased 
significantly 
during the last 
decade
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Well-To-Pump Results: Total Energy Use (MJ 
per MJ of H2 at Fuel Pump)
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Well-To-Pump Results: Fossil Energy Use (MJ 
per MJ of H2 at Fuel Pump)
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Well-To-Pump Results: GHG Emissions 
(Grams per MJ of H2 at Fuel Pump)
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Well-To-Wheels Results: Total Energy Use 
(kJ/km)
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Well-To-Wheels Results: Fossil Energy Use 
(kJ/km)
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Well-To-Wheels Results: GHG Emissions 
(g/km)
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Gas Diffusion Enrichment Has the Large 
Energy Use
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Conclusions
• Significant reductions in GHG emissions and fossil fuel use are 

achieved by nuclear-based H2 compared to NG-based H2
- GHG emission reductions: 73-98% 
- Fossil energy use reductions: 81-99%

• Well-to-wheels results also show large reductions by nuclear-
based H2 FCVs
- Compared to gasoline ICE Vehicles, nuclear H2 FCVs achieve

- GHG emission reductions of 88-99%
- Fossil energy use reductions of 89-99%

- Compared to NG H2 FCVs, nuclear H2 FCVs achieve
- GHG emission reductions of 74-98%
- Fossil energy use reductions of 82-98%

• Key factors determining energy and GHG effects of nuclear H2
FCVs
- Uranium enrichment technologies and their energy requirements
- Electricity use for H2 transportation and compression and 

electricity supply sources



Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Limitations of This Study

• Nuclear waste transportation and disposal were not 
analyzed

• Mining, milling, and transportation of uranium ore 
and fuel from non-U.S. sources were not included

• Helium gas (used as coolant in HTGR) production 
and leakage (if any) were not considered

• Energy use and emissions of infrastructure-related 
activities (such as construction of plants) were not 
included for all fuel pathways 

• Other reactor technologies were not evaluated
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