
Asymmetric Interactions in Symmetric Multi-core
Systems: Analysis, Enhancements and Evaluation

T. Scogland
Dept. of Computer Science

Virginia Tech
njustn@cs.vt.edu

P. Balaji†
Math. and Computer Science

Argonne National Lab
balaji@mcs.anl.gov

W. Feng, G. Narayanaswamy
Dept. of Computer Science

Virginia Tech
{feng, cnganesh}@cs.vt.edu

Abstract—Multi-core architectures have spurred the re-
cent rapid growth in high-end computing systems. While
the vast majority of such multi-core processors contain
symmetric hardware components, their interaction with
systems software, in particular the communication stack,
results in a remarkable amount of asymmetry in the
effective capability of the different cores. In this paper, we
analyze such interactions and propose a novel management
library called SyMMer (Systems Mapping Manager) that
monitors these interactions and dynamically manages the
mapping of processes on processor cores to transparently
improve application performance. Together with a detailed
description of the SyMMer library, we also present perfor-
mance evaluation comparing SyMMer to a vanilla commu-
nication library using various micro-benchmarks as well as
popular applications and scientific libraries. Experimental
results demonstrate more than a two-fold improvement in
communication time and 10-15% improvement in overall
application performance.

I. INTRODUCTION

Multi- and many-core architectures [1]–[5] have been
one of the primary driving factors in the recent rapid
growth of HEC systems. The great majority of these
architectures are symmetric (i.e., homogeneous) in that
the cores have equal and interchangeable computational
parameters. Consequently, many application and systems
software developers assume that such symmetry is a
direct indication of the effective capability of each core
in the system. Unfortunately, as we have shown in our
previous work [6], this is often untrue.

The reason for this, is that while the processor hard-
ware itself is symmetric, the rest of the system is not. For
example, most network hardware has not been designed
to maintain state concerning which application process
is running on which core of the system; thus hardware
interrupts corresponding to data packets for different
processes are either randomly distributed across all cores

This research is funded in part by the Mathematical, Information,
and Computational Sciences Division of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357 and the Department
of Computer Science in the College of Engineering at Virginia Tech.
†This author’s work was also supported in part by the National

Science Foundation Grant #0702182.

or are statically directed to a single core. This additional
interrupt processing can cause one core to be more
overloaded than others, thereby affecting performance.
Further, on processors where each core has its own dedi-
cated L1 and/or L2 cache, the core handling the interrupt,
fetches the data being communicated into its local cache
for processing it. Thus this data will not be equidistant
from all cores. Consequently, further processing of the
data is faster on some cores, than on other cores. Finally,
as we will show in the later sections, assumptions made
within a systems software stack (such as the MPI library)
with respect to the symmetry of the different cores
can propagate as skew for end applications, resulting in
unintended out-of-sync communication patterns. In these
and other examples, there can be a marked asymmetry
in the effective capability of the different cores with
respect to what each core can offer to the overall parallel
application.

So, how can such asymmetry be dealt with? There
are at least two different options to deal with this: (1)
we can design a programming model specific to multi-
core systems that exposes the asymmetry in the different
cores to the application or systems software developer,
allowing them to explicitly manage the workload of
different processes; (2) we can provide an automated
approach, either through a library or an external system
daemon, which monitors the processes and dynamically
maps different processes to different cores to improve
performance. Unfortunately, neither option is perfect. For
the first option, even if we build a new programming
model, having application writers port their applications
is cumbersome and impractical. Also, the exact amount
of asymmetry depends on various factors specific to the
processor hardware, and is difficult to abstract through
a programming interface. For the second option, neither
a library nor a daemon has explicit information from
the application. Thus, any decision made will be based
on monitoring the interactions and inferring the applica-
tion’s computation and communication patterns.

In this paper, we take the second approach to handling
asymmetry in multi-core environments by designing a

novel Systems Mapping Manager (SyMMer) library.
Specifically, we first perform a detailed analysis of the
asymmetric interactions between multi-core architectures
and the communication stack. Next, we utilize this
analysis to efficiently monitor these interactions and
dynamically manage the mapping of processes onto
processor cores so as to improve performance, while
remaining completely transparent to the programmer and
end user. To achieve this, SyMMer uses several heuristics
to identify the types of asymmetry between the effective
capabilities of cores and the processing requirements of
the application. If substantial asymmetric behavior is
detected, SyMMer transparently re-maps the processes,
thereby achieving improved performance. While SyM-
Mer is a generic framework that can fit into any com-
munication library, in this paper our descriptions refer to
a version plugged into the MPICH2 implementation [7]
of the Message Passing Interface (MPI) [8].

Together with the detailed design of the SyMMer
library, we also present performance evaluations com-
paring SyMMer to vanilla MPICH2 using various micro-
benchmarks as well as the popular scientific libraries
and applications, GROMACS [9], LAMMPS [10] and
the FFTW [11] library. Our experimental results demon-
strate that our approach can provide more than a two-
fold improvement in communication time and 10-15%
improvement in overall application performance.

II. OVERVIEW OF MULTI-CORE ARCHITECTURES

For many years, hardware manufacturers have been
replicating structures on processors to create multiple
pathways allowing multiple instructions to run concur-
rently. Duplicate arithmetic and floating point units, co-
processing units, and multiple thread contexts (SMT) on
the same processing die are examples of such replication.
Multi-core processors are the next step in such hardware
replication where two or more independent execution
units are combined on the same integrated circuit.

At a high level, multi-core architectures are similar
to multi-processor architectures. The operating system
handles multiple cores in the same way as multiple
processors: by allocating one process at a time to each
core. Arbitration of shared resources between the cores
happens completely in hardware, with no intervention
from the OS. However, multi-core processors are also
very different from multi-processor systems. For exam-
ple, in multi-core processors, both computation units
are integrated on the same die. Thus, communication
between these computation units does not have to go
outside the die, and hence is independent of the die pin
overhead, making intra-die communication much faster
than inter-die. Further, architectures such as the current

Core 0 Core 1

L1 Cache L1 Cache

L2 Cache

Processor 0

Core 2 Core 3

L1 Cache L1 Cache

L2 Cache

Processor 1

Main memory

System Bus

Fig. 1. Intel Dual-core Dual-processor System

Intel multi-core processors, as shown in Figure 1, pro-
vide a shared cache between the cores on the same die.
This makes communication even simpler by eliminating
the need for explicit communication protocols; the data
is simply there in the local cache.

However, multi-core processors also have the dis-
advantage of more shared resources as compared to
multi-processor systems. That is, multi-core processors
might require different cores on a processor die to block
waiting for a locally shared resource when the resource is
being used by a different core. Such contention increases
as the ratio of cores to other resources (e.g., memory
controllers or shared caches) increases.

III. ASYMMETRIC INTERACTIONS IN MULTI-CORE
SYSTEMS

Given the rise of multi-core architectures, its interac-
tions with applications and systems software is impor-
tant. This section describes such interactions.

A. Application and Developer Viewpoint of the Commu-
nication

The communication stack described in this section
consists of the MPICH2 implementation of MPI, using
Linux TCP/IP sockets, though the behavior is similar to
other implementations of MPI as well.

On the transmission side, the application formulates
a message and hands it over to MPI to transmit. MPI
buffers this data, appends a header, and passes it to the
TCP stack for transmission. On the receiver side, the
network adapter transfers received packets to the socket
buffer, where they are assembled, checked for validity,
and held until requested by the application. When the
application calls an MPI receive operation, this data
is copied out of the socket buffer into the application
designated receive buffer.

2

B. Architectural Viewpoint of the Communication Stack

While the path the message follows is straightfor-
ward when viewed from an application or developer
standpoint, there are many hidden side effects below
the clean abstraction provided by the higher layers of
the communication stack. In this section, we present
the impact these effects can have on a cores effective
capability to perform computation and communication.

1) Processing Impact: As described in Section III-A,
when a packet arrives, the network adapter places the
data in memory to be handled by TCP, after which an
interrupt is raised to inform the communication stack
that there is a message to process. For most system
architectures, the processing core to which the inter-
rupt is directed is either statically or randomly chosen
using utilities such as IRQ balance. However, in both
approaches, the chosen core to which the interrupt is as-
signed is not guaranteed to be the same core on which the
process performing the relevant communication resides.
Thus, all of the processing done on the packet at the
receiver takes place on the chosen core including data
integrity checks, connection demultiplexing, and other
such compute intensive operations that can significantly
impact the computational load on the chosen core.

Note that this protocol processing computational load
is in addition to whatever computation the application
process is performing. Thus, as far as the application
processes are concerned, the chosen core tends to have
a reduced effective computational capability as compared
to the remaining cores.

0

500

1000

1500

2000

2500

3000

3500

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id
th
 (M

bp
s)

Message size (bytes)

Core 0 Core 2

Core 1 Core 3

Fig. 2. MPI Bandwidth on Intel

2) Cache Transaction Impact: Aspects of protocol
processing such as data copies and checksum-based data
integrity require the communication stack to touch the
data before handing it over to the application (through
the socket buffer). For example, on the receiver side, the

network adapter places the incoming data in memory and
raises an interrupt to the device driver. However, when
the TCP/IP stack performs a checksum of this data, it has
to fetch the data into its local cache. Once the checksum
is complete, when the application process has to read this
data, it has to fetch this data to its local cache. That is,
if the application process resides on the same die as the
core performing the protocol processing, then the data is
already on the die and can be quickly accessed. Instead,
if the application process resides on a different die, then
the data has to be fetched using a cache-to-cache transfer.

To demonstrate these effects (processing impact and
cache transaction impact), we measured the communica-
tion bandwidth between two processes on two Intel dual-
processor/dual-core machines, with the processes bound
to different cores of the system. Figure 2 demonstrates
these measurements. The interrupts (and hence the proto-
col processing) are always directed to core 0 in this case
(Figure 1). As shown in the figure, when the application
processes are also bound to core 0, they have to compete
with the protocol processing that is occurring on the
same core and hence suffer a performance penalty. On
the other hand, when the application processes are bound
to core 1, they do not have to face this additional protocol
processing overhead. Further, since core 0 performs the
protocol processing, the communication data is available
on the local dies shared L2 cache (Figure 1), and hence,
can be easily used by core 1. Thus, core 1 does not
face any of the protocol processing overheads but has
the benefits of in-cache access to its data data through
a free ride from core 0. This results in the best possible
performance for this situation. Cores 2 and 3 do not
have to the face the protocol processing overheads, but
do not have the benefits of increased cache hits either.
Thus, their performance is in between that of cores 0
and 1. This behavior is confirmed in Figures 3 (a) and 3
(b), using performance counters for number of interrupts
and cache misses occurring on each core.

C. Identifying the Symptoms of Communication Stack
and Multi-core Architecture Interaction

Directly understanding the actual interactions between
the communication stack and the multi-core architec-
ture is complicated, and requires detailed monitoring
of various aspects of the kernel and hardware as well
as correlation between the various events. Therefore,
we take an indirect approach to understanding these
interactions by monitoring for symptoms in the applica-
tion behavior that are triggered by known interactions,
instead of monitoring the interactions themselves. We
should note that while a certain interaction can result
in a symptom, the occurrence of the symptom does not

3

0.01

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024 4k 16k 64k 256k 1M 4M

N
um

be
r
of
 in
te
rr
up

ts
 (L
og
 s
ca
le
)

Size (bytes)

Core 0 Core 2

Core 1 Core 3

‐50

0

50

100

150

200

250

1 4 16 64 256 1024 4k 16k 64k 256k 1M 4M

Pe
rc
en

ta
ge
 d
iff
er
en

ce
 o
f L
2
ca
ch
e
m
is
se
s

Size (bytes)

Core 0 Core 2

Core 1 Core 3

Fig. 3. (a) Interrupts Per Message and (b) Cache Analysis

necessarily mean that the interaction has taken place.
That is, each symptom can have a number of causes
that could have triggered it.

In this section, we discuss the various symptoms that
we need to monitor in order to infer that an interaction
has taken place. In Section IV, we describe our approach
to monitor these symptoms and minimize the impact of
the interactions through appropriate metrics.

1) Symptom 1: Communication Idleness: As noted
in Section III-B, if a core is busy performing protocol
processing, the number of compute cycles it can allocate
to the application process is lower than other cores, thus
slowing down the process allocated to this core. There-
fore, a remote process that is trying to communicate with
this slower process would observe longer communication
delays and be idle for longer periods as compared to
other communicating pairs. This symptom is referred
to as communication idleness. Again, as noted earlier,
communication idleness can occur for a number of
reasons, including native imbalance in the application’s
communication.

2) Symptom 2: Out-of-Sync Communication: Com-
munication middleware such as MPI performs internal
buffering of data before communicating. Assuming both
the sender and receiver have equal computational ca-
pabilities, there would not be any backlog of data at
the sender, and the MPI internal buffering would not be
utilized. Let us consider a case where process A sends
data to process B and both processes compute for a long
time. Then process B sends data to process A and again
both processes compute for a long time. Now, suppose
process B is slower than process A, and A wishes to send
data to B. In this case, process A’s MPI library would
have to buffer the data since process B is not ready to
receive more. From process A’s perspective the send has
completed once the data has been handed over to the MPI

library; thus, it moves on to perform its computation.
After its computation, when it tries to receive data

from process B, it sees that the previous data that it
attempted to send is still buffered and tries to send it
out again. By now, B is ready to receive more data
and the send is successful. After receiving the data,
process B goes off to perform its computation, while
process A waits to receive its data. This behavior is
caused because, despite the fact that processes A and
B are performing similar tasks, they are slightly out-
of-sync due to the difference between their effective
computational capabilities.

3) Symptom 3: Cache Locality: As mentioned in
Section III-B, when a core performs protocol processing,
it fetches the data to its cache in order to perform the data
integrity check, among other things. Thus, if the process
which is waiting for that data is either on that core, or
another on the same die, it will have the data without
any further delay. On the other hand, if the process is on
another die, it will require a costly inter-die data transfer
to obtain it. Thus, a process which is transferring large
amounts of data will gain a performance benefit from
sharing a die with the core processing the communica-
tion interrupts. In addition to this, we find that processes
which share data locally also present this symptom. For
example, if one process is frequently sharing data with
another process on the same machine, the data will be
transferred between their caches on a regular basis, and
can benefit from a shared L2 cache.

D. Our Focus

As shown above, the effective capabilities of physi-
cally identical cores are frequently not the same. The
result being that where a process is currently running
can greatly effect its performance. The appropriate re-
sponse to this issue is to map the processes on to the
correct cores. Traditionally the role of making sure that

4

processes are on the best possible processing unit has
fallen to the system scheduler, but current schedulers do
not take the effective capability of cores into account.
Another option is to map the processes manually as we
did in our previous work [6], but the time and difficulty
of that method makes it impractical for many situations,
such as, projects where the code base changes frequently,
or applications where the work done per process changes
frequently. As such, an automatic or dynamic approach
is necessary. In the rest of this paper we will describe and
evaluate our solution, the dynamic mapping framework
known as SyMMer.

IV. THE SYMMER LIBRARY

This section describes our novel Systems Mapping
Manager (SyMMer) library and its associated monitoring
metrics. The SyMMer library, shown in Figure 4, is an
interactive monitoring, information sharing, and analysis
framework that can be tied into existing communication
middleware such as MPI or OpenMP. The library directly
implements the monitoring, communication, and analysis
components, while the actual metrics that are used for
the decision making are separately pluggable as we will
describe in Section IV-A. This allows the design of
metrics and the programming environment where they
are used to be completely independent of each other.

!"##$%&'()"%*!"#+"%,%-*

."%&-"/&%0*!"#+"%,%-*

1%(234&4*!"#+"%,%-*

!"#$%&'()*+,-#.)

*+//#$)

."%&-"/&%0*!"#+"%,%-*

!"##$%&'()"%**

5&6/(/3*

Application

SyMMer Information Flow

Fig. 4. The SyMMer Component Architecture

Interaction Monitoring: The interaction monitoring
component is responsible for monitoring the system for
information. This includes system specific information
(hardware interrupts, software signals), communication
middleware specific information (MPI data buffering
time and other internal stack overheads) and processor
performance counters (cache misses, interrupts). This
component utilizes existing libraries and the operating
system for as much of the instrumentation as possible,
while relying on in-built functionality for the rest. For

example, processor performance counters are measured
using the Performance Application Programming Inter-
face (PAPI [12]) and system specific information through
the proc file-system. While MPI specific information can
be monitored through libraries such as PERUSE [13],
several of the current MPI implementations do not
support these libraries yet. Thus, we use in-built profiling
functionality to obtain such information.

In order to minimize monitoring overhead, the mon-
itoring component dynamically enables only the com-
ponents which are required for the metrics being used.
For example, if no metric makes use of processor per-
formance counters, such information is not monitored.

Communication: The communication component is re-
sponsible for the exchange of state or data between
different processes in the application. Several forms of
communication are supported, including point-to-point
sharing models (for sending data to a specific process),
collective sharing models (for sending data to a group
of processes) and bulletin board models (for publish-
ing events that can be asynchronously read by other
processes). For each of these models, both intra-node
communication (between cores on the same machine)
and inter-node communication (between cores on differ-
ent machines) are provided. Inter-node communication is
designed to avoid out-of-band communication by making
use of added fields in the communication middleware’s
existing headers. Whenever a packet is sent, the sender
adds the information which needs to be shared to the
outgoing header. The receiver, on receiving the header,
shares this information with other local processes using
regular out-of-band intra-node communication. This ap-
proach has the advantage that any single inter-node com-
munication can share information about all processes on
the node. Intra-node communication, on the other hand,
has been designed and optimized using shared memory
without requiring locks or communication blocking of
any kind. This provides a great deal more flexibility and
reduces the overhead of our framework significantly.

Analysis: The information collected by the monitoring
component in each process and shared with other pro-
cesses is raw, in the sense that there is no correlation
between the different pieces of information. Further, the
monitored information is low-level data which needs
to be processed and summarized into higher level and
more compact information before it can be processed
by the various metrics. The information analysis com-
ponent performs all the analysis and summarization of
the data before passing it along. This component also
allows the various pluggable metrics to be arbitrarily
prioritized for cases where an application may show

5

multiple symptoms. Finally, each monitoring event has
a certain degree of inaccuracy or burstiness associated
with it. Thus, some monitoring events have more data
noise than others. To handle such issues, the analysis
component allows different monitors to define confidence
levels for their monitored data. Thus, depending on
the number of events that are received, the analysis
component can accept or discard different events based
on their confidence levels, using appropriate thresholds.

In addition to its duties in preparing data for the
metrics to use, the analysis component takes action
when a metric determines that it is required. Once
the analyzed data identifies two processes which are
currently scheduled on cores that are not best suited
for them, but can potentially improve performance by
swapping the processes between the cores, the analysis
component is responsible for performing the swap as
quickly and efficiently as possible. The communication
component comes in to play in a handshake phase used
to minimize the time the processes spend on the same
core during a swap. For the purpose of this paper the
actual mapping and swapping is accomplished using the
get and set affinity functions available on Linux to set
each process to have an affinity with only one core, and
when swapping simply changing the affinity of each
process to their new target core. The design does not
mandate that this be the method used, and in fact would
benefit from the availability of an interface which would
allow one to get and set the current core without affinity
being set.

A. Metrics for Mapping Decisions

In this section, we discuss different metrics that can
be plugged into the SyMMer library. Specifically, we
focus on metrics that solve the symptoms noted in Sec-
tion III-C. Since our current reference implementation
makes use of MPI, these metrics will be described in
relation to its facilities, but they are equally applicable
to other implementations and models. In all cases, the
default mapping is assumed to be random with respect
to the capabilities of the cores corresponding to the
demands of the processes. In practice this is supported by
the fact that while the scheduler generally puts processes
on cores in order, the capabilities of each core per
machine, the demands of the processes, and the order
of launching the process is sufficiently variable for it to
be considered random.

1) Communication Idleness Metric: This metric is
defined based on the communication idleness symptom
defined in Section III-C. The main idea of this metric is
to calculate the ratio of the idle time (waiting for com-
munication) and computation time of different processes.

This metric utilizes the MPI monitoring capability of
the SyMMer framework to determine this ratio. The idle
time is measured as the time between the entry and exit
of each blocking MPI call within MPI’s progress engine.
Similarly, the computation time is measured as the time
between the exit and entry of each blocking MPI call.
The computation time, thus represents the amount of
computation done by the application process, assuming
that the process does not block or wait on any other
resource.

Hence, the computational idleness metric represents
the idleness experienced by each process. For example,
a process which has a high communication idleness can
allow for other computations such as protocol process-
ing. Processes with very little idle time on the other
hand cannot tolerate even a small amount of protocol
processing without seeing material performance degrada-
tion. Comparison of this idleness factor between different
processes provides an idea of which processes are more
suited for sharing the protocol processing overhead.
Clearly, the idleness metric needs to be compared only
for processes running on the same node. Hence this
metric only uses the intra node communication channel
discussed above.

Once the idleness is compared, if a process on a core
other than the protocol processing core is experiencing
a high idleness ratio, and the process on the protocol
processing core is experiencing very low or no idleness,
this metric determines that they are suitable for a swap.
Figure 5 illustrates this process by depicting each state
a process may be in, and the core or cores it might
wish to switch to, from that state. Once the swap is
made the idleness of the two processes should be more
similar, both to each other as well as to the average
idleness of all local processes. While this on the surface
appears similar to the cache locality metric, there is
a significant difference in that the locality metric tries
to improve locality between local processes based on
cache misses, whereas the idleness metric attempts to
match the computation or communication demands of a
process with a core whose capabilities will help balance
the uneven load.

2) Out-of-sync Communication Metric: The out-of-
sync metric captures the amount of computation per-
formed by a process while having unsent data buffered in
its internal MPI buffers, and compares that with the wait
time of other processes. As described in Section III-C,
this metric represents the case where unsent data fol-
lowed by a long compute phase results in high wait times
on the receive process. When the computation time (with
buffered data) is above a threshold, a message is sent to

6

High Comp

High Comm

Low Comp

Low Comm

Low Comp

High Comm

High Comp

Low Comm

High Comp

High Comm

Low Comp

Low Comm

Low Comp

High Comm

High Comp

Low Comm

High Comp

High Comm

Low Comp

Low Comm

Low Comp

High Comm

High Comp

Low Comm

Low
Capability

High
Capability

Average
Capability

High Priority Move
Low Priority Move

Fig. 5. Process states: Each circle is a possible process behavior, each box a level of core capability, and each line a potential destination to
improve the performance of the process (based on the Idleness Metric)

all processes informing them of this symptom. Similarly,
when the wait time of a process is above a threshold, this
information is distributed as well. If communicating peer
processes observe these conditions, a leader process is
dynamically chosen, which then analyzes the data and
decides on the best mapping. It then informs the new
mapping to all processes concerned.

The mapping decision works to move each process to
a core that is similar to the one its peer is running on.
In some cases a disparity between only two processes
can cause all processes in an application to see out-of-
sync communication, and fixing that one pair repairs
this behavior for all the others as well. This metric is
unique among the three discussed in this paper, in that
it makes a completely distributed decision. In fact, it
occurs between a minimum of two nodes, and all nodes
presenting the symptom make a decision that one or
more nodes should change their mappings.

3) Cache Locality Metric: The cache locality metric
utilizes the L2 cache misses monitored by the SyMMer
library. This metric is specific to the processor architec-
ture, and relies on the locality of cache between cores on
the same die. If the number of cache misses for a process
is sufficiently greater than those observed by another

process on the same node, then these two processes can
be swapped as long as the communicating process is
moved closer to the core performing the protocol stack
processing. In some cases it can even determine that the
protocol processing core is the best location to place a
process which has high enough cache misses, since that
core will have no misses, the same as the other core
on the same die, allowing two processes to be mapped
in this manner rather than just one. This is an example
of prioritized metrics, in that in these cases, following
the communication idleness metric would result in a
below optimal result. Again, this metric only relies on
intra-node communication as it is only used to switch
processes to the respective cores within the same node.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed approach
with multiple microbenchmarks in Section V-A and
the GROMACS and LAMMPS applications and FFTW
Fourier Transform library in Section V-B.

The cluster testbed used for our evaluation consisted
of two Dell PowerEdge 2950 servers, each equipped
with two dual-core Intel Xeon 2.66GHz processors.
Each server has 4GB of 667MHz DDR2 SDRAM.

7

Each processor has a 4MB L2 cache which is shared
between two cores. The machines run the Fedora Core
6 operating system with Linux kernel version 2.6.18
and were connected using NetEffect NE010 10-Gigabit
Ethernet network adapters.

A. Microbenchmark Evaluation

In this section, we evaluate the three microbenchmarks
we developed specifically to test each of the symptoms
described in Section III-C individually without being
affected by the other interactions. In Section V-B, we
will evaluate the SyMMer library with real applications
and scientific libraries to show its impact in the real
world.

17

19

21

23

25

27

29

31

33

35

1 1.33 2 4

Ti
m
e
(s
ec
on

ds
)

Idleness ra1o

Vanilla SyMMer

Fig. 6. Communication Idleness Benchmark Performance

1) Communication Idleness Benchmark: The commu-
nication idleness benchmark stresses the performance
impact of delays due to irregular communication pat-
terns. In this benchmark, processes communicate in pairs
using MPI Send and MPI Recv, with each pair per-
forming different amounts of computation between each
communication step. Thus, a pair that is performing less
computation spends more time in an idle state waiting
for communication. Such processes are less impacted by
the protocol processing overhead on the same core as
compared to other processes which spend more of their
time doing computation.

Figure 6 shows the performance of the communication
idleness benchmark using SyMMer-enabled MPICH2 as
compared to vanilla MPICH2. We define idleness ratio
to be the ratio between the computation done by the pair
doing the most computation and the pair doing the least.
This ratio, hence, represents the amount of computational
irregularity in the benchmark. Thus an idleness ratio of
one means that all processes in the benchmark perform
the same amount of computation, while a value of four

means that one communicating pair performs up to 4-
times more computation than another.

In Figure 6, we plot the time taken for the benchmark
to execute with various idleness ratios. We observe that
both vanilla and SyMMer-enabled MPICH2 perform the
same for an idleness ratio of one. This is expected given
that an idleness ratio of one represents a completely
symmetric benchmark with no irregularity in computa-
tion. Thus there is no scope for SyMMer to improve
performance in this case. We do, however, observe that
as the idleness ratio increases, with vanilla MPICH2,
the performance of the benchmark increasingly depends
on the mapping of processes to cores. Such dependence
makes it possible for SyMMer to use the disparity in
computation to achieve a more optimal arrangement,
reducing runtime by up to 30%.

To further analyze the behavior of this benchmark, we
show the distribution of time spent in the different parts
of communication in Figures 7(a) and 7(b) for vanilla
MPICH2 and SyMMer-enabled MPICH2 respectively.
For consistency both are based on the same initial
mapping of processes to cores with an idleness ratio
of four. Figure 7(a), shows that the wait times for the
different processes are quite variable. This means, that
some processes spend a lot of time waiting for their
peer processes to respond, while other processes are
overloaded with the application computation as well
as protocol processing overhead. Figure 7(b), on the
other hand, shows the distribution for SyMMer-enabled
MPICH2. As shown in the figure, SyMMer keeps the
wait time more even across the processes, thus reducing
the overhead seen by the application.

2) Out-of-Sync Communication Benchmark: This
benchmark emulates the behavior where two application
processes perform a large synchronous data transfer
and a large computation immediately thereafter. Because
some of the user data may be buffered, usually due to
a full buffer in a lower level communication layer, there
is a possibility that the processes may go out-of-sync.
This refers to a situation where the sending and receiving
processes are not assigned to cores with equal effective
capabilities resulting in data being buffered at the sender
node. This causes the send to be delayed and results in
the receiver process waiting for not only the amount of
time it takes to send the data, but also the time needed
to complete the remote computation.

Figure 8(a) shows the performance of the out-of-
sync communication benchmark using vanilla MPICH2
and SyMMer-enabled MPICH2. It compares the total
time to execute the benchmark with various message
sizes used in the communication step. Similar to the

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Process ranks

Computa4on Wait Communica4on

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7

Process ranks

Computa4on Wait Communica4on

Fig. 7. Communication Idleness Benchmark devision of time: (a) Vanilla MPICH2 (b) SyMMer-enabled MPICH2

0

20

40

60

80

100

120

256K 512K 1M 2M 4M

Ti
m
e
(S
ec
on

ds
)

Message Size

Vanilla SyMMer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Se
co
nd

s
Bl
oc
ke
d

Vanilla SyMMer

Fig. 8. Out-of-Sync Communication Benchmark: (a) Performance (b) MPI data buffering time

communication idleness benchmark, SyMMer-enabled
MPICH2 performs as well as or better than vanilla
MPICH2 in all cases. At message sizes up to 256
KB, both vanilla and SyMMer MPICH2 have the same
performance as messages, as the socket buffers can
buffer such data without requiring MPICH2 to buffer
them. Thus, there can be no out-of-sync behavior, which
represents our base case where there is no scope for
performance improvement. For message sizes above
512 KB, however, we observe that SyMMer-enabled
MPICH2 consistently outperforms vanilla MPICH2 by
up to 80%. As the message size continues to rise above
512 KB however, the performance gap between SyMMer
and vanilla begins to close. We believe this to be caused
by MPI’s tendency to resist buffering larger messages
when possible. A detailed analysis of this is left for
future work.

The internal workings of the benchmark are demon-
strated in Figure 8(b), which shows the times when
data is buffered within the MPI library running under
the same initial conditions with and without SyMMer.
As shown in the figure, the data buffering time is

almost an order-of-magnitude less when using SyMMer.
It should be noted that, when an out-of-sync message
occurs with SyMMer, the time taken is the same, but
since SyMMer corrects the error in synchronization,
its occurrence reduces. This ultimately results in the
performance improvement demonstrated in Figure 10.

3) Cache Locality Benchmark: This benchmark
stresses the cache locality of processes by performing
the majority of the network communication in certain
processes in the application. Thus, depending on which
core the communicating processes are mapped to, they
may present the cache locality symptom discussed in
Section III-C. Hence, when the communicating processes
are not on the same processor die as the core performing
protocol processing, they can potentially take a severe
performance hit.

In our benchmark, processes communicate in pairs
wherein two pairs of processes are engaged in heavy
inter-node communication, while the other pairs perform
computation and exchange data locally. We measure the
performance as the time it takes to complete a certain
number of iterations of the benchmark. This is portrayed

9

in Figure-9(a) which showcases performance by compar-
ing the total execution time with a computational load
factor, which is effectively a measure of the amount of
work done per run. We find that as the computational
load factor increases, SyMMer is able to outperform
vanilla MPICH2 by up to 29%.

We profile the benchmark and count the number of
L2 cache misses observed by each process to gain a
further understanding of SyMMer’s behavior. Figure 9(b)
shows the total number of cache misses observed by
the processes performing inter-node and intra-node com-
munication respectively. We observe that the number
of cache misses is significantly decreased for the inter-
node communicating processes, but despite the migration
and other overhead incurred in the process, the cache
misses fall for the intra-node communicating processes
as well. As it turns out, the intra-node communicating
processes gain two benefits from SyMMer that we didn’t
initially anticipate. First, their locality with respect to
the local processes they communicate with improves.
Second, moving them away from the die doing the inter-
node processing reduces the amount of cache thrashing
they have to contend with. Thus SyMMer is not only
able to improve the cache locality of the inter-node
communicating processes, but also that of the intra-node
communicating processes.

B. Evaluating Applications and Scientific Libraries

In this section, we evaluate the performance of
two molecular dynamics applications, GROMACS and
LAMMPS, and the FFTW Fourier Transform library and
demonstrate the performance benefits achievable using
SyMMer.

1) GROMACS Application: GROMACS (GROningen
MAchine for Chemical Simulations) [9] is a molecular
dynamics application developed at Groningen University,
primarily designed to simulate the dynamics of mil-
lions of biochemical particles in a molecular structure.
GROMACS is optimized towards locality of processes.
It splits the particles in the overall molecular structure
into segments, distributes different segments to different
processes, and each process simulates the dynamics of
the particles within its segment. If a particle interacts
with another particle that is not within the process’
local segment, MPI communication is used to exchange
information regarding the interaction between the two
processes. The overall simulation time is broken into
many steps, and performance is reported as the number
of nanoseconds per day of simulation time. For our
measurements, we use the GROMACS LZM application.

2) LAMMPS Application: LAMMPS [10] is a molec-
ular dynamics simulator developed at Sandia National

Laboratory. It uses spatial decomposition techniques to
partition the simulation domain into small 3D sub-
domains, one of which is assigned to each processor.
This allows it to run large problems in a scalable way
wherein both memory and execution speed scale linearly
with the number of atoms being simulated. We use the
Lennard-Jones liquid simulation with LAMMPS scaled
up 64 times for our evaluation and use the communica-
tion time for measuring performance.

3) FFTW Scientific Library: Fourier Transform li-
braries are extensively used in several high-end scientific
computing applications, especially those which rely on
the periodicity of data volumes in multiple dimensions
(e.g., signal processing, numerical libraries). Due to its
high computational complexity, scientists typically use
Fast Fourier Transform (FFT) algorithms to compute the
Fourier transform and its inverse. FFTW [11] is a popular
parallel implementation of FFT.

0

2

4

6

8

10

12

 LAMMPS

Co
m
m
un

ic
a)

on
)
m
e

Vanilla SyMMer

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

7 GROMACS

ns
/d
ay

Vanilla SyMMer

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

 FFTW

Ti
m
e

Vanilla SyMMer

Fig. 10. Performance Evaluation: (A) LAMMPS (B) FFTW, lower is
better (C) GROMACS, higher is better

Figure 10 illustrates the performance achieved by
SyMMer-enabled MPICH2 as compared to vanilla
MPICH2 for GROMACS, LAMMPS and FFTW. As
shown in the figure, SyMMer-enabled MPICH2 can
remap processes to the right cores so as to maximize
performance, resulting in a performance improvement
across the board. For GROMACS, the overall application
execution time is presented, in the form of its own
internal performance measure ns/day, which shows an
improvement of about 10-15%. For LAMMPS, commu-
nication overhead is presented due to the fact that com-
munication in LAMMPS tends not to scale with problem
size making it a more stable measure, which shows
nearly a two-fold improvement in performance. For
FFTW, execution time is presented based on the internal
average execution time provided by the benchmark, we

10

0

20

40

60

80

100

120

140

160

180

1 2 4 8

Ti
m
e
(S
ec
on

ds
)

Computa3onal load factor

Vanilla SyMMer

0

100000

200000

300000

400000

500000

600000

700000

Inter‐node Intra‐node

L2
 C
ac
he

 M
is
se
s

Vanilla SyMMer

Fig. 9. (a) Cache locality performance (b) Cache miss analysis

noticed only about 3-5% performance difference in our
experiments. This is due to the small communication
volumes that are used for FFTW in our experiments.
Given that SyMMer monitors for interactions between
the communication protocol stack and the multi-core
architectures, small data volumes mean that such inter-
action would be small as well.

In summary, we see a noticeable improvement in
performance with SyMMer-enabled MPICH2 for all
three cases. This shows that dynamic process-to-core
mapping is a promising approach to minimize the impact
of interactions of the communication protocol stacks
with the multi-core architecture and allow us to improve
application performance significantly in some cases.

VI. DISCUSSION ON ALTERNATIVE MULTI-CORE
ARCHITECTURES

While we demonstrated our approach on the Intel
multi-core architecture, the idea of dynamically mapping
application processes to the cores in a system is relevant
to most current and next-generation multi- and many-
core systems. For example, many-core accelerator sys-
tems such as GPGPUs provide complicated hierarchical
architectures. The new NVidia Tesla system, for instance,
has up to 16 GPUs, with each GPU having up to 128
processing cores. The cores in a GPU are grouped to-
gether into different multi-processor blocks where cores
within a block communicate via fast shared memory,
while cores across blocks share lower-speed global de-
vice memory. Cores between different GPUs can only
communicate through the system bus and host memory.
Such architectures clearly are highly sensitive to the
placement of processes on the different computation
units, and would certainly benefit from the knowledge
gained in development of a mapping library such as
SyMMer, if not the facilities of the library itself.

AMD-based multi-core architectures are quite simi-
lar to Intel-based multi-core architectures, and as such
one might think they would behave the same. There
are however, a few key differences which need to be
addressed before they can utilize SyMMer-like process
management libraries to full effect. Specifically, the non-
uniform memory access (NUMA) model which they
use makes process management more complicated as
compared to Intel systems. For example, on an Intel
system, SyMMer could freely move any process to any
core in the system with the only migration cost being re-
populating the new cache from main memory. However,
on an AMD system, as soon as a process touches a mem-
ory buffer, this buffer is allocated on its local memory.
At this time, if the process is migrated to a different
die, all of its memory access will be remote, resulting
in significant overhead. For example, we noticed that
for the LAMMPS application, process migration can
increase the non-local memory transfers by 17-31 fold
in some cases. While the SyMMer architecture is still
valid for AMD systems, aspects such as page migration
between different memory controllers become important
concerns in achieving good performance. In its absence,
SyMMer would be restricted to process mapping only to
cores within a die, which would result in a more limited
improvement in performance.

Finally, with the upcoming network-on-chip (NoC)
architectures such as Intel Xscale (a.k.a. Intel terascale)
processors and Tilera processors, dynamic process-to-
core mapping will become increasingly important pri-
marily owing to the huge number of cores that will
reside on the same die. For example, the Intel Xscale
processors would accommodate 80 cores per die, while
Tilera processors accommodate 64. In such cases, as-
signing a process to the wrong die could lead to a
significant amount of inter-die communication which
would be largely limited by the die pin overhead. A

11

library such as SyMMer can dynamically search for the
right assignments and use them to achieve better and
more consistent performance.

VII. RELATED WORK

While both multi-core architectures and communica-
tion protocol stacks are heavily studied topics, to the
best of our knowledge, there is no existing literature that
directly studies the interactions between these two aside
from our previous paper [6].

In [14], the authors quantify the performance differ-
ence in asymmetric multi-core architectures and define
operating system constructs for efficient scheduling on
such architectures. This closely relates to the effective
capability of the cores (similar to the current paper), but
the authors only quantify asymmetry that already exists
in the architecture (i.e., different core speeds). In our
work, we study the impact of the interaction of multi-
core architectures with communication protocol stacks,
which externally creates such asymmetry through aspects
such as interrupts and cache sharing.

In [15], the authors study the impact of the Intel
multi-core architecture on the performance of various
applications by looking at the amount of intra-node
and inter-node communication performed. Some of the
performance problems of multi-cores are identified in
that paper and the importance of multi-core-aware com-
munication libraries is underlined. They also discuss a
technique of data tiling for reducing the cache contention
which is dependent on the cache size. While the under-
lying principle and approach of this work significantly
differs from our approach, we believe that these two
techniques can be utilized in a complementary manner
to further improve performance.

The authors of [16], [17] look at the impact of shared
caches on scheduling processes or threads on multi-core
architectures wherein certain mappings of processes to
cores would work better in terms of utilizing it. We
improve upon their work by generalizing the extraneous
factors that affect application performance on multi-core
systems and by devising a framework for dynamically
performing the ideal mapping of processes to cores.

In summary, our work differs from existing literature
with respect to its capabilities and underlying principles,
but at the same time, forms a complementary contribu-
tion to other existing literature that can be simultaneously
utilized.

VIII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we demonstrated that the interactions
between the communication stack and multi-core archi-
tectures can result in heavy asymmetry in the effective

capabilities of the different cores; this results in signif-
icant performance degradation for various applications.
We further presented the design and evaluation of a novel
systems software stack, known as SyMMer (Systems
Mapping Manager) library, that monitors such interac-
tions and dynamically manages the mapping of processes
onto processor cores so as to improve performance. Our
evaluation of the SyMMer library demonstrated nearly a
two-fold improvement in communication time and 10-
15% improvement in overall performance for various
applications.

As future work, we plan to study other multi- and
many-core architectures such as AMD NUMA and
GPGPU systems to understand the implications of
process-to-core mapping on such systems.

REFERENCES

[1] “Intel Core 2 Extreme quad-core processor,” http://www.intel.
com/products/processor/core2xe/qc\ prod\ brief.pdf.

[2] “AMD Quad-core Opteron processor,” http://multicore.amd.com/
us-en/quadcore/.

[3] “Sun Niagara,” http://www.sun.com/processors/UltraSPARC-T1/.
[4] “Intel Terascale Research,” http://www.intel.com/research/

platform/terascale/teraflops.htm.
[5] “Tilera TILE64 Processor family,” http://www.tilera.com/pdf/

ProBrief\ Tile64\ Web.pdf.
[6] G. Narayanaswamy, P. Balaji, and W. Feng, “An Analysis of

10-Gigabit Ethernet Protocol Stacks in Multicore Environments,”
in 15th International Symposium on High-Performance Intercon-
nects (HotI 2007), Palo Alto, California, August 2007.

[7] A. N. Laboratory, “Mpich2: High performance and portable
message passing.”

[8] “Message Passing Interface Forum,” http://www.mpi-forum.org.
[9] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen,

“GROMACS: A message-passing parallel molecular dynamics
implementation,” Computer Physics Communications, vol. 91,
no. 1-3, pp. 43–56, September 1995. [Online]. Available:
http://dx.doi.org/10.1016/0010-4655(95)00042-E

[10] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molec-
ular Dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19,
1995.

[11] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231,
2005, special issue on ”Program Generation, Optimization and
Platform Adaptation”.

[12] “PAPI,” http://icl.cs.utk.edu/papi/.
[13] “PERUSE,” http://www.mpi-peruse.org/.
[14] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient Op-

erating System Scheduling for Performance-Asymmetric Multi-
Core Architectures,” in SC ’07, 2007.

[15] L. Chai, Q. Gao, and D. K. Panda, “Understanding the Impact
of Multi-Core Architecture in Cluster Computing: A Case Study
with Intel Dual-Core System,” in CCGrid ’07, 2007.

[16] J. Anderson, J. Calandrino, and U. Devi, “Real-time scheduling
on multicore platforms,” Real-Time and Embedded Technology
and Applications Symposium, 2006. Proceedings of the 12th
IEEE, pp. 179–190, 04-07 April 2006.

[17] A. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair thread
scheduling for multicore processors,” Division of Engineering
and Applied Sciences, Harvard University, Tech. Rep. TR-17-06,
October 2006.

12

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of

Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Of-

fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The

U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonex-

clusive, irrevocable worldwide license in said article to reproduce, prepare derivative

works, distribute copies to the public, and perform publicly and display publicly, by or

on behalf of the Government.

