
Annotation-Based Empirical Performance Tuning
Using Orio

Albert Hartono1, Boyana Norris2, and P. Sadayappan1

1Ohio State University, Dept. of Computer Science and Engineering, Columbus, OH 43210
{hartonoa, saday}@cse.ohio-state.edu

2Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL 60439
norris@mcs.anl.gov

Abstract

In many scientific applications, significant time is spent tuning codes for a particular high-
performance architecture. Tuning approaches range from the relatively nonintrusive (e.g., by
using compiler options) to extensive code modifications that attempt to exploit specific archi-
tecture features. Intrusive techniques often result in code changes that are not easily reversible,
which can negatively impact readability, maintainability, and performance on different archi-
tectures. We introduce an extensible annotation-based empirical tuning system called Orio,
which is aimed at improving both performance and productivity by enabling software develop-
ers to insert annotations in the form of structured comments into their source code that trigger a
number of low-level performance optimizations on a specified code fragment. To maximize the
performance tuning opportunities, we have designed the annotation processing infrastructure
to support both architecture-independent and architecture-specific code optimizations. Given
the annotated code as input, Orio generates many tuned versions of the same operation and em-
pirically evaluates the versions to select the best performing one for production use. We have
also enabled the use of the PLuTo automatic parallelization tool in conjunction with Orio to
generate efficient OpenMP-based parallel code. We describe our experimental results involv-
ing a number of computational kernels, including dense array and sparse matrix operations.

1 Motivation
The size and complexity of scientific computations are increasing at least as fast as the improve-
ments in processor technology. Programming such scientific applications is hard, and optimizing
them for high performance is even harder. This situation results in a potentially large gap between
the achieved performance of applications and the peak available performance, with many appli-
cations achieving 10% or less of the peak (see, e.g., [4]). A greater concern is the inability of
existing languages, compilers, and systems to deliver the available performance for the application
through fully automated code optimizations.

Delivering performance without degrading productivity is crucial for the success of scientific
computing. Scientific code developers generally attempt to improve performance by applying one
or more of the following three approaches: manually optimizing code fragments; using tuned li-
braries for key numerical algorithms; and, less frequently, using compiler-based source transforma-
tion tools for loop-level optimizations. Manual tuning is time-consuming and impedes readability

1

and performance portability. Tuned libraries often deliver great performance without requiring
significant programming effort, but then can provide only limited functionality. General-purpose
source transformation tools for performance optimizations are few and have not yet gained popu-
larity among computational scientists, at least in part because of poor portability and steep learning
curves.

2 Related Work
Ideally, a developer should have to specify only a few simple command-line options and then
rely on the compiler to optimize the performance of an application on any architecture. Com-
pilers alone, however, cannot fully satisfy the performance needs of scientific applications, for
at least three reasons. First, compilers must operate in a black-box fashion and at a very low
level, limiting both the type and number of optimizations that can be done. Second, static analysis
of general-purpose languages, such as C, C++, and Fortran, is necessarily conservative, thereby
precluding many possible optimizations. Third, extensive manual tuning of a code may prevent
certain compiler optimizations and result in worse performance on new architectures, causing loss
of performance portability.

An alternative to manual or automated tuning of application codes is the use of tuned libraries.
The two basic approaches to supplying high-performance libraries involve providing a library of
hand-coded options (e.g., [7, 8, 10]) and generating optimized code automatically for the given
problem and machine parameters. ATLAS [25] for a reduced set of LAPACK routines, OSKI [23]
for sparse linear algebra, PHiPAC [2] for matrix-matrix products, and domain-specific libraries
such as FFTW [9] and SPIRAL [20] are all examples of the latter approach. Most automatic tuning
approaches perform empirical parameter searches on the target platform. These automatic or hand-
tuned approaches can deliver performance that can be five times as fast as that produced by many
optimizing compilers [26]. The library approach, however, is limited by the fact that optimizations
are highly problem- and machine-dependent. Furthermore, at this time, the functionality of the
automated tuning systems is quite limited.

General-purpose tools for optimizing loop performance are also available. LoopTool [17] sup-
ports annotation-based loop fusion, unroll/jamming, skewing, and tiling. The Matrix Template
Library [22] uses template metaprograms to tile at both the register and cache levels. A new tool,
POET [27], also supports a number of loop transformations. Other research efforts whose goal,
at least in part, is to enable optimizations of source code to be augmented with performance-
related information include the X language [6] (a macro C-like language for annotating C code),
the Broadway [16] compiler, and telescoping languages [12].

3 Orio Design and Implementation
Orio [18] is an empirical performance-tuning system that takes annotated C source code as in-
put, generates many optimized code variants of the annotated code, and empirically evaluates the
performance of the generated codes, ultimately selecting the best-performing version to use for
production runs. Orio also supports automated validation by comparing the numerical results of
the multiple transformed versions.

2

Annotated C Code Annotations
Parser

Sequence of (Nested)
Annotated Regions

Code
Transformations

Code
Generation

Transformed C
Code

Tuning
Specifications

Empirical
Performance

Evaluation
Search Engine

Optimized C
Code

best performing version

Figure 1: Overview of Orio’s code generation and empirical tuning process.

The Orio annotation approach differs from existing compiler- and annotation-based systems
in the following significant ways. First, through designing an extensible annotation parsing ar-
chitecture, we are not committing to a single general-purpose language. Thus, we can define
annotation grammars that restrict the original syntax, enabling more effective performance trans-
formations (e.g., disallowing pointer arithmetic in a C-like annotation language); furthermore, it
enables the definition of new high-level languages that retain domain-specific information nor-
mally lost in low-level C or Fortran implementations. This feature in turn expands the range of
possible performance-improving transformations. Second, Orio was conceived and designed with
the following requirements in mind: portability (which precludes extensive dependencies on ex-
ternal packages), extensibility (new functionality must require little or no change to the existing
Orio implementation, and interfaces that enable integration with other source transformation tools
must be defined), and automation (ultimately Orio should provide tools that manag all the steps of
the performance tuning process, automating each step as much as possible). Third, Orio is usable
in real scientific applications without requiring reimplementation. This ensures that the signifi-
cant investment in the development of complex scientific codes is leveraged to the greatest extent
possible.

Figure 1 shows a high-level graphical depiction of the code generation and tuning process im-
plemented in Orio. Orio can be used to improve performance by source-to-source transformations
such as loop unrolling, loop tiling, and loop permutation. The input to Orio is C code containing
structured comments that include a simplified expression of the computation, as well as various
performance-tuning directives. Orio scans the marked-up input code and extracts all annotation
regions. Each annotation region is then processed by transformation modules. The code generator
produces the final C code with various optimizations that correspond to the specified annotations.
Unlike compiler approaches, we do not implement a full-blown C compiler; rather, we use a pre-
compiler that parses only the language-independent annotations.

Orio can also be used as an automatic performance-tuning tool. The code transformation mod-
ules and code generator produce an optimized code version for each distinct combination of per-
formance parameter values. Then each optimized code version is executed and its performance
evaluated. After iteratively evaluating all code variants, the best-performing code is picked as the
final output of Orio. Because the search space of all possible optimized code versions can be huge,
a brute-force search strategy is not always feasible. Hence, Orio provides various search heuristics
for reducing the size of the search space and thus the empirical testing time.

3

3.1 Annotation Language Syntax
Orio annotations are embedded into the source code as structured C comments that always start
with /*@ and end with @*/. For example, the annotation /*@ end @*/ is used to indicate
the end of an annotated code region. A simple grammar illustrating the basic syntax of Orio
annotations is depicted in Figure 2. An annotation region consists of three main parts: leader
annotation, annotation body, and trailer annotation. The annotation body can either be empty
or contain C code that possibly includes other nested annotation regions. A leader annotation
contains the name of the code transformation module used to transform and generate the annotated
application code. A high-level description of the computation and several performance hints are
coded in the module body inside the leader annotation. A trailer annotation, which has a fixed form
(i.e., /*@ end @*/), closes an annotation region.

<annotation-region> ::= <leader-annotation> <annotation-body> <trailer-annotation>
<leader-annotation> ::= /*@ begin <module-name> (<module-body>) @*/
<trailer-annotation> ::= /*@ end @*/

Figure 2: Annotation language grammar excerpt.

3.2 Orio Input Example
Figure 3 shows a concrete annotation example that empirically optimizes a C function for the
Blue Gene/P architecture. This is an instance of an AXPY operation, one that computes y =

y + a1x1 + · · ·+ anxn, where a1, . . . , an are scalars and y, x1, . . . , xn are one-dimensional arrays.
The specific AXPY operation considered in this example corresponds to n = 4. The first anno-
tation contains the BGP Align1 directive, which instructs Orio to dynamically load its memory-
alignment optimization module and then generate preprocessor directives, such as pragmas and
calls to memory alignment intrinsics, including a check for data alignment. The main purpose of
these alignment optimizations is to enable the use of the dual floating-point unit (Double Hummer)
of the Blue Gene/P, which requires 16-byte alignment. As discussed later in Section 5.1, even
these simple alignment optimizations can lead to potentially significant performance improve-
ments. This example also shows the use of Orio’s loop transformation module (named Loop)
to optimize the AXPY-4 loop by unrolling and generating OpenMP parallelization directives for
exploiting multicore parallelism. In addition to the simple source transformations in this example,
Orio supports other optimizations, such as register tiling and scalar replacement.

Whereas the BGP Align and Loop annotations in this example guide the source-to-source
transformations, the purpose of the PerfTuning annotation is primarily to control the empirical
performance-tuning process. Details of the tuning specifications for optimizing the AXPY-4 code
on the Blue Gene/P are shown in the right-hand side of Figure 3. The tuning specification contains
data required for building, initializing, and running experiments, including input variable informa-
tion, the search algorithm, performance counting technique, performance parameters values, and

1Architecture-specific annotations are simply ignored when the code is being tuned on an architecture that doesn’t
support them.

4

execution environment details. The tuning specifications can be either integrated in the source code
or defined in a separate file, as in this example.

void axpy4(int N, double *y,
double a1, double *x1, double a2, double *x2,
double a3, double *x3, double a4, double *x4) {

/*@ begin PerfTuning (
import spec axpy4_tune_spec;

) @*/

register int i;

/*@ begin BGP_Align (x1[],x2[],x3[],x4[],y[]) @*/
/*@ begin Loop (
transform Unroll (ufactor=UF, parallelize=PAR)
for (i=0; i<=N-1; i++)

y[i] += a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i];
) @*/

for (i=0; i<=N-1; i++)
y[i] += a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i];

/*@ end @*/
/*@ end @*/
/*@ end @*/

}

spec axpy4_tune_spec {
def build {
arg build_command =
’mpixlc_r -O3 -qstrict -qhot -qsmp=omp:noauto’;

arg batch_command =
’qsub -n 128 -t 20 --env "OMP_NUM_THREADS=4"’;

arg status_command = ’qstat’;
arg num_procs = 128;
}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 10000;
}
def performance_params {
param UF[] = range(1,33);
param PAR[] = [True,False];
}
def input_params {
param N[] = [10,100,1000,10**4,10**5,

10**6,10**7];
}
def input_vars {
decl dynamic double y[N] = 0;
decl dynamic double x1[N] = random;
decl double a1 = random;
decl double a2 = random;
... omitted ...
}
def search {
arg algorithm = ’Exhaustive’;
arg time_limit = 20;
}
}

Figure 3: Orio input example; annotated AXPY-4 source code (left) and tuning specification for
the Blue Gene/P (right).

The annotated AXPY-4 code (left side of Figure 3) uses two performance parameters whose
values are defined in the tuning specification: the unroll factor (UF) and the Boolean variable PAR,
which is used to activate or deactivate OpenMP parallelization. These parameters are used by Orio
to determine at runtime whether it is beneficial to parallelize the loop, that is, whether there is
enough work per thread to offset the OpenMP overhead.

Achieving the best performance for different input problem sizes may require different tuning
approaches; thus, the entire tuning process is repeated for each specified problem size. In the
AXPY-4 example, the search space includes seven different input problem sizes (variable N).

3.3 Annotation Parsing and Code Generation
The Orio system consists of several optimization modules, each implemented as a Python module.
As mentioned in Section 3.2, given the module name in the leader annotation, Orio dynamically
loads the corresponding code transformation module and uses it for both annotation parsing and
code generation. If the pertinent module cannot be found in the transformation modules direc-
tory, an error message is emitted, and the tuning process is terminated. This name-based dynamic
loading provides flexibility and easy extensibility without requiring detailed knowledge or modifi-

5

cation of the existing Orio software. Therefore, varied approaches to code transformations ranging
from low-level loop optimizations for cache performance to composed linear algebra operations
and new specialized algorithms can easily be integrated into Orio.

After parsing the annotation, each module performs a distinct optimization transformation prior
to generating the optimized code. The transformation module can either reuse an existing annota-
tion parser or define new language syntax and a corresponding parser component.

In some cases, the annotation is seemingly redundant, containing a version of the computation
very similar to the original code. As mentioned earlier, we took this approach so that the annotation
language can be defined in a way that enables more effective transformations (through restrictions
or high-level domain information).

Current optimizations supported by Orio span different types of code transformations that are
not provided by production compilers in some cases. Available optimizations include simple loop
unrolling, memory alignment optimization, loop unroll/jamming, loop tiling, loop permutation,
scalar replacement, register tiling, loop-bound replacement, array copy optimization, multicore
parallelization (using OpenMP), and other architecture-specific optimizations (e.g., generating
calls to SIMD intrinsics on Intel and Blue Gene/P architectures).

3.4 Search Space Exploration and Evaluation
As briefly discussed earlier, our empirical tuning approach systematically measures the perfor-
mance costs of automatically generated code variants in order to find the most optimal available
version. In the context of empirical optimization, code variants are alternative, semantically equiv-
alent, implementations of the same computation. Each implementation variant is associated with
a collection of different optimization parameters that correspond to source-to-source code trans-
formations such as unroll factors, tile sizes, and loop permutation order. Hence, each coordinate
in the search space of empirical tuning problem represents a distinct combination of performance
parameter values. The dimension and the size of the search space depend on the total number and
the value ranges of used performance parameters, respectively.

The conceptually straightforward approach to exploring the space of the parameter values is
to use an exhaustive search procedure that is guaranteed to determine the optimal code version.
Normally, however, the size of the search space is too large, making full coverage impractical.
Thus, in addition to supporting exhaustive search, we have implemented several search heuristics.
The simplest search heuristic is a random search, which picks a random coordinate in the search
space at each step and then measures its performance; random search is not guaranteed to return
close-to-optimal results. We have also developed two other search heuristics to effectively narrow
the search space for close-to-optimal performance: a heuristic based on the Nelder-Mead simplex
method [14, 15], a popular non-derivative direct search method for optimization, and simulated
annealing [13]. Similarly to the implementation of Orio’s optimization modules, each search tech-
nique is implemented as an independent Python module in Orio and is dynamically loaded given
only the algorithm’s name as one of the fields in the tuning specification.

In order to improve the quality of the search result further, each search heuristic is enhanced
by applying a local search after the global search completes. The local search compares the best
performance with neighboring coordinates. If a better coordinate is discovered, the local search
continues recursively until no further performance improvement is possible or a user-specified
termination criterion is met.

6

Further pruning of the search space is enabled through user-specified constraints in the tuning
specifications. We use the loop unroll/jamming transformation to make the discussion more con-
crete. Loop unroll/jamming [21] (coupled with scalar replacement) is intended mainly to increase
data reuse at the register level. So, when unroll/jamming is applied to multiple loops, the values of
unroll factors must be such that register locality is maximized while satisfying the register capacity
constraints to avoid unnecessary register spills. Figure 4 shows an example of analytically enforc-
ing register capacity constraints on matrix-matrix multiplication code that is optimized with loop
unroll/jamming, assuming 32 registers. Ui, Uj, Uk are unroll factors for loops i, j, k, respec-
tively. With the specified parameter constraints, the search space of performance parameter values
is radically trimmed down from 32,768 points (i.e., 32 ∗ 32 ∗ 32) to only 65 points. This example
also demonstrates that a set of constraints can also be imposed on input parameters to decide what
input problem sizes to consider.

/*@ begin Loop (
transform UnrollJam(ufactor=Ui)
for (i=0; i<=M-1; i++)

transform UnrollJam(ufactor=Uj)
for (j=0; j<=N-1; j++)
transform UnrollJam(ufactor=Uk)
for (k=0; k<=O-1; k++)

A[i][j] += B[i][k]*C[k][j];
) @*/
for (i=0; i<=M-1; i++)
for (j=0; j<=N-1; j++)
for (k=0; k<=O-1; k++)
A[i][j] += B[i][k]*C[k][j];

/*@ end @*/

def performance_params {
param Ui[] = range(1,33);
param Uj[] = range(1,33);
param Uk[] = range(1,33);
constraint reg_capacity = Ui*Uj+Ui*Uk+Uk*Uj<=32;

}

def input_params {
param M[] = [10,50,100,500,1000];
param N[] = [10,50,100,500,1000];
param O[] = [10,50,100,500,1000];
constraint square_matrices = (M==N) and (N==O);

}

Figure 4: Example of specifying parameter constraints in Orio; annotated code for matrix-matrix
multiplication (left) and constraint specification (right).

Orio also supports parallel search when parallel resources are available, for example, when tun-
ing on the Blue Gene/P. The parallel Orio driver concurrently executes multiple independent code
variants in the same parallel job. After Orio submits a parallel job, each node in the target ma-
chine executes a distinct generated code variant to collect the code performance. The performance
results are collected and stored in a temporary file, which is later processed by Orio to determine
the best performing variant. Figure 3 has an example of using parallel search by specifying the
number of nodes to use (per job) with the num procs variable. The remaining fields used by the
parallel search are the batch command and the status command fields, which specify how
Orio should submit a parallel job and query its status, respectively.

4 PLuTo-Orio Integration
A number of source-to-source transformation tools for performance optimization exist. Using
these tools to achieve (near) optimal performance on different architectures, however, is still a
nontrivial task that requires significant architectural and compiler expertise. By combining code
transformation tools with an empirical tuning system, such as Orio, we can reduce the amount of
manual effort and automatically determine the transformations that result in the best performance.
We show in this section how Orio has been extended with an external transformation program,

7

Loop Code
Polyhedral

Transformations
(PLuTo)

Performance
Parameters Code Module Parser Performance

Parameters Values

Hotspots
Identification

(gprof)

Hotspot Loop Nests

Syntactic
Transformations

(Orio)

Annotations
Insertion

Transformed C Code
with Annotated Hotspots

Transformed C
Code

Figure 5: Integration of PLuTo into Orio’s code transformation module.

called PLuTo [3]. This integration also demonstrates the easy extensibility of Orio and the ability
to leverage other source transformation approaches.

PLuTo is a source-to-source automatic transformation tool aimed at optimizing a sequence of
nested loops for data locality and coarse-grained parallelism simultaneously. PLuTo employs a
polyhedral model of arbitrary loop nests, where the dynamic instance (iteration) of each statement
is viewed as an integer point in a well-defined space called the statement’s polyhedron. This state-
ment representation and a precise characterization of data dependences enable PLuTo to construct
mathematically correct complex loop transformations. PLuTo’s polyhedral-based transformations
result in improved cache locality and loops parallelized for multicore architecture.

Figure 5 outlines the overall structure of the PLuTo-Orio integrated system, which is imple-
mented as a new optimization module in Orio. In addition to the loop code to be optimized, the
module parses performance parameters, which include tile sizes, unroll factors, and loop order
(permutation), as well as several Boolean values for triggering OpenMP parallelization, scalar re-
placement, and autovectorization. Using these parameter values, PLuTo then performs polyhedral
transformations (e.g., two-level tiling and OpenMP parallelization) on the input loop code. The re-
sulting generated code is subsequently passed to the widely available profiling tool gprof [11] for
hotspot detection. The identified hotspot loop nests are then marked with Orio’s performance anno-
tations for complementary syntactic transformations (e.g., loop permutation, loop unroll/jamming,
scalar replacement, and explicit autovectorization). Finally, Orio optimizes the annotated hotspots
as described in Section 3.

PLuTo also performs syntactic loop unroll/jamming as a postprocessing pass. The target loops,
however, are limited to innermost loops with a maximum depth of two (i.e., 1-D unrolling and
2-D unroll/jamming). We therefore choose to use the loop unroll/jamming transformation already
available in Orio, which is more flexible because it can be applied to loop nests of depths larger
than two.

At present Orio does not employ any data dependency analysis when performing syntactic
transformations. Therefore, there is no guarantee that the code generated after syntactic transfor-
mations is correct. Hence, the tuning process using the integrated PLuTo-Orio system is currently
semi-automatic—user involvement is required to decide whether it is safe to apply a syntactic
transformation on an identified hotspot.

8

5 Experimental Results
In this section, we discuss the performance results of several experiments on a multicore Intel
Xeon workstation and a Blue Gene/P (both at Argonne). The workstation has dual quad-core
E5462 Xeon processors (8 cores total) running at 2.8 GHz (1600 MHz FSB) with 32 KB L1 cache,
12 MB of L2 cache (6 MB shared per core pair), and 2 GB of DDR2 FBDIMM RAM, running
Linux kernel version 2.6.25 (x86-64). Each compute node of the Blue Gene/P is equipped with
four 850MHz IBM PowerPC 450 processors with a dual floating-point unit and 2 GB total memory
per node, private L1 (32 KB) and L2 (4 MB) caches, a shared L3 cache (8 MB), and running a
proprietary lightweight operating system. We used version 10.1 of the Intel and version 9.0 of the
IBM XL C/C++ V9.0 compilers on the Xeon and Blue Gene/P, respectively. Because of space
considerations, here we discuss a limited number of computational kernels; more performance
results for different computations are available at the Orio project website [18].

5.1 Sequence of Linear Algebra Operations
In this experiment, we tuned the performance of the AXPY-4 operation (see Figure 3) on a single
node of the Blue Gene/P machine using the IBM xlc compiler. We measured the performance for
two scenarios: using a single core per node and using all four cores. The results are shown in
Figures 6(a) and 6(b), respectively. The single-core scenario was compiled with the following op-
tions: -O3 -qstrict -qarch=450d -qtune=450 -qhot -qsmp=noauto; the mul-
ticore scenario differs in the use of -qsmp=auto for the non-Orio versions. The parallel Orio ver-
sion contains OpenMP parallelization directives in the generated code, thus necessitating the use
of the -qsmp=omp:noauto compiler option. Included are performance numbers for four code
variants: a simple loop implementation without any library calls (labeled “Compiler-optimized”),
two BLAS-based implementations that use Goto BLAS [10] and the ESSL [8] libraries, and the
Orio-tuned version.

0

200

400

600

800

1000

1200

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Problem size (N)

M
flo

ps
/s

ec

Compiler-optimized
ESSL
Goto-BLAS
Orio

(a) Sequential (single core)

0

200

400

600

800

1000

1200

1400

1600

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Problem size (N)

M
flo

ps
/s

ec

Compiler-optimized
ESSL
Goto-BLAS
Orio

(b) Parallel (four cores)

Figure 6: Performance of AXPY-4 operations on the Blue Gene/P.

The performance results shown in Figure 6 indicate that the code tuned by Orio consistently
outperforms the other three versions for both the sequential and parallel cases. We observe that
even for a simple algebraic operation, such as the composed AXPY routines, the compiler alone is
unable to yield performance comparable to the empirically tuned version. Moreover, implementa-
tions that rely on calls to multiple tuned library routines (e.g., Goto BLAS and ESSL) suffer from

9

Aval

Aind

Aptr

for (i=0; i<num_rows; i++)
for (j=Aptr[i]; j<Aptr[i+1]; j++)

y[i] += Aval[j]*x[Aind[j]];

(a) (b)
Figure 7: (a) Compressed sparse row (CSR) format; (b) Basic implementation of CSR-based
SpMV.

loss of both spatial and temporal localities, resulting in inferior memory performance.

5.2 Sparse Matrix Computations
In this section we examine the effectiveness of Orio in optimizing key computations in PETSc [1],
a toolkit for the parallel numerical solution of partial differential equations, by empirically tuning
one of its heavily used kernels, sparse matrix-vector multiplication (SpMV). SpMV dominates the
performance of various scientific applications; yet, traditional implementations of sparse kernels
exhibit relatively poor performance because of the use of indirect addressing for accessing the
matrix data elements.

The SpMV operation computes ∀Ai,j
#= 0 : yi ← yi + Ai,j · xj , where A is a sparse matrix, and

x, y are dense vectors. Each element of A is used precisely once, and element reuse is possible
only for x and y. Thus, to optimize SpMV, one should use compact data structures for A and try to
maximize temporal reuse of x and y. One of the most commonly used data structures for storing a
sparse matrix is compressed sparse row (CSR) storage [24], illustrated in Figure 7(a). Elements in
each row of A are packed together in a dense array, Aval, and a corresponding array of integers
Aind stores the column indices. The Aptr array designates where each sparse row begins in
Aval and Aind. An implementation of SpMV using CSR storage is shown in Figure 7(b).

PETSc’s implementation of SpMV used in this experiment exploits matrix structure by using
inodes, which represent rows with identical nonzero structure. PETSc detects inodes automatically
in arbitrary sparse matrices. For example, the sparse matrix shown in Figure 7(a) contains three
inodes. The first inode is of size two because it holds two adjacent rows (i.e., the first and the
second rows) with the same nonzero structure. The second inode contains three consecutive rows
with identical nonzero structure, and the last inode has only a single row. Knowing the properties
of each inode at runtime enables maximum reuse of vector x since multiple elements of x can
be loaded and used exactly once for all rows in the same inode structure. To accomplish this,
one must use a register-blocking transformation. To optimize the inode-based SpMV routine,
we incorporated a new transformation module inside Orio that implements various optimization
strategies including register blocking, SIMDization, memory alignment optimization, loop-control
optimization, accumulator expansion, and thread-level parallelization (with OpenMP). We then
used Orio to automatically select the best version of the optimized inode SpMV. Only the outer
loop that iterates over inodes was parallelized by using OpenMP.

To evaluate the performance of the tuned SpMV routine, we conducted the experiment using
a 2-D driven cavity flow simulation application [5] (SNES ex27 in PETSc), on both the Xeon
and Blue Gene/P. The “Compiler-optimized” label is used as a base case that represents the per-
formance of the naive implementation of SpMV (shown in Figure 7(b)) optimized by the native
compiler. We also tested the performance of the hand-tuned (by PETSc developers) SpMV code,

10

which is included in PETSc releases.
Figure 8 shows the performance results on the Intel Xeon. The problem size is the number of

grid points in the x and y directions, not the size of the sparse input matrix. The matrix dimension
is based on the grid size and the number of field components computed for each grid point; for ex-
ample, an 8×8 problem involves sparse matrices of dimension 900 with 17,040 nonzero entries. In
this experiment, we ran in three multicore modes: SMP (one MPI process, eight threads/process),
dual (four MPI processes, two threads/process), and virtual node or VN (eight MPI processes, one
thread/process). The code tuned by Orio consistently outperforms the others. Furthermore, the
performance of the hand-tuned code is almost equivalent to that of the icc-optimized simple code.
Performance differences between the Orio version and the hand-tuned version become more sig-
nificant as more threads per process are employed to facilitate OpenMP parallelization. The SMP
and VN results show that optimizations using loop-level parallelism (through OpenMP) achieve
much better performance than using MPI coarse-grained parallelism.

0

1000

2000

3000

4000

5000

6000

7000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(a) SMP: p = 1, t/p = 8

0

200

400

600

800

1000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(b) Dual: p = 4, t/p = 2

0

100

200

300

400

500

600

700

800

900

1000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(c) VN: p = 8, t/p = 1

Figure 8: Performance of inode SpMV on eight-core Intel machine; p is the number of processes,
and t/p is the threads per process.

The Blue Gene/P results in Figure 9 again show that empirical optimization using Orio pro-
duces the best performance for all cases. On this architecture, the performance gap between the
xlc-optimized and the hand-tuned codes is now larger than in the Intel experiment. Similarly, by
exploiting thread-level parallelism, the Orio-optimized code performs better than the hand-tuned
version when the number of threads per process increases and the number of nodes decreases. For
the single-thread cases (VN mode), thread-level parallelism is not exploited; nevertheless, the Orio
version still performs better than the other two choices.

5.3 Evaluation of the PLuTo-Orio Integrated System
This section discusses the performance evaluation of the integrated PLuTo-Orio system (discussed
in Section 4) on the multicore Intel Xeon by using a number of application kernels that are non-
trivial to optimize and parallelize. We compare the performance of the code tuned by Orio with
the base code and the PLuTo-generated codes. The PLuTo code was obtained by running the base
code with PLuTo-0.3.0 [19] using --tile to employ loop tiling for L1 cache, --l2tile to
employ loop tiling for L2 cache, and --unroll to employ loop unrolling, and for parallel code
generation, an additional --parallel option. We used PLuTo’s default tile sizes (L1: 32x32
or 32x32x32; L2: 256x256 or 256x256x256) and default unroll factors (64 for 1-D unrolling and
8x8 for 2-D unroll/jamming). All codes were compiled with the Intel C compiler using the -O3

11

0

200

400

600

800

1000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(a) 1 node, SMP mode

0

200

400

600

800

1000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(b) 1 node, Dual mode

0

200

400

600

800

1000

1200

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(c) 1 node, VN mode

0

1000

2000

3000

4000

5000

6000

7000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(d) 8 nodes, SMP mode

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(e) 8 nodes, Dual mode

0

1000

2000

3000

4000

5000

6000

8x8 16x16 32x32 64x64 96x96 128x128
Problem size

M
flo

ps
/s

ec

Compiler-optimized
Hand-tuned
Orio

(f) 8 nodes, VN mode

Figure 9: Performance of inode SpMV on Blue Gene/P for 1 and 8 nodes.

optimization flag to enable auto-vectorization and other advanced optimizations, and -parallel
(or -openmp in the case of manual OpenMP parallelization) to enable code parallelization.

In the following sections, we refer to the icc-optimized base code as “ICC,” the PLuTo-generated
code with L1 tiling and unroll/jamming as “PLuTo (L1 tiling),” and the PLuTo-generated code with
L1 and L2 tilings and unroll/jamming as “PLuTo (L1+L2 tiling).” The code tuned by Orio is re-
ferred to as “PLuTo+Orio.”

5.3.1 2-D Finite-Difference Time-Domain Method for Computational Electromagnetics

We consider the two-dimensional finite difference time domain (FDTD) algorithm, a popular
method for solving the time-dependent Maxwell’s equations in the context of computational

for(t=0; t<tmax; t++) {
for (j=0; j<ny; j++) ey[0][j] = t;
for (i=1; i<nx; i++)
for (j=0; j<ny; j++)

ey[i][j] -= 0.5*(hz[i][j] - hz[i-1][j]);
for (i=0; i<nx; i++)
for (j=1; j<ny; j++)

ex[i][j] -= 0.5*(hz[i][j] - hz[i][j-1]);
for (i=0; i<nx; i++)
for (j=0; j<ny; j++)

hz[i][j] -= 0.7*(ex[i][j+1] - ex[i][j]
+ ey[i+1][j] - ey[i][j]);

}

Figure 10: 2-D FDTD code.

electrodynamic problems. As shown in Figure 10,
the 2-D FDTD method is implemented as an outer
iteration over time containing four imperfectly
nested loops. The arrays ex and ey denote the elec-
tric field components, and the array hz denotes the
magnetic field.

The performance of the sequential 2-D FDTD
code for tmax = 500 and nx = ny is shown
in Figure 11(a). The base code optimized by icc
alone performs better than PLuTo for small prob-
lem sizes since all input arrays fit in the L2 cache
(insufficient computation to offset PLuTo’s tiling
overhead). As the array sizes increase, the lack of data reuse impairs the base code’s performance,
whereas the PLuTo performance remains about the same. When the input arrays are small, Orio
discovers that applying PLuTo’s polyhedral transformations is not beneficial, and therefore it em-
ploys only its syntactic transformations on the original FDTD code. For large problem sizes, Orio

12

exploits some of the PLuTo’s code transformations and enhances these further with its syntactic
optimizations, resulting in performance consistently and significantly higher than both the base
and PLuTo codes (up to 86% over PLuTo).

Figure 11(b) shows the multicore performance obtained for tmax = 500 and nx = ny =

2000. The results indicate that whereas icc is unable to autoparallelize the code, PLuTo detects the
existence of pipelined parallelism and then successfully parallelizes the code. Locality-exploiting
optimizations by Orio additionally improve the PLuTo performance by up to 78%. Moreover,
we observe that because of memory contention between the two quad-core Intel processors, the
speedup of both the PLuTo and Orio codes slightly decreases when the number of cores used is
greater than four.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

125 250 500 1000 2000 4000
Problem size (N)

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
ICC

(a) Sequential (T=500)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8
Cores

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
ICC

(b) Parallel (T=500, N=2000)

Figure 11: 2-D FDTD performance on an eight-core Intel Xeon.

5.3.2 3-D Gauss-Seidel Successive Overrelaxation Method

Figure 12 shows the 3-D Gauss-Seidel computation, sometimes referred to as successive dis-
placement method, indicating the dependence of the iterations on the ordering. If the ordering is

for (t=0; t<=T-1; t++)
for (i=1; i<=N-2; i++)
for (j=1; j<=N-2; j++)

A[i][j] = (A[i-1][j-1] + A[i-1][j]
+ A[i-1][j+1] + A[i][j-1] + A[i][j]
+ A[i][j+1] + A[i+1][j-1] + A[i+1][j]
+ A[i+1][j+1]) / 9.0;

Figure 12: 3-D Gauss-Seidel code

changed, the components of the new iterations will
change as well.

Figure 13(a) contains the sequential perfor-
mance results for T = 500, which show that apply-
ing PLuTo’s polyhedral tiling on the original code
always delivers performance boosts, which range
from 126% to 142%. When using PLuTo, perform-
ing two-level tiling (for both L1 and L2 caches) yields 13% lower performance than performing
only L1 tiling. This is also reflected in the best sequential code found by Orio, where one-level
tiling (for L1 cache only) is always performed. The sequential speedup obtained from tuning the
PLuTo code with Orio is significant, ranging from 51% to 133%.

The parallel performance results for T = 500 and N = 4000 are shown in Figure 13(b). Again
we observe that icc failed to parallelize the code, whereas PLuTo was able to parallelize it and
Orio improved the performance of the one-level tiled PLuTo code further by up to 128% (and up
to 548% for the two-level tiled PLuTo code). We observed that tiling over both L1 and L2 can
result in worse performance than L1-only tiling because the number of tiles can be smaller than
the number of cores.

13

0

500

1000

1500

2000

2500

3000

3500

125 250 500 1000 2000 4000 8000
Problem size (N)

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
Pluto (L1+L2 tiling)
ICC

(a) Sequential (T=500)

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8
Cores

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
Pluto (L1+L2 tiling)
ICC

(b) Parallel (T=500, N=4000)

Figure 13: 3-D Gauss-Seidel performance on eight-core Intel machine.

5.3.3 LU Factorization

LU factorization or decomposition is a numerical method for the solution of linear systems

for (k=0; k<=N-1; k++) {
for (j=k+1; j<=N-1; j++)
A[k][j] /= A[k][k];

for(i=k+1; i<=N-1; i++)
for (j=k+1; j<=N-1; j++)

A[i][j] -= A[i][k]*A[k][j];
}

Figure 14: LU decomposition code.

of equations; a simple implementation is shown in
Figure 14.

The sequential performance results are shown
in Figure 15(a). Similarly to the 2-D FDTD re-
sults, the icc-optimized code is more efficient than
the PLuTo-generated codes when the input arrays
are small and fit in the L2 cache. Because of bet-
ter data locality, however, the performance of the
PLuTo-tiled codes is better than that of the base code as the input arrays get larger. Consequently,
Orio employs PLuTo’s polyhedral transformations only for large input sizes prior to applying its
own syntactic transformations. Compared to the two PLuTo codes, the Orio-tuned code yields
performance improvements ranging between 26% and 277%.

The parallel performance results shown in Figure 15(b) were obtained for N = 4000. We
observe that icc is not able to parallelize the code, whereas PLuTo achieves higher performance
by exploiting multicore parallelism. Furthermore, both PLuTo-generated codes have comparable
performance, with slightly better scalability exhibited by the single-level tiled code. Orio further
improved the performance of the PLuTo-generated versions by a factor of 51% to 120%.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

125 250 500 1000 2000 4000 8000
Problem size (N)

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
Pluto (L1+L2 tiling)
ICC

(a) Sequential

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8
Cores

M
flo

ps
/s

ec

Pluto+Orio
Pluto (L1 tiling)
Pluto (L1+L2 tiling)
ICC

(b) Parallel (N=4000)

Figure 15: LU Decomposition performance on eight-core Intel machine.

14

6 Conclusions and Future Work
We have described the design and implementation of Orio, an extensible Python software system
for defining annotation-based performance-improving transformations. Our experiments with a
number of different types of computations on two different architectures show that Orio can deliver
performance improvements when used alone or in conjunction with other source transformation
tools.

Orio is a new tool under active development; future work includes providing support for an-
notating and generating Fortran code, defining new annotation languages and corresponding trans-
formation modules, (e.g., using matrix notation for linear algebra operations), and integrating with
other source transformation tools through new optimization modules.

Acknowledgments. Wewould like to thank Uday Bondhugula of Ohio State University for many
productive discussions and his valuable help with PLuTo. This work was supported in part by the
U.S. Dept. of Energy under Contract DE-AC02-06CH11357.

References
[1] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.

Smith, and H. Zhang. PETSc Users Manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne
National Laboratory, 2004.

[2] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: A
portable, high-performance, ANSI C coding methodology. In International Conference on Supercom-
puting, pages 340–347, 1997.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral
program optimization system. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2008.

[4] J. Carter, L. Oliker, and J. Shalf. Performance evaluation of scientific applications on modern parallel
vector systems. In M. J. Daydé, J. M. L. M. Palma, A. L. G. A. Coutinho, E. Pacitti, and J. C. Lopes,
editors, VECPAR, volume 4395 of Lecture Notes in Computer Science, pages 490–503, Germany,
2006. Springer.

[5] T. S. Coffey, C. T. Kelley, and D. E. Keyes. Pseudo-transient continuation and differential-algebraic
equations. SIAM J. Sci. Comput., 25(2):553–569, 2003.

[6] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou, A. Cohen, M. J. Garzarán, D. Padua, and
K. Pingali. Language for the compact representation of multiple program versions. In Proceedings
of Languages and Compilers for Parallel Computing (LCPC05), volume 4339 of Lecture Notes in
Computer Science, pages 136–151. Springer, Germany, 2006.

[7] J. J. Dongarra, J. D. Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra subpro-
grams. ACM Trans. Math. Soft., 16:1–17, 1990.

[8] Engineering Scientific Subroutine Library (ESSL) and parallel ESSL. www-03.ibm.com/
systems/p/software/essl.html, 2006.

15

[9] M. Frigo. FFTW: An adaptive software architecture for the FFT. In Proceedings of the ICASSP
Conference, volume 3, page 1381, 1998.

[10] K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS. Technical
Report TR-2006-23, The University of Texas at Austin, Department of Computer Sciences, 2006.

[11] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution profiler. SIGPLAN
Not., 39(4):49–57, 2004.

[12] K. Kennedy et al. Telescoping languages project description. telescoping.rice.edu, 2006.

[13] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi. Optimization by simulated annealing. Science, 220:671–
680, 1983.

[14] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties of the Nelder-
Mead simplex method in low dimensions. SIAM J. Optimization, 9:112–147, 1998.

[15] R. M. Lewis, Michael, and W. Trosset. Direct search methods: Then and now. Journal of Computa-
tional and Applied Mathematics, 124:200–0, 2000.

[16] C. Lin and S. Z. Guyer. Broadway: A compiler for exploiting the domain-specific semantics of soft-
ware libraries. Proceedings of the IEEE, 93(2):342–357, July 2005.

[17] J. Mellor-Crummey, R. Fowler, G. Marin, and N. Tallent. HPCVIEW: A tool for top-down analysis of
node performance. The Journal of Supercomputing, 23(1):81–104, Aug 2002.

[18] Orio project. trac.mcs.anl.gov/projects/performance/orio, 2008.

[19] The PLuTo automatic parallelizer. sourceforge.net/projects/pluto-compiler, 2008.

[20] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. In Proceedings of the IEEE, Special Issue on Program Generation,
Optimization, and Platform Adaptation, volume 93, pages 216–231, Feb. 2005.

[21] V. Sarkar. Optimized unrolling of nested loops. Int. J. Parallel Program., 29(5):545–581, 2001.

[22] J. G. Siek and A. Lumsdaine. A rational approach to portable high performance: The Basic Linear
Algebra Instruction Set (BLAS) and the Fixed Algorithm Size Template (FAST) library. In Parallel
Object Oriented Scientific Computing. ECOOP, 1998.

[23] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse matrix kernels.
In Proceedings of SciDAC 2005, volume 16 of Journal of Physics: Conference Series, pages 521–530.
Institute of Physics Publishing, June 2005.

[24] R. W. Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis, 2003. Chair-James
W. Demmel.

[25] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In Supercomputing
’98: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (CDROM), pages 1–27.
IEEE Computer Society, 1998.

[26] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

16

[27] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET: Parameterized optimizations for
empirical tuning. In Proceedings of the Parallel and Distributed Processing Symposium, 2007, pages
1–8. IEEE Computer Society, March 2007.

17

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (”Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf
of the Government.

18

