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Abstract

Computing the first derivatives of a discretized nonlinear partial differential
equation (PDE) can be made more efficient given colorings of the lattice points of
the plane, cylinder, or torus that assign different colors to all vertices within some
specified stencil. Goldfarb and Toint showed how to efficiently color the lattice
points of the plane, but their results do not extend to the cases of cylinders or
toruses, as arise in the case of discretizing PDEs with periodic boundary conditions
on a Cartesian grid. We give colorings for the (4l − 3)-point star and the l × l
square stencils (for all l) in the plane, on the cylinder, and on the torus. We also
give colorings for the (6l−5)-point star in Z

3 and for the l× l× l cube in Z
3 with

periodic boundary conditions in 0 and 1 dimensions. We show that all colorings
are optimal or near-optimal.

1 Introduction and Motivation

Many numerical methods require the evaluation of the Jacobian. The Jacobian is an
M×N matrix J of partial derivatives of a vector-valued function F : R

N �→ R
M . The

Jacobian entry in row i and column j is nonzero only if the ith component F(x) depends
on x j.

The Jacobian is frequently computed by using automatic differentiation [4] or ap-
proximated by using finite differences. These techniques are often necessary because
the function F is available only in the form of a computer program. Both approaches
compute a set of directional derivatives of F . If we choose the direction to be the unit
vector e j in the jth coordinate direction, we compute the jth column of J. By taking
the directions to be the standard basis of R

N , we can compute J using N directional
derivatives of F .

In many cases, however, the Jacobian matrix is sparse. If the sparsity pattern is
known, the ith and jth columns of J can be computed simultaneously whenever they are
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structurally orthogonal. A pair of columns i and j of a matrix are structurally orthogonal
if in each row of the matrix at most one of the columns contains a nonzero entry.

If columns i and j are structurally orthogonal, we compute them simultaneously
by taking the derivative of F in the direction e i + e j. Then for each row k, at most
one of Jki and Jk j is nonzero. This nonzero entry is equal to the kth component of the
derivative vector.

This idea can be extended to larger sets of pairwise structurally orthogonal columns.
If columns i1, i2, . . . , ip are structurally orthogonal, we can compute them simultane-
ously by taking the derivative of F in the direction e i1 + ei2 + · · ·+ eip . Again, for each
row k, at most one column has a nonzero entry in the kth row. This nonzero entry is
equal to the kth component of the derivative vector.

We are now interested in partitioning the columns of J into structurally orthogonal
sets. All the columns in a set can be computed simultaneously. To minimize the cost
of computing J, we must minimize the number of sets in the partition.

It turns out to be more useful (and to offer better intuition) if we view the problem
as points on a torus, rather than columns of a matrix [6]. Rather than partitioning the
columns into structurally orthogonal sets, we speak of coloring the points on the torus
so that no two points receive the same color unless their corresponding columns in
the Jacobian are structurally orthogonal. If we take the points of the torus as a vertex
set and add an edge between two points whenever their corresponding columns are
not structurally orthogonal, we have a standard graph coloring problem. Motivated by
viewing the problem as points on a torus, we also refer to the points by the more natural
(i, j) to denote the point in the ith row and jth column.

Unfortunately, finding an optimal coloring of a general graph is NP-complete.
Therefore, research has focused on approximation algorithms for graphs with random
adjacency patterns [2, 1, 5] and optimal (or near-optimal) algorithms for structured
graphs [3].

We now examine the problem more in detail. We want to find the derivative of a
function that maps the surface of a torus to itself, F : T �→ T . Since we don’t have
an analytical form of the function, we approximate it at selected points. We select mn
points in the shape of an m×n lattice on the surface of the torus. In the Jacobian, each
row and column corresponds to a sample point on the torus. (This means that the Jaco-
bian matrix, J, actually has dimensions mn×mn.) We refer to the point corresponding
to column (and row) i as point i. The derivative at a point can be approximated by using
the value of the function at that point and at nearby points.

We use the term stencil to specify those points near point i which our approximation
of the derivative at i will depend on. Because we use the same stencil for every point
on the torus, the sparsity pattern of the Jacobian is very structured. In particular, J i j

is nonzero only if point i lies within the stencil of point j. Thus, two columns are
structurally orthogonal only if their corresponding points never lie in the same stencil.
Thus, the number of structurally orthogonal sets in the column partition must be at least
equal to the number of points in the stencil.

Goldfarb and Toint [3] give optimal colorings (a coloring is optimal if it is uses a
minimum number of colors) for a variety of sparsity patterns arising from the stencil-
based discretization of partial differential equations on Cartesian grids. Goldfarb and
Toint demonstrate that in many cases the size of the coloring need not be any larger than
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Figure 1: (a) The 5-point star stencil on the 5× 7 torus. It is important to distinguish
between the torus and the Jacobian. The Jacobian will be 35×35, since each point on
the torus corresponds to a column in the Jacobian. (b) The 3×3 square stencil on the
5×6 torus. The Jacobian for this torus will be 30×30.

the size of the stencil. However, all of the cases they consider are in the plane. This
significantly simplifies matters, because it avoids difficulties with boundary conditions.

In this paper, we examine the problem for (4l − 3)-point star and square stencils
on both the torus and the cylinder. We use the term m×n torus (cylinder) to mean the
discrete torus (cylinder) with height m and width n. For the cylinder, the height is the
dimension that does not wrap around.

In three dimensions, we look at (6l−5)-point star and cube stencils. We consider
two cases. First, we color the points of Z

3, the three-dimensional latice without wrap-
around in any dimension. Second, we color the points of Z

2 ×Zm, a three-dimensional
lattice with wrap-around in a single dimension of size m.

In Section 2, we present a preliminary result that is helpful in constructing the col-
orings in Section 3. In Section 3, we present colorings for (4l−3)-point and (6l−5)-
point star stencils and for square and cube stencils. In Section 4, we present lower
bounds and show that in all cases they are tight or nearly tight for l× l square stencils
and (4l−3)-star stencils. We offer some concluding remarks in Section 5.

2 Preliminaries

To build all the colorings in this paper, we partition into smaller rectangles the region to
be colored. We color each rectangle so that when the rectangles are reassembled into
the initial region, the resulting coloring is valid. In general, the rectangles have two
different heights and two different widths: h1 ×w1, h2 ×w1, h1 ×w2, and h2 ×w2. In
addition to each coloring being valid for the specified stencil, these colorings also have
the property that if two rectangles with the same height are placed side by side or if two
rectangles with the same width are placed one atop the other, the coloring of this new
larger rectangle is valid for the same stencil. To color a torus with dimensions h×w,
we will write h as a nonnegative integer linear combination of h 1 and h2 and write
w as a nonnegative integer linear combination of w1 and w2. (Throughout this paper,
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4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0




Figure 2: A coloring of the 9×9 torus for the 3×3 square stencil.

the term linear combination will mean linear combination with nonnegative integer
coefficients.) We write a|b to denote that a divides b.

We want to know when an integer n can be written as a linear combination of
two smaller integers p and q. Let r(p,q) be the smallest positive integer such that if
n ≥ r(p,q), then n can be written as a linear combination of p and q. The following
result is known as Sylvester’s theorem. For a proof, see [7].

Lemma 1 (Sylvester’s Theorem [7]). If p and q are relatively prime positive integers,
then r(p,q) = (p−1)(q−1).

We say that a coloring (of a torus or the plane) is valid for a given stencil if, under
that coloring, all points within each copy of that stencil receive distinct colors. We say
that a valid coloring (for stencil S) of an h×w1 torus and a valid coloring (for S) of an
h×w2 torus are vertically compatible if, when placed side by side, the two form a valid
coloring (for stencil S) of the h× (w1 +w2) torus. Analogously, we define horizontally
compatible colorings of h1 ×w and h2 ×w tori. When the meaning is clear, we will
refer to both vertically compatible and horizontally compatible simply as compatible.
We also extend these definitions to three dimensions in the obvious way.

3 Colorings for Square Stencils

The simplest coloring for the 3×3 square stencil, on an m×n torus with 3|m and 3|n,
is given by C(i, j) = (3i+ j) mod 9, as shown in Figure 2.

This coloring was given by Goldfarb and Toint [3] and can easily be extended to
the l× l square stencil by letting C(i, j) = (li+ j) mod l2. If we are coloring rectangles
rather than tori, this coloring suffices for all m and n. For the torus, however, we require
l|m and l|n. So now we need to look for valid colorings for the l × l square stencil in
instances when l� |m or l� |n.

The colorings we use are similar to the coloring in Figure 2. We define a general
family of colorings:

C(i, j, l,m,n) = ((li mod m+ j) mod n).
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Each time we use coloring C, the parameters l, m, and n remain fixed, while the param-
eters i and j vary to indicate which entry is being colored. As we move to the right in a
row, each entry is larger than the previous entry by 1. Similarly, as we move downward
in a column, each entry is larger than the previous entry by l. As a result, the period of
the coloring in the rows is n, and the period in the columns is gcd(l,m). For Theorem
2 through Lemma 5, we consider the case when the height and width of the torus are
given by m = l2 +b and n = l2 + c, where b and c are at most l.

Theorem 2. If l2 ≤ m ≤ n ≤ l2 + l, then C(i, j, l,m,n) is a valid coloring of the m×n
torus for the l× l square stencil.

Proof. Since the tiling is periodic in both directions, it suffices to show that the coloring
is valid for the plane. If this coloring is invalid, then there exist two entries (i 1, j1)
and (i2, j2) that lie within the same l × l square and receive the same color, that is,
|i1 − i2| < l, | j1 − j2| < l, and (li1 mod m + j1) ≡ (li2 mod m+ j2) mod n. Without
loss of generality, assume that (li1 mod m) ≥ (li2 mod m). Let

T = (li1 mod m)− (li2 mod m)+ j1 − j2,

U = li1 − li2 + j1 − j2.

Since n|T and −n < T < 2n, we see that T ∈ {0,n}. Clearly m|(T −U), and
by assumption, T ≥ U . Since |li1 − li2| ≤ l|i1 − i2| < l2 ≤ m, we see that T −U ∈
{0,m}. Thus U ∈ {T,T −m}, and hence U ∈ {0,−m,n,n−m}. Since |i1 − i2| < l and
| j1− j2|< l, we see that |U | ≤ |li1− li2|+ | j1− j2|= l|i1− i2|+ | j1− j2|< l2 ≤m≤ n;
so U /∈ {−m,n}. Since U = 0 implies that (i1, j1) = (i2, j2), we must have U = n−m
and n �= m. Thus (i1, j1) is one of (i2 +1, j2),(i2, j2 +n−m), or (i2 +1, j2 +n−m− l).
Both of the first two cases can be easily seen to assign distinct colors to (i1, j1) and
(i2, j2). We now show that the third case also assigns distinct colors to (i1, j1) and
(i2, j2).

The key is to determine the difference (li1 mod m)− (li2 mod m). We consider
two possibilities: either there exists an integer g such that li2 < gm ≤ l(i2 +1) = li1, or
there does not exist such a g. Let N = li2 mod m. If there exists such an integer g, then
li1 mod m = N + l −m. In this case, (li1 mod m+ j1) mod n = (N + l−m+ j2 +n−
m− l) mod n = (li2 mod m+ j2) mod n = N + j2 mod n. After simplifying, this gives
n− 2m ≡ 0 mod n, which is impossible, since l 2 ≤ m ≤ n ≤ l2 + l and n �= m. Thus,
there does not exist such an integer g. Since no such g exists, (li 1 mod m) = (li2 mod
m) + l. By substituting this equality into the congruence (li1 mod m + j1) mod n ≡
(li2 mod m + j2) mod n, we reach the implication m = n, which is a contradiction.
Hence, the tiling of the plane is valid, and so is the tiling of the torus.

Corollary 3. If l|m and l|n, then the coloring C(i, j, l, l 2 , l2) is a valid l2-coloring of
the plane and the m×n torus for the l× l square stencil.

Proof. Apply Theorem 2, with m = l 2 and n = l2. Immediately, we see that the coloring
is valid for an l × l torus and the l × l square stencil. If a coloring is valid for a torus
for a given stencil, then that coloring remains valid for that stencil if two copies of the
torus are placed side by side or one atop the other. By placing copies of the l × l torus
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next to and atop one another, we can construct an m×n torus. Thus, the given coloring
is valid for the m×n torus and the l× l square stencil.

In the next two lemmas, we show that the colorings given for the smaller rectangles
can indeed be assembled to give larger colorings that are valid.

Lemma 4. If l2 ≤m≤ n1 ≤ n2 ≤ l2+ l, then coloringsC(i, j, l,m,n1) andC(i, j, l,m,n2)
are vertically compatible for the l× l square stencil.

Proof. Let t1 be an m×n1 rectangle colored by C(i, j, l,m,n1), and let t2 be an m×n2

rectangle colored by C(i, j, l,m,n2). The entries in a row of t1 are (beginning from the
first column) x mod n1, (x+1) mod n1, (x+2) mod n1, . . ., where x < m. The entries
in the same row of t2 are x mod n2, (x+1) mod n2, (x+2) mod n2, . . .. As a result, the
colors from a row of t1 appear in the same order within that row of t2. The difference is
that since n2 ≥ n1, there may be additional colors in t2. So in each row of t2, no color
is closer to the edge of t1 than it would be if t2 were replaced with a second copy of t1.
Let v1 be an entry in t1 and v2 be an entry in t2. If v1 and v2 receive the same color and
lie in the same row, then they are at least as far apart as any two nearest entries in t 1 that
receive the same color and lie in the same row. Thus, the colorings are compatible.

Lemma 5. If l2 ≤m1 ≤m2 ≤ n≤ l2+ l, then coloringsC(i, j, l,m1,n) andC(i, j, l,m2,n)
are horizontally compatible for the l× l square stencil.

Proof. Since li < m1 ≤ m2 for all 0 ≤ i < l, the first l rows of the two colorings are
identical. Thus, the colorings are compatible for the l× l square stencil.

Finally, we put together all of the pieces we have proved. We now show that

1. any sufficiently large torus can be partitioned into smaller rectangles,

2. those rectangles can be colored using few colors, and

3. the smaller colorings can be assembled to give a valid coloring for the torus.

Theorem 6. For all m ≥ (l − 1)l2 and n ≥ l2(l2 + 1), there is an (l2 + 2)-coloring of
the m×n torus that is valid for the l× l square stencil.

Proof. By using Sylvester’s theorem, we find a1,a2,b1,b2 ∈ N such that m = a1l +
a2(l2 +1) and n = b1(l2 +1)+b2(l2 +2). Using these linear combinations, we partition
the m× n torus into rectangles with heights h ∈ {l, l 2 + 1} and with widths w ∈ {l2 +
1, l2 + 2}. From Theorem 2, we get colorings of tori with these four sizes. We then
apply the appropriate coloring to each rectangle in the partition of the m× n torus.
The resulting coloring uses at most l 2 + 2 colors and is valid for the m× n torus as
guaranteed by Lemmas 4 and 5.

This technique used to prove Theorem 6 yields an even better bound for coloring
the cylinder. A coloring of a torus with any height can be used to color a cylinder,
since we need not worry about boundary conditions in the height dimension. If we use
the coloring for a torus with height l, then we need to use only l × l and l × (l 2 + 1)
rectangles in our partition of the torus. This partition results in a coloring with l 2 + 1
colors.
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4 5 6 7 8 9 A 0 1 2 3
7 8 9 A 0 1 2 3 4 5 6
A 0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 A 0 1
5 6 7 8 9 A 0 1 2 3 4
8 9 A 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9 A
3 4 5 6 7 8 9 A 0 1 2
6 7 8 9 A 0 1 2 3 4 5
9 A 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 A 0







4 5 6 7 8 9 A B 0 1 2 3
7 8 9 A B 0 1 2 3 4 5 6
A B 0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 A B 0 1
5 6 7 8 9 A B 0 1 2 3 4
8 9 A B 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9 A B
3 4 5 6 7 8 9 A B 0 1 2
6 7 8 9 A B 0 1 2 3 4 5
9 A B 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 A B 0







4 5 6 7 8 9 A 0 1 2 3
7 8 9 A 0 1 2 3 4 5 6
A 0 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 A 0 1 2
6 7 8 9 A 0 1 2 3 4 5
9 A 0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 A 0 1
5 6 7 8 9 A 0 1 2 3 4
8 9 A 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 A 0







4 5 6 7 8 9 A B 0 1 2 3
7 8 9 A B 0 1 2 3 4 5 6
A B 0 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 A B 0 1 2
6 7 8 9 A B 0 1 2 3 4 5
9 A B 0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 A B 0 1
5 6 7 8 9 A B 0 1 2 3 4
8 9 A B 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 A B 0




Figure 3: The colorings of four rectangles used to construct a coloring of the torus for
the (4l−3)-point star stencil. The colorings shown are from Theorem 11, when l = 3.

Theorem 7. There is an (l2 + 1)-coloring of the m× n cylinder for the l × l square
stencil when n ≥ (l−1)l2.

4 Colorings for Star Stencils

Now we give colorings for the torus that are valid for the (4l − 3)-point star stencils.
To prove that our colorings are valid for the star stencil, we need only show that the
colorings are valid for the l× l square stencil, the (2l−1)×1 rectangle stencil, and the
1× (2l− 1) rectangle stencil, since any pair of points that lies in a (4l − 3)-point star
also lies in one of these three stencils.

If m ≥ l2(l2 + 1) and n ≥ (l2 + 1)(l2 + 2), then by Lemma 1 we can partition the
torus into rectangles with heights h ∈ {l 2 + 1, l2 + 2} and widths w ∈ {l2 + 2, l2 + 3}.
We use the colorings for each of the rectangles that are valid for the l × l stencil that
are given in Theorem 2. When the colorings for these rectangles are combined, we get
a coloring for the torus. Call this coloring Ĉ and call the partition into rectangles P.

Lemma 8. The coloring Ĉ is valid for the l× l square stencil.
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Proof. This follows immediately from Theorem 2 and Lemmas 4 and 5.

Lemma 9. The coloring Ĉ is valid for the (2l−1)×1 rectangle stencil.

Proof. If Ĉ were invalid for the (2l−1)×1 stencil, there would exist two points (i 1, j)
and (i2, j) in the same (2l − 1)× 1 stencil that receive the same color. We show that
situation is impossible.

We can assume that (i1, j) and (i2, j) lie in different rectangles in P, since it is easy
to see that different entries within the same column of a rectangle receive different
colors. We consider the entries of column j modulo l. As we move down a column,
we encounter in succession all the entries that lie in the same equivalence class modulo
l. Additionally, we encounter the entries in the same equivalence class in increasing
order. That is, as we move down a column of height h ≥ l 2 +1, we encounter l blocks
of entries, where each block consists of entries that lie in the same equivalence class.
Each block of entries is of length l or l + 1. The only exception is that beginning at
the top of a column, we may be partway through a block. The preceding portion of
this block will appear at the bottom of the column, so that the block, when viewed as a
torus, appears whole and in order.

The important insight is that for a fixed column, each rectangle in the partition P
has the same first l entries in that column. As we move down the column, we must
cross a boundary between two rectangles. Both the rectangle above the boundary and
the one below it have the same first l rows. Hence, as we cross the boundary from
one rectangle to another, all the blocks are whole and in order. The column of each
rectangle contains l ≥ 2 of these blocks (if l = 1, the lemma is trivial). If two entries
receive the same color, they must be in different blocks, and there must be at least
one additional block between them. Hence, the second entry must appear at least 2l
positions after the first.

Lemma 10. The coloring Ĉ is valid for the 1× (2l−1) rectangle stencil.

Proof. If Ĉ were invalid for the 1× (2l−1) rectangle stencil, there would exist (i, j 1)
and (i, j2) that lie in the same 1× (2l − 1) rectangle. Either both points are colored
by using the same coloring (i.e., in the partition they lie within rectangles of the same
size), or they are colored by using two different colorings. First, we assume they are
colored by using the same coloring. However, we know that within a row, each coloring
is cyclic with period w≥ l2 +2. In addition, we know that each color appears only once
every w entries. Thus, if (i, j1) and (i, j2) receive the same color, then they must be at
a distance of at least w ≥ l2 +2 > 2l−1.

Now consider the case where (i, j1) and (i, j2) are colored by using different color-
ings; suppose that (i, j1) is colored by C1 = C(i, j, l,w, l2 +2), and (i, j2) is colored by
C2 = C(i, j, l,w, l2 +3). Let d1 be the color used on (i, j1). If both points were colored
with the same coloring, the next occurence of color d 1 to the right of (i, j1) would be
at (i, j1 +w). However, the first appearance of a color in each row of coloring C 2 is no
closer to the boundary between colorings C1 and C2 than if we were to continue using
C1 (see Lemma 4). As a result, no color can appear at two positions that are in the same
row and are distance less than w ≥ l2 +2 > 2l−1 apart.
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Theorem 11. If m ≥ l2(l2 + 1) and n ≥ (l2 + 1)(l2 + 2), then there is an (l2 + 3)-
coloring of the m×n torus that is valid for the (4l−3)-point star stencil.

Proof. This follows immediately from Lemmas 8, 9, and 10.

5 Three-Dimensional Stencils

In this section, we consider the three-dimensional version of our problem. In the three-
dimensional case, the lattices we study are Z

3 and Z
2 ×Zm. We are motivated to look

at colorings of these lattices for the l× l× l cube. We also consider colorings of Z
3 for

the (6l − 5)-point star. Apart from the 7-point star considered by Goldfarb and Toint
[3], we are unaware of any treatment of these cases in the literature.

The intution for Theorem 12 is as follows. We assume that two points receive the
same color under the specified coloring. We proceed to show that they cannot lie inside
the same (6l −5)-point star stencil. Because we are giving a single coloring for all of
Z

3 (and not considering boundary conditions for discrete tori), there are no issues of
compatibility between different colorings.

Theorem 12. Let M = l2 + l +1, and define the coloring C(i, j,k, l) = (i+ l 2 j +(l2 +
1)k) mod M. Coloring C(i, j,k, l) is a valid coloring of Z

3 for the (6l − 5)-point star
and uses M colors.

Proof. If the coloring is invalid, then there are two points p 1 = (i1, j1,k1) and p2 =
(i2, j2,k2) that receive the same color and lie within the same copy of a (6l−5)-point
star stencil. Each point of a star differs in only one coordinate from the center of the
star, so if p1 and p2 lie in the same star, then p1 and p2 agree in at least one coordinate.

First, consider the case where p1 and p2 agree in two coordinates. We simplify the
expression (i1 + l2 j1 +(l2 +1)k1) ≡ (i2 + l2 j2 +(l2 +1)k2) mod M by substituting in
two of the three equalities: i1 = i2, j1 = j2, and k1 = k2. Depending on which two of the
three equalities we assume to be true, we get one of three possibilities: i1 ≡ i2 mod M,
l2 j1 ≡ l2 j2 mod M, or (l2 +1)k1 ≡ (l2 +1)k2 mod M. Since 1, l2, and (l2 +1) are all
relatively prime to M, we see that M|(i1− i2), M|( j1− j2), or M|(k1−k2). However, we
know that |i1− i2|< 2l−1, | j1− j2|< 2l−1, and |k1−k2|< 2l−1; since M > 2l−1,
we conclude that p1 = p2, which is a contradiction. Thus, if p1 and p2 lie inside the
same star and receive the same color, then they agree in exactly one coordinate.

Now consider the case where p1 and p2 agree in exactly one coordinate. We must
have |i1 − i2| < l, | j1 − j2| < l, |k1 − k2| < l, and one of the following.

(i1 + l2 j1) ≡ (i2 + l2 j2) mod M

(i1 +(l2 +1)k1) ≡ (i2 +(l2 +1)k2) mod M

(l2 j1 +(l2 +1)k1) ≡ (l2 j2 +(l2 +1)k2) mod M

We rewrite these as follows.

(i1 − (l +1) j1) ≡ (i2 − (l +1) j2) mod M

(i1 − lk1) ≡ (i2 − lk2) mod M

(−l j1 + k1) ≡ (−l j2 + k2) mod M
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The third equation follows by multiplying through by (l + 1). Those equations then
imply (respectively) that one of the following is true.

M | (i1 − i2− (l +1)( j1 − j2))
M | (i1 − i2− l(k1 − k2))
M | (k1 − k2− l( j1 − j2))

In each case (making use of |i1− i2|< l, | j1− j2|< l, and |k1−k2|< l), we see that the
quantity that M is supposed to divide has absolute value less than M. This implies that
each quantity must be 0 and hence that (i1, j1,k1) = (i2, j2,k2). This is a contradiction.
Hence, the coloring is valid.

Now we turn our attention to the l × l× l cube stencil. Because we want to color
Z

2 ×Zm, we need to give a coloring for all of the l 3 × l3 × (l3 +b) three-dimensional
cylinders (0 ≤ b ≤ l), rather than just the l 3 × l3 × l3 three-dimensional torus. The
proof takes the same form as before. We assume that there are two points that lie
within a cube and receive the same color; eventually we reach a contradiction. Define
the coloring

C(i, j,k, l,b) = ((l2i+ l j) mod l3 + k) mod (l3 +b).

Theorem 13. If 0 ≤ b≤ l, then C(i, j,k, l,b) is a valid coloring of the l 3 × l3× (l3 +b)
three-dimensional cylinder for the l× l× l cube. C(i, j,k, l,b) uses l 3 +b colors.

Proof. If the coloring is invalid, then there are two points p 1 = (i1, j1,k1) and p2 =
(i2, j2,k2) that receive the same color and lie inside the same l× l× l cube. As a result,
p1 and p2 satisfy constraints (3.1) and (3.2) below:

|i1 − i2| < l, | j1 − j2| < l, |k1 − k2| < l (1)

(((l2i1 + l j1) mod l3)+ k1) ≡ ((l2i2 + l j2) mod l3 + k2)(mod (l3 +b)). (2)

Without loss of generality, assume (l2i1 + l j1) mod l3 ≥ (l2i2 + l j2) mod l3. Let
T = ((l2i1 + l j1) mod l3−(l2i2 + l j2) mod l3 +(k1−k2)). Then T is divisible by l3 +b
and −(l3 + b) < T < 2(l3 + b). In particular, T ∈ {0, l3 + b}. Let U = l2(i1 − i2)+
l( j1 − j2)+ (k1 − k2). Then U ∈ {0,−l3, l3 + b,b}. Making use of (3.1), we see that
|U | < l3. If U = 0, we immediately get (i1, j1,k1) = (i2, j2,k2). This leaves only the
case U = b. To have a solution other than (i1, j1,k1) = (i2, j2,k2), we need 0 < b.
Again using (3.1) and the fact that b ≤ l, we see that the only possible solutions are the
following.

l2i1 + l j1 = l2i2 + l j2 k1 = k2 +b (i)
l2i1 + l j1 = l2i2 + l j2 + l k1 = k2 +(b− l) (ii)

We need to show that none of these pairs of points actually receive the same colors.
It is easy to see that no pair of points satisfying (i) receives the same color.

Consider pairs of points satisfying (ii). The key is to determine the difference
(l2i1 + l j1) mod l3 − (l2i2 + l j2) mod l3. Let N = (l2i2 + l j2) mod l3. There are two
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possibilities. Either there exists a positive integer d such that l 2i2 + l j2 < dl3 ≤ l2i2 +
l j2 + l, or there does not exist such an d. If there does not exist such an d, then
(l2i1 + l j1) mod l3 = N + l. This leads to (N + k2) mod (l3 + b) = (N + l + k2 + b−
l) mod (l3 + b). This implies that b ≡ 0 mod (l3 + b). However, since 0 < b ≤ l, this
is a contradiction. Hence, there must exist such an integer d.

Consider (ii) when there exists a positive integer d such that l 2i2 + l j2 < dl3 ≤
l2i1 + l j1. Then (l2i1 + l j1) mod l3 = N + l− l3. This leads to (N +k2)≡ (N + l− l3 +
k2 +b− l) mod (l3 +b). Simplifying, we get l3 ≡ b mod (l3 +b). However, 0 < b ≤ l,
so we reach a contradiction. Hence, there are no pairs of points receiving the same color
and also satisfying constraint (ii). Thus, there is no pair of points (i 1, j1,k1),(i2, j2,k2)
receiving the same color and also lying inside the same l × l× l cube. As a result, the
coloring is valid.

Corollary 14. There exists a l3-coloring of Z
3 that is valid for the l× l× l cube.

Proof. C(i, j,k, l,0) is valid for a l× l× l cube and uses l 3 colors. It is easy to see that
this coloring also works for the points of Z

3.

Lemma 15. Define the colorings C1 = C(i, j,k, l,b1) and C2 = C(i, j,k, l,b2). If 0 ≤
b1 ≤ b2 then C1 and C2 are compatible.

Proof. Analogous to rows and columns, we define towers to be the set of lattice points
for which i, j are fixed and k varies. Under C1, as k increases in a tower, we get the
repeating sequence 0,1,2, . . . , l 3 + b1 − 2, l3 + b1 − 1. Under C2, as k increases in a
tower, we get the repeating sequence 0,1,2, . . . , l 3 +b2−2, l3 +b2−1. The key insight
is that in a tower, under C2, no color is closer to the boundary between C1 and C2 than
if we were to continue using C1. Say we have one point (i1, j1,k1), colored by C1,
and another point (i2, j2,k2), colored by C2, which make the colorings incompatible.
Instead of changing from C1 to C2 at the boundary between them, we could continue
using C1 for all the points and find a point (i3, j3,k3), which makes C1 incompatible
with itself. Since C1 is not incompatible with itself, C1 and C2 must be compatible.

Theorem 16. Say l and m are positive integers that satisfy m ≥ l 3. Define q to be
the least nonnegative integer for which m can be written as a linear combination of
l3, l3 + 1, . . . , l3 + q− 1, l3 + q. There is an (l3 + q)-coloring of Z

2 ×Zm, that is valid
for the l× l× l cube.

Proof. Following the ideas of Theorem 6, we partition Z
2×Zm into copies of Z

2×Zbi ,
where bi can differ in different copies but l 3 ≤ bi ≤ l3 + q for all copies. We color
each copy of Z

2 ×Zbi using the coloring given by Theorem 13. By Lemma 15, these
colorings are compatible, so the total coloring is valid.

Corollary 17. Let l and m be positive integers such that m ≥ l 3(l3 − 1). There is an
(l3 +1)-coloring of Z

2 ×Zm, that is valid for the l× l× l stencil.

Proof. This follows from Theorem 16 and Lemma 1 (setting q = 1).
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Figure 4: The proof of Theorem 21 for l = 5.

6 Lower Bounds

We give lower bounds that prove that our colorings for the square and cube stencils are
either optimal or within one color of being optimal.

Theorem 18. Any valid coloring of the m×n torus for the l× l square stencil requires
l2 +1 colors unless l|m and l|n.

Proof. Consider an m× l subcylinder (the dimension of size m is the one that wraps
around). If our coloring uses at most l 2 colors, then by the pigeon-hole principle there
is some color class of size at least 	m×l

l2

 = 	m

l 
. However, a color class can have size

at most �m×l
l2

� = �m
l � (since two entries in the same color class must be at least l rows

apart). If l|m, these quantities are equal. Otherwise, we need at least l 2 +1 colors. An
analagous argument shows that we need l|n.

Slight variations of this proof lead to the following theorems.

Theorem 19. Any valid coloring of the m× n cylinder for the l × l square stencil
requires l2 +1 colors unless l|n.

Theorem 20. Any valid coloring of Z
2×Zm for the l× l× l cube requires l3 +1 colors

unless l|m.

Now we give a bound on the number of colors needed for star stencils.

Theorem 21. If m > l and n > l, then we need at least l 2 +1 colors to color an m×n
rectangle such that no two points with the same color lie in a (4l−3)-point star.

Proof. It is easy to see that no vertices in a l × l square can receive the same color.
We begin by coloring these all differently. For ease of reference, we will refer to the
vertices as entries of a m×n matrix, where ai j denotes the vertex in the ith row and jth
column.

The only colors available to color entries of column l +1 are those used in column
1. To color entries a1,l+1,a2,l+1, . . . ,al,l+1, we must use each color in the set {1+ kl :
0 ≤ k < l} exactly once. Since (1,1) = 1, we see that (1, l + 1) �= 1. So there exists i
with 2 ≤ i ≤ l and (i, l +1) = 1 (one of the entries denoted by + in the diagram). The
only colors available to color row l +1 are those used in row 1. To color (l +1,2),(l +
1,3), . . . ,(l +1, l) (those entries denoted by * in the diagram), we must use every color
in the set {2,3, . . . , l} exactly once. However, this leaves no color for (l +1,1). Color
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1 cannot be used because (1,1) = 1 and all other colors are already assigned to some
(i, j) with 2 ≤ i ≤ l +1 and 1 ≤ j ≤ l. Thus, we need an additional color for (l +1,1),
so at least (l +1)2 +1 colors are required.

Theorem 22. The coloring given for the (6l−5)-point star is asymptotically the best
possible.

Proof. Every (axis-aligned) cross-section of the coloring for the (6l − 5)-point star
must be a valid coloring for the (4l − 3)-point star. Thus, we have a lower bound
of l2 + 1 colors. We use l(l + 1)+ 1 colors. The ratio of upper and lower bound is
(1+ 1

l−1 ), which approaches 1 as l gets large.

7 Conclusion

We have given colorings for the (4l−3)-point star and the l× l square stencils (for all
l) in the plane, on the cylinder, and on the torus. On the torus, we have proved that the
colorings for the (4l − 3)-point star are within at most 2 colors of optimality. On the
cylinder, they are within at most 1 color of optimality. In the plane all star colorings are
optimal. On the torus and the cylinder, our colorings for the square stencils are within
at most 1 color of optimality. The colorings for square stencils in the plane are optimal.

We have given colorings for the l × l × l cube stencils for Z
3 and Z

2 ×Zm. Both
are optimal. We have also given colorings of Z

3 for the (6l− 5)-point star, which are
asymptotically the best possible.
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