
A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Extending the POSIX I/O Interface:
A Parallel File System Perspective

ANL/MCS-TM-302

by
M. Vilayannur1, S. Lang2, R. Ross2, R. Klundt3, and L. Ward3

1VMWare, Inc.
2Mathematics and Computer Science Division, Argonne National Laboratory
3Sandia National Laboratories

October 2008

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC,
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,
see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Phone (865) 576-8401
 Fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Contents

Abstract 1

1 Introduction 1

2 Background 5

3 Implementation 7

3.1 Linux VFS: Objects and Terminology 7

3.2 Shared File Descriptors . 8

3.3 Noncontiguous Read/Write Interfaces 9

3.4 Lazy Metadata Attribute Retrieval 10

3.5 Bulk Metadata Operations . 10

4 Results 11

4.1 Shared File Descriptors . 12

4.2 Noncontiguous I/O . 13

4.3 Metadata . 18

5 Related Work 20

6 Conclusions and Future Work 21

Acknowledgments 21

References 21

iii

Extending the POSIX I/O Interface:

A Parallel File System Perspective

Murali Vilayannur

VMWare, Inc.

muraliv@vmware.com

Samuel Lang, Robert Ross

Mathematics and Computer Science Division

Argonne National Laboratory

{slang,rross}@mcs.anl.gov

Ruth Klundt, Lee Ward

Sandia National Laboratories

{rklundt,lee}@sandia.gov

Abstract

The POSIX interface does not lend itself well to enabling good performance

for high-end applications. Extensions are needed in the POSIX I/O interface so

that high-concurrency high-performance computing applications running on top

of parallel file systems perform well. This paper presents the rationale, design, and

evaluation of a reference implementation of a subset of the POSIX I/O interfaces

on a widely used parallel file system (PVFS) on clusters. Experimental results

on a set of micro-benchmarks confirm that the extensions to the POSIX interface

greatly improve scalability and performance.

1 Introduction

POSIX [8] is the IEEE Portable Operating System Interface for Computing Environ-

ments, defines a standard interface for applications to obtain standard services from the

operating system (such as networking, file system, memory management, and process

management). The design of the well-known POSIX I/O interfaces (open, close,

read, write, and stat) stems from the early 1970s and was intended primarily

for a single machine with a single memory space accessing a simple peripheral de-

vice (such as a hard disk or tape). The semantics of these interfaces make it hard to

achieve good performance when a large number of machines access shared storage

in concert [12], a common pattern in parallel I/O applications today. Many network

file systems, such as NFS [19], do not adhere strictly to the POSIX I/O semantics to

enable higher performance. Cluster file systems that adhere strictly to the semantics

compromise on performance, and those that do not, compromise on correctness when

workloads share files heavily.

In order to enable high performance for HPC/parallel I/O applications, a work-

ing group of HPC users [6] was constituted to propose and augment the POSIX API

to provide standardized mechanisms and interfaces. The underlying philosophy of the

1

interfaces is to relax semantics that are expensive from a performance standpoint or en-

able passing higher-level information (such as access patterns) down to the file system

and storage stack. Furthermore, any proposed interfaces must be simple for widespread

adoption and still enable good performance for high-end applications.

Previous studies [20] have shown three commonly occurring patterns in high-end

computing workloads:

• Concurrent file accesses

• Noncontiguous file accesses

• High metadata rates (concurrent creates and deletes) and interactive use

In this paper, we provide the design and reference implementation of a subset of the

POSIX I/O extensions for PVFS ([3, 13]), a popularly used parallel file system on

Linux clusters. The goal of these extensions is to improve the performance of high-end

applications for the kinds of access patterns listed above. In particular, we group the

implementation of the system calls under the following categories:

• Shared file descriptors/group opens (openg, openfh)

An ever increasing number of nodes in large-scale computing environments ne-

cessitate a new approach to name-space traversal. One possible solution to

reduce the overhead of concurrent name-space traversal is implementation of

shared file descriptors at the file system. The prototypes for the system calls in

this category look as follows:

int openg(const char *pathname,

void *handle,

size_t *handle_len,

int flags,

int mode);

int openfh(void *handle,

size_t handle_len);

The openg system call is expected to open or create a file specified by path-

name according to the mode (permissions) and flags (read, write, truncate, etc.)

specified. It fills in an opaque group handle in the buffer specified by handle and

stores the size of the group handle in handle len. The return value of this system

call is 0 in the case of a successful call and−1 in the case of error (the error code

is stored in the errno variable). The opaque group handle is intended to be

passed to cooperative processes, which can then convert this into a file descrip-

tor using the openfh system call to reference the same file system object with

similar access rights. It is up to the implementation to limit the lifetime, scope,

and security of the group handle.

The openfh system call establishes an association between the group handle

(that was returned from the openg system call) and a file descriptor. The file

2

descriptor that is returned from this system call (similar to the open system call)

can be used to perform I/O (or used in any other system calls that require file

descriptors). It is again left to the implementation to ensure that this system call

does not incur unnecessary network overhead and that the opaque group handle

contains sufficient information to facilitate conversion to an open file descriptor.

The openfh system call interface can be envisioned as being equivalent to a

distributed dup system call for a cluster environment that does not require any

communication with the file servers.

• Lazy metadata attributes (statlite, lstatlite, fstatlite)

This family of system calls ensures that I/O performance does not suffer because

of needless attribute lookups (stat). These extensions are similar to the stat

system call interface with the exception that they return the attributes wherein

some values are not maintained at the same granularity as expected or are not

filled unless explicitly requested. For instance, the timestamps that keep track of

the last access (atime) and update (mtime) may not be kept up to date on many

cluster file systems because they tend to degrade performance. Another example

of a lazy metadata attribute is the size of the file, which usually requires multiple

network messages to be computed correctly and is not retrieved unless explicitly

requested.

int statlite(char *pathname, struct stat_lite *slbuf);

int fstatlite(int fd, struct stat_lite *slbuf);

int lstatlite(char *pathname, struct stat_lite *slbuf);

The stat lite structure is identical to the stat structure with the exception

of a mask that specifies which attributes of the structure are requested and valid.

• Noncontiguous read/write interfaces (readx, writex)

This family of system calls generalizes the file vector to memory vector data

transfers. Existing vectored system calls (readv, writev) specify a mem-

ory vector (a list of offset, length pairs) and initiate I/O to contiguous portions

of a file. The proposed system calls (readx, writex) read/write strided vec-

tors of memory to/from strided offsets in files. The specified regions may be

processed in any order. Although these system calls are similar to the POSIX

listio interface in terms of reading/writing from noncontiguous regions of a file,

they remove a number of shortcomings of the listio interface. The listio interface

imposes a one-to-one correspondence between the sizes specified in the memory

vector and the file regions and requires that the number of elements in the mem-

ory and file vector be the same. Furthermore, the readx, writex interface

specifies that the implementation is free to do any reordering, aggregation, or

any other optimization to enable efficient I/O completion.

3

ssize_t readx(int fd,

struct iovec *iov,

size_t iov_count,

struct xtvec *xtv,

size_t xtv_count);

ssize_t writex(int fd,

const struct iovec *iov,

size_t iov_count,

struct xtvec *xtv,

size_t xtv_count);

The xtvec structure specifies the file offset (relative to the start of the file) and

the number of bytes, and the iovec structure specifies the starting address of the

memory buffer and the size of the buffer. The readx function reads xtv count

blocks described by the xtv structure from the file associated with the file de-

scriptor into the iov count buffers specified by the iov structure. Analogously,

the writex functions writes the blocks described by the iov structure to the file

at the offsets specified in the xtv structure. Since the underlying implementation

is free to reorder the submitted requests, error semantics are hard to define. The

implementation described in this work returns the first error it notices (if any) or

the number of bytes written (or read) successfully as the return value.

• Bulk metadata operations

For many years, archiving and backup applications have lacked a portable bulk

metadata interface to the file system. We provide a system call that returns file

attributes with each of the directory entries read (a combination of getdents

and lstat similar to the NFSv3 readdirplus request).

int getdents_plus(int fd,

struct dirent_plus *dplus,

unsigned int count);

This dirent plus structure is similar to the dirent structure with the addition of

fields for the attributes of the directory entry (stat structure) and an error code

for the attribute operation (on failure).

• Hybrid metadata operation

This system call is a hybrid of the lazy metadata system calls and bulk metadata

operations described earlier. Rather than retrieving the familiar stat structure

as part of the proposed getdents plus system call interface, this system call allows

retrieval of a subset of an object’s attributes.

int getdents_plus_lite(int fd,

unsigned long lite_mask,

struct dirent_plus_lite *dpluslite,

unsigned int count);

4

The lite mask argument dictates which attributes the caller is interested in. The

dirent plus lite structure is similar to the dirent structure with the addition of

fields for describing all or a subset of valid attributes of the file objects (stat lite

structure) and an error code for the attribute operation (on failure).

The rest of this paper is organized as follows. Section 2 provides an overview of

parallel file systems, with emphasis on the PVFS file system design. Implementation

details of the POSIX system call extensions on top of PVFS are provided in Section 3,

and experimental results are presented in Section 4. Related work is summarized in

Section 5. Section 6 concludes with the contributions of this paper and discusses di-

rections for future work.

2 Background

Parallel I/O continues to be an important aspect for enabling high performance of com-

putational science applications. Parallel file systems enable I/O-bound applications to

scale by striping file data [3, 13] across multiple nodes of a cluster. PVFS2 is one such

open-source parallel file system for Linux clusters that uses commodity networking

and storage hardware to enable scalable, high-bandwidth I/O.

PVFS2 has a single-server process running on a set of nodes in the cluster (see

Figure 1). Each server process assumes a role (that of a metaserver, data server, or

both) that is indicated by the configuration files. The clients and servers are designed

to handle numerous concurrently running operations, and a nonblocking, event-driven

design built atop a state machine architecture allows these components to scale well

with an increasing number of simultaneous operations.

PVFS2 supports multiple interfaces, including an MPI-I/O [14] interface via

ROMIO [22] as well as the well-known POSIX interfaces by means of a kernel mod-

ule and an associated user-space daemon that allow existing UNIX I/O utilities and

programs to work on PVFS2 files without being recompiled. The design of the kernel

module is similar to the Coda [11] implementation that queues VFS operations (and/or

data) to a device file, which is then marshaled by a user-space daemon to the servers

and returns responses to the device (see Figure 2). In the case of I/O operations (such as

read or write) that may transfer large amounts of data, there is a need to minimize

the number of data copies and context switches [23]. Consequently, staging the data

copies through intermediate kernel buffers is not an option. Instead, the kernel mod-

ule orchestrates a user-space-to-user-space copying either before the write is initiated

(from the I/O application to the client-side daemon buffers) or after the read operation

is complete (from the client-side daemon to the I/O application buffers) to ameliorate

the copying overheads. Alternatively, the client daemon could mmap the application

buffers into its address space to avoid even the single copying overheads.

PVFS2 allows for native support of noncontiguous access patterns, which are found

in many scientific applications (such as the FLASH astrophysics application [1, 5]).

PVFS2 user programs construct an efficient data structure using a set of routines (pro-

vided in the library) that represents a set of noncontiguous data regions that are to

be read from or written to both on file and in memory. These data structures (after

5

Figure 1: PVFS2 system showing the overall architecture of how the name-space is

stitched together and the striping of file data across multiple I/O servers on a cluster.

appropriate flattening and encoding) can then be transported to the servers to commu-

nicate the list of regions on which to perform I/O operations. We exploit this feature of

PVFS2 to implement the noncontiguous POSIX (readx/writex) extensions efficiently,

as described in the next section.

The process of initiating access to files on PVFS2 is similar to the NFSv3 model

whereby file names are translated (by means of a lookup operation) to an opaque 96-bit

value (32-bit fsid and a 64-bit handle) that uniquely identifies an object (files, direc-

tories, and symbolic links) in the file system hierarchy. Given a handle to a file, any

client program can use it to access regions of the file, read the contents of the directory,

or follow links. At system setup, PVFS2 servers are assigned handle ranges that en-

able clients to determine locations of servers handling a particular file system object or

handle. New objects in the file system name-space are created by randomly choosing a

server (to evenly distribute metadata storage responsibility to all servers) and requiring

that the server create an object from its handle ranges.

Regular files have a layer of abstraction to deal with the striping of file data across

different servers. As part of the metadata of the file object, an array of handle numbers

for each stripe of the file is stored (for clarity, we will refer to the latter as dfile handles

since they store the handles of the data files, and the former as metafile handles since

it stores the metadata). This strategy is similar in spirit to the continuation inodes

described in [7].

File handles are not special and do not have any associated lifetimes (other than

the natural lifetime of the file system object to which they are assigned) or security

context. Consequently, a file previously referenced (by means of a lookup operation)

can be passed to other processes (using sockets, MPI messages, etc.), allowing them to

access the same file system object. The PVFS2 ROMIO interface uses this technique to

implement the MPI File open call with a single lookup to the file system, followed

6

Figure 2: Depiction of the components that make up the PVFS2 system software stack.

by a broadcast. We leverage this technique to implement the group open POSIX exten-

sions by means of shared file descriptors in PVFS2, as elaborated in the next section.

3 Implementation

First, we describe the Linux VFS objects and terminologies in Section 3.1, before

outlining the implementation details for shared file descriptors in Section 3.2. Non-

contiguous read/write I/O interfaces are outlined in Section 3.3, lazy metadata attribute

retrieval in Section 3.4, and bulk metadata operations with an emphasis on directory

reading in Section 3.5.

3.1 Linux VFS: Objects and Terminology

The Linux kernel comprises four critical VFS objects: superblock, file, inode, and di-

rectory entry. The superblock stores summary information of an entire mounted file

system instance (such as used space, free space, file system identifiers and locations

of root inode objects). Operations that can be performed on the superblock typically

include unmounting a volume, deleting an object, and querying for the summary in-

formation. The inode object is an in-memory representation of a physical file sys-

tem object and encapsulates a file’s data, metadata, and extended attributes (such as

owner or access times). Operations that manipulate the file system namespace, such

as create, unlink, and rename, are included in the inode operations. The file

object represents an open instance of a file or directory object. Every file descriptor

obtained from the open, dup2, dup system calls map to a file object. Operations

that manipulate a file (such as opening, reading, or writing) are grouped in the file op-

erations. The directory entry object represents a cached name for an inode structure

in memory. On a lookup, directory entry objects for every component encountered in

7

the path are created by the VFS. A directory entry object may point to only one inode

object, but the converse may not be true; that is, an inode object may have multiple

directory entries pointing to it because of hard links (where different directory entries

exist, but all of them point to the same file object). The VFS also maintains a dentry

cache (dcache) as well as an inode cache (icache). Operations that are typically per-

formed on a directory entry object include revalidating dentries, comparison of names,

and hashing names. For each of the POSIX interface extension described below, we

outline the changes needed in the VFS layer using the above terminology.

3.2 Shared File Descriptors

File descriptors are process specific and their scope is limited to a process, whereas

group handles have namespace and scope global to the entire file system. To implement

shared file descriptors, we need support from the underlying file system to

encode an opaque group handle that can be shipped to remote machines (openg) and

decode the opaque group handle to associate with an open file descriptor (openfh).

Note that the opaqueness of the group handle is with respect to user space alone; the

VFS and underlying file systems do impose implementation-specific structure to the

group handle. As noted earlier, it is left to the implementation to determine the lifetime

and security context of the constructed group handle. Further, the group handle buffer

needs to be encoded in order to maintain compatibility across heterogeneous architec-

tures with different endianness. The current implementation defines a group handle to

be composed of two components: a file system-independent portion (that is understood

by the VFS) and a file system-specific opaque buffer (that is translated by individual

file systems to obtain a file descriptor). The independent portion is encoded by using a

little-endian, byte-first scheme.

The independent portion of the group handle comprises the file system identifier

(fsid), flags passed at the time of the openg system call, a crc32 checksum, and a

keyed SHA1 message authentication code. Since the Linux VFS layer does not store

the fsid as part of the per-file-system superblock, this needs to be queried for using

the statfs lite callback from the underlying file system. Since the statfs callback

fills in many more fields than desired, the super operations structure was augmented

with a statfs lite callback that takes in a mask argument that determines the fields that

the caller is interested in. This change is motivated by the fact that statfs on most

cluster file systems can be expensive, since it must acquire read-only cluster locks on

the file system structures before it can return the number of available or free blocks.

The flags argument specified at the time of openg is encoded in the group handle so

that clients that call openfh subsequently do not perform operations that they are not

permitted to. The checksum and HMAC fields prevent any unauthorized tampering of

the group handle by malicious clients. The key for the HMAC computation is provided

by the underlying file system and is obtained by invoking a new callback to the super

operations structure (get fs key). By encoding all these fields in the generic portion

of the group handle, the VFS implementation on remote node kernels can verify the

authenticity of the group handle at the time of openfh before passing it down to the

lower-level file system.

8

In PVFS2, the file system-specific portion of the group handle is constructed by

simply encoding the PVFS2 handle of the file object (fill inode handle callback of the

inode operations structure) in addition to the metadata attributes of the object (copied

from the in-memory inode of the file). As stated earlier, since PVFS2 file handles

can be freely shared among unrelated processes to access any object in the file system

hierarchy, this implementation is straightforward.

Upon receiving the group handle as part of the openfh system call, the VFS

checks its authenticity by recomputing the crc32 and HMAC codes. Any illegal tam-

pering with the group handle is promptly signaled to the caller. Using the fsid stored in

the group handle, the VFS locates the file system superblock structure corresponding to

that (recall that fsid of the superblocks are obtained by calling the augmented statfs lite

callback). Upon successfully locating the superblock, the VFS calls into the lower-level

file system with the file system-specific opaque buffer. This routine parses and verifies

the authenticity of the opaque buffer and returns a pointer to an in-memory inode that

represents the underlying file object. In PVFS2, this process involves extracting the

object handle and using that to either locate the inode structure from the inode cache or

allocating a new inode structure to represent the file object (find inode handle callback

of the super operations structure). Since the purpose of shared file descriptors is to

eliminate the use of file or path names, the inode structure is then associated with an

anonymous directory entry and the first unused file descriptor for the calling process.

An important feature of the PVFS2 implementation of openfh is that it does not re-

quire any communication with the server and is carried out completely locally. This

feature contributes to the group open scalability, as our results show in Section 4.

3.3 Noncontiguous Read/Write Interfaces

To implement the noncontiguous read/write interfaces efficiently, we need support from

the underlying parallel file system to minimize the number of network messages and

disk I/O. Since the readx, writex family of system calls generalizes the vectored

I/O model from memory to file (noncontiguous in file as well as memory), a generic

implementation could implement the desired functionality by issuing a sequence of

readv/writev (or even read/write) calls. However, this approach would issue

separate requests for each contiguous file region, rendering it increasingly inefficient

as the number of regions grows. Our implementation augments the file operations

structure with an optional callback to pass the entire vectored memory and file regions

descriptions. This allows the underlying file system to decide the best way to orches-

trate the I/O and network transfers.

PVFS2 is designed to handle noncontiguous I/O (both memory and file) efficiently.

Similar to MPI data-types [14], PVFS2 provides mechanisms to construct efficient

representations of noncontiguous data buffers and file regions. Once constructed, these

structures (denoted as PVFS requests) can be passed to the I/O routines (and eventually

to the servers). The effect is that PVFS2 allows us to collect the possibly noncontiguous

regions, transport them to the appropriate servers (based on the file distribution scheme)

using as few messages as possible, and deposit them to the appropriate file offsets based

on the file region structures that were exchanged earlier.

Similar to the write implementation, the writex implementation transfers the

9

memory buffers described by the memory vector into consecutive buffers on the client

daemon’s address space, along with the associated file region vectors. Once the trans-

fer is done, the client issues an I/O system interface call to initiate a write from the

contiguous memory region to file by constructing succinct PVFS request descriptions

to indicate the noncontiguity. The readx implementation transfers only the file re-

gion vectors at first, and the data transfer into the memory buffer happens after the I/O

operation completes.

3.4 Lazy Metadata Attribute Retrieval

To implement lazy metadata attribute retrieval, we introduce new optional callback

routines (getattr lite callback) as part of the inode operations structure to indicate the

attribute masks of the fields that need to be filled in. As mentioned earlier, some at-

tributes of file system objects are expensive to maintain accurately (most notably ac-

cess times), and some attributes are calculated only on demand (such as file sizes).

Consequently, callers of these system calls explicitly indicate which attributes are de-

sired, and it is left to the underlying implementation to optimize the algorithm used for

fetching those attributes. In PVFS2, access and modification times are flushed lazily

(usually at the time of an fsync (sync) or at the time of a file close), and the underlying

implementation can ameliorate overhead by batching the time-stamp attribute changes.

Consequently, a stat system call may not return the latest time stamps of a file sys-

tem object by design because that process involves implementing a stateful locking

subsystem. Since PVFS2, like other parallel file systems, stripes file data across a set

of servers, maintaining file sizes on a single server (accurately) introduces a central

point of bottleneck. Thus, PVFS2 computes file sizes on demand by communicating

with all relevant data servers [3], a process that can be expensive. At this time, the only

lazy attribute returned by PVFS2 as part of the statlite family of system calls is

the size of the file, since the time-stamp attributes are lazy by design.

3.5 Bulk Metadata Operations

Parallel file systems typically are tuned for bulk data operations (bandwidth) and do

not expose interfaces that facilitate bulk metadata operations (latency). The lack of the

latter can be critical (especially in the absence of client-side metadata caches or poor

metadata cache hit rates) in terms of performance both for interactive tools such as

the ubiquitous “ls” and for backup software [10] that traverses the entire (or subset of)

namespace. Tools such as these typically read through all the entries of a directory tree

and repeatedly call stat to retrieve attributes of each entry. Although the client-side

name and attribute caches may filter a good number of accesses (lookup and getattr

messages) from hitting the servers, the servers may still be overwhelmed enough that

I/O performance is degraded significantly. Consequently, bulk metadata interfaces are

needed to reduce overhead on the servers.

The proposed getdents plus system call as described earlier not only returns

a specified number of entries of a directory but also returns their attributes if possible

(similar to NFSv3 readdirplus). It is left entirely to the underlying file system imple-

mentation to optimize the number of messages to retrieve the requested entries and

10

their attributes. The file operations structure is augmented with a readdirplus and a

readdirpluslite callback to facilitate efficient directory read operations at the underly-

ing file system.

In PVFS2, both data and metadata are distributed over a set of servers. A call to

read only the entries of a directory can usually be accomplished with a single message

to a single server. However, the attributes of the directory entries may be located on

different servers. Furthermore, for regular file objects, the sizes are usually computed

by communicating with all the data servers. Therefore, a naive implementation could

give rise to a flurry of network messages that could overwhelm all the servers. Con-

sider a single directory with n directory entries (all of which are files), and a system

composed of m servers. Assume that all servers can function as metadata and data

servers. Assume that, on average, each server holds the attributes of n/m file objects.

For a naive implementation that does these operations sequentially, the total number of

request-response message pairs would be (1 + n * (m + 1)), 1 for the initial directory

read, n for retrieving the attributes of the objects, and n * m for computing the file sizes

of all the file objects.

We implement a smarter two-phase algorithm for accomplishing this operation ef-

ficiently in PVFS2. Specifically, we implement a vectored listattr request and state

machines on the client and server. This request takes in a set of PVFS object handles as

input and returns their attributes upon which the two-phase algorithm relies on. After

the entries of the directory are read from the server, the first phase aggregates groups

of file handles that are colocated on the same servers. Once aggregated, a set of lis-

tattr messages is sent to all the relevant servers (1 message pair per server) to fetch

the attributes of the desired handles. If any of the handles refer to file objects (and file

sizes are also desired), phase 2 begins by aggregating groups of data file handles that

are colocated on the same servers. Once aggregated, a set of listattr messages is sent

to all the relevant servers (1 message pair per server) to fetch the sizes of the data file

handles. After phase 2 completes, the state machine collates the attributes and file sizes

of all the objects that were obtained from the directory read. For the same parameters

shown above, the total number of request-response message pairs is 1 + 2 * m, 1 for

the initial directory read, m for retrieving the attributes of the metahandles, and another

m for retrieving the sizes of the datahandles. Thus, the two-phase algorithm reduces

the message complexity from O(m * n) to O(m).

4 Results

Our experimental evaluation of the prototype system was carried out on a commodity

testbed with 98 nodes. Each node is a dual Intel Pentium III CPU clocked at 500

MHz, equipped with 512 MB memory. All the nodes are connected by a Fast Ethernet

switch and fabric. We split the cluster conceptually into 90 compute nodes and used

the remaining 8 nodes for our I/O servers (all of which serve metadata as well). The

servers are attached to a 9 GB Quantum Atlas SCSI disk connected to an LSI Logic

SCSI storage controller and use an ext3 formatted file system (writeback mode) for the

storage space. All nodes run the Debian 3.1 distribution, a modified version of PVFS2

1.5.1, and Linux 2.6.16 kernel (modifications for the system call interfaces and hooks).

11

Files are striped with a stripe size of 16 KBytes and use all servers to store file data.

MPICH2 1.0.4p1 [14] drives our experimental evaluations involving parallel jobs. For

each of the system call categories, we report results obtained with micro-benchmarks

that exercise that feature alone.

4.1 Shared File Descriptors

In our first micro-benchmark, we measure the costs of obtaining a file descriptor using

the group open (openg, openfh) system calls and compare it with the independent

open system call costs. Note that the costs of obtaining a file descriptor from the group

open system calls must include the time it takes to broadcast (sockets, MPI messages,

etc.) the group handle obtained from openg. The micro-benchmark is a parallel MPI

program in which all tasks open the same file (using either the group open system

calls or the regular open system call) and close it. The tasks of the parallel application

synchronize before and after each call to obtain the file descriptor (both openg and

open). In the group open system call case, the managing process (rank 0) issues an

openg system call, obtains the group handle and calls MPI Bcast to broadcast it to

all the tasks. Subsequently, all tasks issue an openfh system call to obtain a file

descriptor. Therefore, we measure the time it takes to get a file descriptor as the sum

of the time it takes to do an openg, followed by an MPI Bcast and the maximum time

for an openfh over all the processes.

Figure 3 compares the time (in milliseconds) it takes to open (create) a file using

the two schemes with varying number of processes in the MPI program and for varying

pathname depths (0 and 8). Increasing the number of simultaneous processes opening

the same file with open causes a single server to be a centralized bottleneck, while in-

creasing the pathname depth causes multiple round-trip messages that perform lookups

and attribute retrieval. Consequently, both of these parameters are important in deter-

mining the scalability of concurrent file open operations. In Figure 3, the first four bars

(for any data point on the x-axis) show the time taken if the file was created, and the

last four bars show the time taken to open an existing file. Within the four bars for

each category, the figure shows the time taken by openg and open for a shallow path

(opening/creating a file in the top-level hierarchy) and a deep path (opening/creating a

file with level 8 from the root). We make the following observations from this experi-

ment:

• As expected, creates are slower than opening an existing file. However, costs

of independent creates (for both shallow and deep files) scale poorly, while the

group creates of shallow and deep files remain almost constant. The cost of in-

dependent creates increases with increasing number of clients because requests

from all clients end up hitting the servers (lookup, getattr and create). With the

group creates, only requests from the manager process (rank 0) are sent to the

file servers to create the file. Thereafter, all other processes open the file with-

out contacting the servers. Thus, we see that group creates scale as well as the

underlying broadcast implementation (a good broadcast implementation scales

logarithmically to the number of client tasks). With 90 clients, independent cre-

ates are slower than group creates by as much as a factor of 6 for both shallow

12

and deep pathnames.

• Along similar lines, independent opens also show poor scaling with increasing

number of clients in comparison to group opens. With 90 clients, independent

opens are slower than group opens by as much as a factor of 15 (for shallow

files) and 12 (for deep files). Since fewer disk I/Os are involved in opening

an existing file, performance improvements for group opens are more dramatic.

Further, performance improvements for deeper files are less than improvements

obtained with shallow files because of increased network round-trips and disk

I/Os incurred by both schemes for looking up the file and retrieving attributes.

• For a fewer number of clients, performance of independent operations is com-

parable to group operations, and hence we expect that higher-level libraries that

use the group open system calls will use them judiciously. For example, if the

broadcast algorithm is not optimized or if the interclient interconnection network

is slower than the client-storage interconnection network, performance of group

open system calls may be slower than or comparable to independent opens.

Figure 4 shows a splitup of the time incurred in performing the group opens and

creates. A bulk of the time is incurred in the openg system call, since that involves

multiple network round-trips and disk I/Os. Since the openfh implementation in

PVFS2 is carried out completely locally, its cost is constant and constitutes a negligible

overhead. As expected, increasing the number of client tasks increases the broadcast

overhead, but this is still insignificant to the costs of file system-related communica-

tion. Figure 4 also indicates that the relative proportion of the broadcast overhead for

create operation is lower than the open operation, since creates are more I/O-bound

than opening an existing file.

4.2 Noncontiguous I/O

The workload used to measure the noncontiguous I/O extensions is a parallel MPI

program that determines the aggregate I/O bandwidth with varying block sizes and file

region counts. Each process opens a file and performs a set of writes, followed by a set

of reads to the file, with a specific block size and number of contiguous file regions.

Each parallel run consisted of 90 processes, synchronized before every I/O operation.

The number of memory regions in our tests remains constant at 25. A separate run is

done for each set of I/O system calls available: read/write, readv/writev, and

readx/writex. We vary the number of contiguous file regions over the range 1 to

16, while the sizes of the regions (the block size) are varied from 256 KB to 4 MB. In

order to perform the same write and read patterns for read/write,readv/writev

and readx/writex, the test must iterate over the region count and seek to the start

of the next region before calling read, write, readv, or writev. In the read and

write cases, our test iterates over each of the 25 memory regions as well. In the case

of readx/writex, since the regions are encoded in the xtvec passed to the call,

only one call is made for all regions at once.

Recall that the seek operations do not incur network or disk overheads, so our test

should be a direct comparison of making multiple read, write, readv, or writev

13

1 4 9 16 25 36 49 64 90
0

100

200

300

400

500

600

700

Number of Clients

A
ve

ra
g

e
L

at
en

cy
 (

in
 m

ill
is

ec
s)

openg(level=0, create=yes)
open(level=0, create=yes)
openg(level=8, create=yes)
open(level=8, create=yes)
openg(level=0, create=no)
open(level=0, create=no)
openg(level=8, create=no)
open(level=8, create=no)

Figure 3: Time (in msec) taken to open a file and obtain a file descriptor using either the regular

open system call or the openg/openfh system calls with varying number of client tasks and

different path depths.

14

1 4 9 16 25 36 49 64 90
0

0.2

0.4

0.6

0.8

1

1.2

Number of Clients

N
o

rm
al

iz
ed

 o
ve

rh
ea

d
s

openg
MPI_Bcast
openfh

Figure 4: Breakdown/splitup of the group open/create system calls (normalized overhead of

openg, bcast, and openfh). From left to right, the 4 bars are (level=0, create=yes), (level=8,

create=yes), (level=0, create=no), and (level=8, create=yes).

15

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

Total size written in MB

A
g

g
re

g
at

e
T

h
ro

u
g

h
p

u
t

in
 M

B
/s

ec

Write (stream=1)
Writev (stream=1)
Writex (stream=1)
Write (stream=4)
Writev (stream=4)
Writex (stream=4)
Write (stream=16)
Writev (stream=16)
Writex (stream=16)

Figure 5: Noncontiguous I/O strategies: aggregate write bandwidth.

calls for each file region versus making one readx or writex call.

We compare the performance of the existing POSIX interfaces (read/write and

readv/writev) with that of the new readx/writex extensions. The graphs in

Figures 5 and 6 demonstrate the gains from using readx/writex as the number

of file regions (or streams) increases. Because of caching effects at the disk level,

the behavior of reads for smaller block sizes was inconsistent in our results. The test

cases that make only one round trip—writev(stream=1), readv(stream=1),

writex(stream=1,4,16), readx(stream=1,4,16)—all behave the same,

reaching the peak bandwidth achieved among all tests. The other test cases degrade

in performance with the number of round trips, reaching the lowest bandwidth in the

write and read cases, where many more round trips are being made.

While not all applications can benefit from using readx and writex, many ac-

cess patterns in high-performance computing make I/O requests with patterns that con-

sist of many regularly strided file segments (vectored I/O). Although we demonstrate

results with only 16 stream segments, we expect performance gaps to widen with larger

stream counts.

16

200 300 400 500 600 700 800
0

10

20

30

40

50

60

Total size read in MB

A
g

g
re

g
at

e
T

h
ro

u
g

h
p

u
t

in
 M

B
/s

ec

Read (stream=1)
Readv (stream=1)
Readx (stream=1)
Read (stream=4)
Readv (stream=4)
Readx (stream=4)
Read (stream=16)
Readv (stream=16)
Readx (stream=16)

Figure 6: Noncontiguous I/O strategies: aggregate Read bandwidth.

17

4.3 Metadata

In our third micro-benchmark, we measure the time needed to retrieve all or a subset of

attributes of all directory entries from a given directory using the proposed bulk meta-

data (getdents plus and getdents plus lite) and lazy metadata attribute re-

trieval system calls (statlite, lstatlite, fstatlite). Given a directory

name, we could retrieve the attributes of all directory entries in multiple ways. The first

technique (the traditional way) involves issuing a sequence of getdents system calls

and lstat system calls on each directory entry to fetch their attributes. If only a sub-

set of attributes is requested, we can issue lstatlite system calls on each directory

entry obtained from getdents and avoid unnecessary messages to the data servers

(if, for instance, the size attribute is not requested); this process underlies the second

technique. The third technique involves issuing a sequence of getdents plus sys-

tem calls that returns not only directory entries but also their attributes in a single shot.

Likewise, with the fourth technique, if all attributes are not requested, we can issue a

sequence of getdents plus lite system calls that returns directory entries and

only their requested attributes. Recall that in PVFS2, file size is the only lazy attribute

that can be requested by the caller.

Table 1 shows the time (in seconds) taken to read through a given directory and

retrieve the attributes of all the directory entries using the four techniques described

above. The rows of Table 1 indicate the time taken with varying number of objects

(files) inside the directory. As expected, the getdents plus system call imple-

mentation is faster than the naive getdents implementation since it retrieves both

directory entries and object attributes in one shot. Further, the lazy attribute retrieval

interfaces (getdents plus lite and stat lite) perform better than their coun-

terparts (getdents plus and stat) because of reduction in unnecessary messages

to servers. For a 5000-entry directory, getdents plus achieves a factor of 7 reduc-

tion in retrieving all the object attributes compared to the getdents implementation.

An important point here is that the getdents plus implementation scales well with

increasing number of objects because it makes better use of the network and I/O re-

sources.

For the same setup, Table 2 shows the time (in seconds) taken to perform the stat

and stat lite operations. As expected the time taken to retrieve a subset of at-

tributes is lower than the time taken to retrieve all attributes (including the file size in

case of PVFS2). Results shown in Tables 1 and 2 corroborate that bulk and lazy meta-

data interfaces perform orders of magnitude better than current-generation metadata

retrieval interfaces.

Although this paper focuses on results obtained with micro-benchmarks, we expect

that real high-performance computing applications and tools will use one or more of

these system call interfaces and can achieve better performance than what the micro-

benchmark trends indicate.

18

Table 1: Time taken to read through a specified number of directory entries and retrieve all or a

subset of the attributes of the file system objects (in seconds).
System call −→ getdents getdents getdents plus getdents plus lite

+ +

Number of objects lstat lstat lite

↓ (all attributes) (all attributes but size) (all attributes) (all attributes but size)

10 0.25 0.18 0.05 0.06

100 2.01 1.75 0.32 0.28

250 5.06 4.28 0.74 0.63

500 9.53 7.94 1.42 1.22

1000 20.79 17.18 2.83 2.45

5000 100.68 84.18 13.90 12.08

Table 2: Time taken to retrieve all or a subset of the attributes of a specified number of file

system objects (in seconds).
System call −→ stat stat lite

Number of objects (all attributes) (all attributes

↓ but size)

10 0.05 0.01

100 0.49 0.15

250 1.22 0.40

500 2.46 0.82

1000 4.91 1.62

5000 24.59 8.02

19

5 Related Work

Smirni et al. [20] provide a good overview of some of the I/O challenges and require-

ments faced by scientific applications and environments. Based on their observations,

they also outline a set of file system design principles and management policies. A

recent workshop study [18] also summarizes some of the challenges faced in high-end

computing environments and suggests modifications required to scale parallel file sys-

tems for next-generation scientific applications. This is a step toward standardizing

mechanisms to achieve scalable metadata and data performance on large-scale parallel

file systems.

Many of the ideas and concepts presented in this paper stem from work done in

the context of higher-level application library interfaces (such as MPI-I/O [21] and

UPC-I/O [4]). MPI-I/O provides interfaces for collective operations and noncontigu-

ous accesses from which the group open and noncontiguous interfaces are derived.

The UPC programming language provides a natural interface for programmers to ex-

press SPMD programs so that they can be executed on scalable supercomputers. The

UPC-I/O interfaces are collective (group) functions that are invoked by all participating

threads (processes). This approach gives the underlying implementations a chance to

reorder or aggregate requests that need to be sent to the file servers. However, lack of

widespread deployment and ubiquitous use of MPI-I/O (or UPC-I/O) make it harder for

applications to realize any performance improvements offered by parallel file systems.

Consequently, it is important that interface improvements be made available to a wider

application base by incorporating them into the POSIX standards. Adding interfaces

to the POSIX standard has the added benefits of improving portability across multi-

ple platforms and vendors. The bulk metadata interfaces for directory read operations

(getdents plus) is motivated by NFS Version 3 (readdirplus request) [17] that al-

lows directory entries and their attributes to be read in one shot instead of requiring

multiple round trips.

Work has also been done in the context of parallel I/O libraries and file systems

to enable application developers to expose hints, layout information, and access pat-

terns. However, many (if not all) of these extensions were ad hoc and specific to a

vendor or academic prototype. Designers of the Galley parallel file system showed

that many applications in scientific computing environments exhibit highly regular, but

non-consecutive, I/O access patterns [16, 15]. Since the conventional interfaces do not

provide an efficient method of describing these patterns, the Galley designer’s present

three extensions to the I/O interface to support such applications with regular access

patterns. Isaila and Tichy [9] present the design and implementation of Clusterfile, a

parallel file system that enables applications to control and match I/O access patterns

with file data layout.

20

6 Conclusions and Future Work

In this paper, we have presented the rationale, design, and reference implementation of

a subset of POSIX I/O system call interface extensions for a popularly used cluster par-

allel file system. These interface extensions address key performance bottlenecks (for

both metadata and data) that prevent parallel and distributed file systems from scaling.

Performance results of our prototype system using micro-benchmarks on a medium-

sized cluster indicate that these extensions achieve the stated goals of improved perfor-

mance and scalability.

Interface extensions such as those presented in this paper are by no means complete

nor expected to be the only enabler of performance and scalability. We anticipate that

optimizations at all levels of the file system and storage stack are needed to enable high-

end scientific applications to scale. We also anticipate that newer system call interfaces

may be required on parallel file systems that run on current and future-generation high-

end machines such as the IBM Blue Gene/L and Blue Gene/P. Such machines impose

a set of requirements and challenges that cluster environments do not have and may

necessitate a revisit of the POSIX I/O interfaces and wire-protocol requests. For exam-

ple, I/O forwarding from designated nodes on behalf of a set of compute nodes on the

BG/L machine calls for aggregation of I/O and metadata requests at such nodes as well

as interfaces for compound operations. Addressing these issues is beyond the scope of

the work discussed in this paper and will be a part of future study.

Although these interfaces can be used directly in user programs and utilities, we

expect that the biggest users of these interfaces will be middleware and high-level I/O

libraries. In particular, we expect that the proposed group open system calls and the

noncontiguous I/O extensions could be leveraged by the MPICH2 ROMIO library (that

implements the MPI I/O specifications) for scalable collective file opens.

Source code, documentation for the kernel patches, hooks into the PVFS2 file sys-

tem, test programs, and instructions for installation are available at [2].

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research,

Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

References

[1] FLASH I/O Benchmark. http://flash.uchicago.edu/∼zingale/flash benchmark io.

[2] Parallel Virtual File System version 2. http://www.pvfs.org/download/.

[3] P. H. Carns, W. B. Ligon III, R. Ross, and R. Thakur. PVFS: A Parallel File

System for Linux Clusters. In Proceedings of the 4th Annual Linux Showcase

and Conference, 2000.

[4] T. El-Ghazawi, F. Cantonne, P. Saha, R. Thakur, R. Ross, and D. Bonachea. UPC-

IO: A Parallel I/O API for UPC v1.0. http://upc.gwu.edu/docs/UPC-IOv1.0.pdf,

July 2004.

21

[5] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-

Neice, R. Rosner, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics

Code for Modelling Astrophysical Thermonuclear Flashes. Astrophysical Jour-

nal Supplement, 131(1):273–334, 2000.

[6] G. Grider, L. Ward, G. Gibson, R. Ross, R. Haskin, and B. Welch. POSIX I/O

Extensions Workshop, Carnegie Mellon University, 2005.

[7] V. Henson and A. V. de Ven. Chunkfs ... or How you Can Use Divide-and-

Conquer to Keep fsck Times in Bound, 2006. http://www.fenrus.org/chunkfs.txt.

[8] IEEE/ANSI Standard. 1003.1 Portable Operating System Interface (POSIX) -

Part 1: System Application Program Interface (API) [C Language], 1996.

[9] F. Isaila and W. F. Tichy. Clusterfile: A flexible physical layout parallel file

system. In Proceedings of the 3rd IEEE International Conference on Cluster

Computing, page 37, Washington, DC, 2001. IEEE Computer Society.

[10] M. Kaczmarski, T. Jiang, and D. A. Pease. Beyond Backup Toward Storage

Management. IBM Systems Journal, 42(2):322–337, 2003.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File

System. In Proceedings of the 13th ACM Symposium on Operating Systems Prin-

ciples, 1991.

[12] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM Transactions on

Computer Systems, 15(1):41–74, 1997.

[13] R. Latham, N. Miller, R. Ross, and P. Carns. A Next-Generation Parallel File

System for Linux Clusters. LinuxWorld, 2(1), January 2004.

[14] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing

Interface, 1997. http://www.mpi-forum.org/docs.

[15] N. Nieuwejaar and D. Kotz. Low-Level Interfaces for High-Level Parallel I/O.

Technical report, Hanover, NH, 1995.

[16] N. Nieuwejaar and D. Kotz. The Galley Parallel File System. In Proceedings

of the 10th International Conference on Supercomputing, pages 374–381, New

York, 1996. ACM Press.

[17] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS

Version 3: Design and Implementation. In USENIX Summer, pages 137–152,

1994.

[18] R. Ross, E. Felix, B. Loewe, L. Ward, G. Grider, and R. Hill. HPC File Systems

and Scalable I/O. In HEC-IWG File Systems and I/O R&D Workshop, 2005.

[19] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and

Implementation of the Sun Network Filesystem. In Proceedings of the Summer

1985 USENIX Conference, 1985.

[20] E. Smirni, R. A. Aydt, A. A. Chen, and D. A. Reed. I/O Requirements of Sci-

entific Applications: An Evolutionary View. In Proceedings of the High Per-

formance Distributed Computing (HPDC ’96), page 49, Washington, DC, 1996.

IEEE Computer Society.

[21] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-IO Portably and with

High Performance. In Proceedings of the Sixth Workshop on I/O in Parallel and

Distributed Systems, pages 23–32, New York, 1999. ACM Press.

[22] R. Thakur, E. Lusk, and W. Gropp. Users Guide for ROMIO: A High-

Performance, Portable MPI-IO Implementation. Technical Report ANL/MCS–

22

TM–234, Argonne National Laboratory, 1997.

[23] M. Vilayannur, R. Ross, P. H. Carns, R. Thakur, A. Sivasubramaniam, and M. T.

Kandemir. On the Performance of the POSIX I/O Interface to PVFS. In 12th Eu-

romicro Workshop on Parallel, Distributed and Network-Based Processing (PDP

2004), pages 332–339, 2004.

23

