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ABSTRACT
In the context of simulating the frictional contact dynam-

ics of large systems of rigid bodies, this paper reviews a novel
method for solving large cone complementarity problems by
means of a fixed-point iteration algorithm. The method is
an extension of the Gauss-Seidel and Gauss-Jacobi methods
with overrelaxation for symmetric convex linear complementar-
ity problems. Convergent under fairly standard assumptions, the
method is implemented in a parallel framework by using a single
instruction multiple data computation paradigm promoted by the
Compute Unified Device Architecture library for graphical pro-
cessing unit programming. The framework supports the analysis
of problems with a large number of rigid bodies in contact. Sim-
ulation thus becomes a viable tool for investigating the dynamics
of complex systems such as ground vehicles running on sand,
powder composites, and granular material flow.

Introduction
Approximating the time evolution of a multibody system in

the presence of friction and contact/impact phenomena through
numerical simulation continues to be a challenging task. For in-
stance, results reported in [1] indicate that the most widely used

∗Address all correspondence to this author.

commercial software package for multibody dynamics simula-
tion has significant difficulties in handling the simple problem
of a collection of balls falling in a box, whenever the number
of balls becomes larger than 50; in fact, the problem becomes
practically intractable when the number of bodies becomes larger
than 100. Presented here is an algorithm that can robustly and
efficiently approximate the dynamics of rigid bodies undergo-
ing frictional contact [2]. Posing challenges of its own, the case
of deformable frictional contact is extensively discussed in [3, 4]
and falls outside the scope of this work.

Two approaches are most often considered when simulat-
ing the dynamics of a multibody system with frictional contact.
First is the class of so-called penalty methods, where it is as-
sumed that every time two rigid bodies come in frictional contact,
the interaction can be represented by a collection of stiff springs
combined with damping elements that act at the interface of the
two bodies [5–8]. Implementing these regularization approaches
requires little effort beyond that usually associated with devel-
oping a multibody dynamics simulation code. Furthermore, this
methodology can easily accommodate complex frictional con-
tact mechanisms, as it allows for a large number of “tuning” pa-
rameters that, in general, can be adjusted to control the dynam-
ics of the frictional contact interaction. What has prevented the
widespread use of this solution is the small step-size at which the
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numerical integration formula, because of stability limitations, is
able to advance the simulation. This drawback is related to the
stiff spring elements artificially included in the model. Most of
the time, this step-size limitation is counterbalanced by the use of
implicit integration formulas, a proposition that typically comes
at a price as it requires the solution of a discretization nonlinear
system at each integration time-step. This in turn leads to a heavy
computational burden for scenarios with a large number of active
frictional contact events.

A second approach, and the one pursued in this work, re-
lies on a different mathematical framework capable of handling
applications with hundreds of thousands of frictional contact
events. The algorithms in this class draw on time-stepping proce-
dures that produce weak solutions of the differential variational
inequality (DVI) that describes the time evolution of rigid bodies
with collision, contact, and friction. The DVI as a problem for-
mulation was recently introduced in full generality and classified
by differential index [9], though earlier numerical approaches
based on DVI formulations do exist [10–12]. Recent work on
time-stepping schemes has included both acceleration-force lin-
ear complementarity problem (LCP) approaches [13–15] and
velocity-impulse LCP-based time-stepping methods [16–19].
The LCPs, obtained as a result of the introduction of inequal-
ities in time-stepping schemes for DVI, coupled with a poly-
hedral approximation of the friction cone, must be solved at
each time step in order to determine the system state configu-
ration as well as the Lagrange multipliers associated with the
frictional contact problem [11, 16]. If the simulation entails a
large number of contacts and rigid bodies, as is the case of part
feeders, packaging machines, and granular flows, the computa-
tional burden of classical LCP solvers can become significant.
Indeed, a well-known class of numerical solutions for LCPs is
based on simplex methods, also known as direct or pivoting meth-
ods [20]; however, these methods may exhibit exponential worst-
case complexity [21]. They may be impractical even for prob-
lems involving as little as a few hundred bodies when friction
is present [22, 23]. Further complicating the numerical solution,
since the three-dimensional Coulomb friction case leads to a non-
linear complementarity problem (NCP), the use of a polyhedral
approximation to morph the NCP into an LCP introduces artifi-
cial anisotropy, which affects friction because friction cones be-
come faceted friction pyramids [15–17]. This discrete and finite
approximation of friction cones is one of the reasons for the large
dimension of the problem that needs to be solved in multibody
dynamics with frictional contact.

In order to circumvent the limitations imposed by the use
of classical LCP solvers and the limited accuracy associated
with polyhedral approximations of the friction cone, a parallel
fixed-point iteration method with projection on a convex set is
proposed, which can directly solve large cone complementar-
ity problems with low computational overhead. The method is
based on a time-stepping formulation that solves at every step a

cone constrained optimization problem [24]. The time-stepping
scheme has been proved to converge in a measure differential
inclusion sense to the solution of the original continuous-time
DVI. For the proposed approach, about 80% of the computa-
tional effort in simulating frictional contact dynamics is spent
solving the cone complementarity problem (CCP). The goal of
this work is to solve the CCP in parallel by using commodity
high-performance computing hardware. Specifically, a method-
ology is proposed that hinges on the use of parallel computa-
tional resources available on NVIDIA’s graphical processing unit
(GPU) cards, which can currently handle 12,228 live computa-
tional threads simultaneously on the GeForce 8800 series. Tap-
ping into this massively parallel computational resource has been
facilitated by NVIDIA’s sharing of a well-integrated application
programming interface supported by the Compute Unified De-
vice Architecture (CUDA) library [25].

Formulation of the Multibody Dynamics with Frictional
Contact Problem

The equations that govern the time evolution of a multibody
system can be expressed in the form (see, for instance, [26])

q̇ = L(q)v
Mv̇ = fA (t,q,v) , (1)

where q =
[
rT

1 ,!T
1 , . . . ,rT

nb
,!T

nb

]T ∈ R6nb are generalized posi-
tions, v =

[
ṙT

1 , "̄T
1 , . . . , ṙT

nb
, "̄T

nb

]T ∈ R6nb are generalized veloc-
ities, and nb represents the number of bodies in the system. The
matrix M is the generalized mass matrix, and fA (t,q,v) repre-
sents the vector of generalized applied forces. The convention
used here is that any symbol in bold represents a vector or matrix
quantity, and an overbar represents a vector quantity represented
in the local, body-fixed reference frame associated with a body
that is inferred from the context.

The formulation of the equations of motion draws on the
so-called absolute, or Cartesian, representation of the attitude of
each rigid body in the system. For each body j, its orientation
is described by a set of three Euler angles, ! j ∈ R3, following
the 3-1-3 local rotation sequence (see, for instance, [26]). The
rate at which each body changes its orientation is captured by
the local angular velocity "̄ j ∈ R3. The location of each body
is uniquely determined by a position vector r j = [x j,y j,z j]T that
specifies where the body-fixed centroidal reference frame is lo-
cated. The translational velocity of the body is simply ṙ j, where
an overdot represents time differentiation. With this set of gen-
eralized coordinates, the mass matrix M remains constant and
diagonal between any realigning of a body-fixed centroidal ref-
erence frame, which can potentially be employed to avoid Euler
angles singularities. Also note that, since for each body j there
is a locally nonsingular matrix B(! j) such that "̄ j = B(! j)!̇ j , the
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operator L(q) that relates the time derivative of the level-zero
generalized coordinates to the level-one generalized coordinates
is generally not the identity matrix. Note that no bilateral con-
straints are present in the current formulation. This case is dis-
cussed in [2, 27], and a paper presenting a parallel methodology
for the general case of bilateral and unilateral constraints is forth-
coming.

Two rigid bodies should not penetrate, and, if they are in
contact, there should be friction acting at the interface. In order to
enforce the nonpenetration constraint, a gap function #(q) ∈ R
is assumed to exist and satisfy

#(q) =






> 0 if the bodies are separated,
= 0 if the bodies touch each other,
< 0 if the bodies are interpenetrating.

(2)

For such a function, the nonpenetration constraint becomes
#(q) ≥ 0. An example of such a mapping is the signed distance
function [28], which, when the bodies are smooth and convex,
is differentiable at least up to some value of the interpenetra-
tion [29]. For most cases, even simple ones involving the relative
position of two spheres, a differentiable signed distance func-
tion cannot be defined for certain configurations q. The fact that
#(q) can be differentiably defined only on a neighborhood of
the set #(q) ≥ 0 can be accommodated at the cost of making
the analysis substantially more involved [30]. This approach will
not be used here. In addition, for piecewise smooth bodies, the
signed distance function, which is usually the first choice of a gap
function, is nonsmooth even when the bodies are not penetrating
each other [31]. For polyhedral bodies, this difficulty can be cir-
cumvented by writing the gap function as the maximum between
basic contact configurations gap functions. In three dimensions,
such configurations are corner-on-face and nonparallel edge-on-
edge. The nonpenetration constraint can be handled, in the con-
text of the time-stepping scheme (6–9), by the appropriate defi-
nition of the active set A to include not only active contacts but
also active basic contact configuration gap functions [31]. For
sufficiently small penetration, without loss of generality, one can
make a differentiability of geometrical constraint assumption:
Any contact is described by a gap function #(q) that is twice
continuously differentiable. For an overwhelming majority of
applications, when one deals with convex geometries and with
suitably small numerical integration step-sizes, this assumption
is easily verified.

The friction model used here is the Coulomb model, which
leads to frictional conic constraints regarded as an extension of
complementarity models discussed in [16, 17]. If the configu-
ration of the system q is such that a contact i is active, that is,
#i(q) = 0, then a normal force and a tangential force are going
to act on each of the two bodies at the contact point. Denoting
A and B the two bodies in contact, let n i be the normal vector at

the contact pointing toward the exterior of the first body, that is,
body A. Let ui and wi be two vectors in the contact plane such
that ni,ui,wi ∈ R3 are mutually orthonormal vectors. Although
they typically depend on q, this dependency is not explicitly in-
dicated, in order to keep the notation simple.

The frictional contact force is impressed on the system by
means of multipliers $̂i,n ≥ 0, $̂i,u, and $̂i,w, which lead to the
normal component of the force F i,N = $̂i,nni and the tangential
component of the force F i,T = $̂i,uui + $̂i,wwi.

The Coulomb model consists of the following constraints:

$̂i,n ≥ 0, #i(q) ≥ 0, #i(q)̂$i,n = 0,

µî$i,n ≥
√
$̂2

i,u + $̂2
i,w , ||vi,T ||

(
µi$̂i,n −

√
$̂2

i,u + $̂2
i,w

)
= 0,

〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T ||

where vi,T is the relative tangential velocity at contact i. The
magnitude of the friction force depends on the friction coefficient
µi ∈ R+, which typically has a value between 0 and 1 for most
materials, and is instrumental in linking the magnitude of the tan-
gential and normal forces through a constitutive type equation 1.

The first part of the constraint can be restated as

Fi = Fi,N + Fi,T = $̂i,nni + $̂i,uui + $̂i,wwi ∈ C , (3)

where C is a cone in three dimensions, whose slope is tan−1 µi.
If one defines by 〈 , 〉 the inner product of two vectors, the con-
straint 〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T || requires that the tangential
force be opposite to the tangential velocity. This results in the
friction force being dissipative. In fact, an equivalent convenient
way of expressing this constraint is by using the maximum dis-
sipation principle ($̂i,u, $̂i,w) = argmin√

$̂2
i,u+$̂2

i,w≤µi$̂i,n

vT
i,T (̂$i,uui + $̂i,wwi)

[12, 32]. For this minimization problem, it is relatively straight-
forward to establish a connection between the first-order neces-
sary KKT conditions [33] and the Coulomb model above. Effec-
tively, the condition in this equation states that the friction force
is such that, given a tangential velocity and a normal force, the
power dissipated is maximized.

The contribution of the frictional contact forces in the equa-
tions of motion, Eq. (1), is through a set of generalized forces
associated with each active contact in the model. Based on New-
ton’s third law, each body experiences a force of the same mag-
nitude but opposite direction at the point of contact. Therefore,

1Though the original Coulomb model distinguishes between static µs and ki-
netic µk friction coefficients, where usually the kinetic coefficient is slightly lower
than its static counterpart, in this work both are considered to have the same value
µ. The difference is not relevant for the discussion; it suffices to say that to cor-
rect this approach would require one to adjust the friction coefficient adaptively
during the simulation depending on the slipping speed, so as to express complex
nonlinearities in µ as a function of speed.
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Figure 1. Contact i active between two bodies A,B ∈ {1,2, . . . ,nb}

the virtual work associated with the frictional contact force F i
between bodies A and B becomes %Wi = %rT

i,AFi − %rT
i,BFi. As il-

lustrated in Fig. 1, ri,A = r j +AAs̄i, j gives the position, expressed
in the global inertial reference frame, of the contact point Pi,A on
body A, and %ri,A = %rA + AA% ˜̄&As̄i,A = %rA −AA ˜̄si,A%&̄A repre-
sents a virtual displacement of body A, which is due to a virtual
translational displacement of the body center of mass, %r A, and
a virtual rotation %&̄A, expressed in the local body A reference
frame. Similar quantities are defined in conjunction with body
B. Note that the operator ˜ acting on a vector h = [h 1,h2,h3]T
produces a skew symmetric matrix h̃ ≡H ∈R3×3 with H(1,2) =
−h3, H(1,3) = h2, and H(2,3) = −h1. From Eq. (3),

%Wi = (%rT
A + %&̄T

A ˜̄si,AAT
A)(̂$i,nni + $̂i,uui + $̂i,wwi)

− (%rT
B + %&̄B

T ˜̄si,BAT
B)(̂$i,nni + $̂i,uui + $̂i,wwi)

= %qT D∗
i (̂$i,nni + $̂i,uui + $̂i,wwi)

= %qT (̂$i,n Di,n + $̂i,u Di,u + $̂i,w Di,w),

where, with I3 the 3× 3 identity matrix, the projection matrix
D∗

i ∈ R6nb×3 is defined for contact i as

D∗T
i =

[
0 . . . I3 (˜̄si,AAT

A)T 0 . . . 0 −I3 −(˜̄si,BAT
B)T . . . 0

]
,

and Di,n ≡ D∗
i ni, Di,u ≡ D∗

i ui, and Di,w ≡ D∗
i wi.

These three vectors can be grouped in a matrix D i =
[Di,n, Di,u, Di,w] ∈ R6nb×3. Denoting Ai,p = [ni,ui,wi] the R3×3

matrix of the local coordinates of the ith contact, one can express

Di also as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA ˜̄si,A 0 . . . 0 AT

i,p −AT
i,pAB ˜̄si,B . . . 0

]
.

(4)

Note that the velocity at the point of contact can also be
expressed in terms of Di,u and Di,w. To this end, the velocity
in local contact coordinates can be expressed as vT

i,T = vT Di,
and therefore the power dissipated can be equivalently expressed
as vT

i,T (̂$i,uui + $̂i,wwi) = vT Di (̂$i,uui + $̂i,wwi) = vT (̂$i,u Di,u +
$̂i,w Di,w).

When one revisits Eq. (1) and assumes a set of p active con-
straints at time t, a more specific expression can be provided
for the differential equations governing the time evolution of the
multibody system by singling out the contribution of the fric-
tional contact force. Drawing on the Coulomb model discussed,
the following differential variational inequality is associated with
the time evolution of the multibody system [34]:

q̇ = L(q)v

Mv̇ = f(t,q,v)+
p
'

i=1
(̂$i,n Di,n + $̂i,u Di,u + $̂i,w Di,w)

1 ≤ i ≤ p : $̂i,n ≥ 0 ⊥ #i(q) ≥ 0, and
(̂$i,u, $̂i,w) = argmin

µi $̂i,n≥
√

(̂$i,u)2+(̂$i,w)2
vT (̂$i,u Di,u + $̂i,w Di,w) .

(5)

Herein u ⊥ v denotes that uT v = 0. The Coulomb model used in
this work is the predominant model used in the engineering liter-
ature to describe dry friction. Unfortunately, the model may be
inconsistent: there exist configurations for which the model does
not have a solution [13, 19]. This situation has led to the need
to explore weaker formulations where the forces are measures
and Newton’s law is satisfied in a measure differential inclusion
sense [19]. It has been shown that solutions in that sense do ex-
ist and can be found by time-stepping schemes [35]. Note that,
for the type of application targeted — pebble-bed nuclear reactor
simulation, granular flow dynamics, and so forth, — all colli-
sions that appear during the simulation can be assumed of the
inelastic type.

Proposed Solution
Starting from a time-step t (l) with position q(l) and veloc-

ity v(l), one finds the numerical solution at the new time-step
t(l+1) = t(l) + h by solving the following optimization problem
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with equilibrium constraints:

M(v(l+1)−vl) = hf(t(l),q(l),v(l))
+ '

i∈A(q(l),%)

($i,n Di,n + $i,u Di,u + $i,w Di,w) ,(6)

i ∈ A(q(l),%) : 0 ≤ 1
h
#i(q(l))+ DT

i,nv(l+1) ⊥ $i
n ≥ 0, and(7)

($i,u,$i,w) = argmin
µi$i,n≥

√
$2

i,u+$2
i,w

vT ($i,u Di,u + $i,w Di,w) , (8)

q(l+1) = q(l) + hL(q(l))v(l+1). (9)

Here, for a conveniently chosen small value of %> 0,

A(q,%) = {i | i ∈ {1,2, . . . , p} , #i(q) ≤ %} ,

and $s represents the constraint impulse of a contact constraint,
that is, $s = h$̂s, for s = n,u,w. The 1

h#i(q(l)) term achieves
constraint stabilization. Its effect is discussed in detail in [30].
As the step size h → 0, the scheme converges to the solution of
a measure differential inclusion [24]. Numerical solutions for
the case when the nonlinear frictional contact constraint is ap-
proximated by a piecewise linear cone can be found by Lemke’s
algorithm [17]. Nonetheless, as the number of constraints in the
problem increases, the computational cost of Lemke’s method in-
creases far faster than linearly with the size of the problem [22].
Alternatively, the problem is cast as a monotone optimization
problem by introducing a relaxation over the complementarity
constraints; that is, the time-stepping scheme is modified by re-
placing Eq. (7) with

i ∈ A(q(l),%) : 0 ≤ 1
h
#i(q(l))+ DT

i,nv(l+1) (10)

− µi

√
(vT Di,u)2 +(vT Di,w)2 ⊥ $i

n ≥ 0 .

As h → 0, the solution of the modified time-stepping scheme
will approach the solution of the same measure differential in-
clusion as the original scheme [24]. It can be immediately
verified that, for one step, the solution of the scheme us-
ing (10) approaches the one of the scheme using (7) when
µi$i,n

√
(vT Di,u)2 +(vT Di,w)2 . 1 [22]. This assumption is sat-

isfied both in the regime in which pebble-bed nuclear reactors
operate [36] and for granular flow applications, two classes of
applications targeted by the proposed approach. Generally, the
above assumption will be satisfied whenever there is little fric-
tion between the two bodies in contact (low µ) or when the rela-
tive velocity at the contact point is small. However, the sequence
produced by the scheme using the relaxation (10) approaches the

one produced by the scheme using (7) in far more general cir-
cumstances. Provided that the time step is small compared to the
characteristic time scale of the tangential velocity, the dynamics
of the relaxed scheme will approach the dynamics of the original
scheme [24].

The KKT optimality conditions for the equilibrium con-
straint in Eq. (8) state that, for any i ∈ A(q(l),%), there exists
a Lagrange multiplier (i such that

(i$i,u = −vT Di,u , (i$i,w = −vT Di,w,

(i ≥ 0 ⊥ µi$i,n −
√
$2

i,u + $2
i,w ≥ 0.

(11)

If for i ∈ A(q(l),%), cT
i ≡ [$i,n,$i,u,$i,w], and gT

i ≡[
1
h#i(q(l))+ DT

i,nv(l+1), DT
i,uv(l+1), DT

i,wv(l+1)
]
, then draw-

ing on Eqs. (10) and (11), one can show that g T
i ci = 0, and thus

gi ⊥ ci. If one defines the cones

)i =
{

g = [g1,g2,g3]T ∈ R3 | g1 ≥ µi

√
g2

2 + g2
3

}
,

Ci =
{

c = [c1,c2,c3]T ∈ R3 | µic1 ≥
√

c2
2 + c2

3

}
,

then )i is the negative polar cone of C i; that is, g ∈ )i and c ∈ Ci
implies that gT c ≥ 0. Here, C◦, the polar cone of a given cone
C ⊂ Rm, is defined as C◦ = {x ∈ Rm|〈x,y〉 ≤ 0, ∀y ∈C}. Then,
based on Eqs. (8) and (10), the following set of cone complemen-
tarity constraints holds:

−gi ∈ C ◦
i ⊥ ci ∈ Ci, ∀i ∈ A(q(l),%). (12)

In what follows, the focus shifts back to reformulating the
optimization problem with equilibrium constraints of Eqs. (6)
through (9) to account for the above cone complementarity con-
straints. To this end, the notation Q ≡ Mv(l) + hf(t(l),q(l),v(l))
is introduced. Then, Eq. (6) is reformulated as Mv (l+1) =
Q + D$, where with nA being the cardinality of A(q(l),%),
D ≡ [D1 . . . DnA ] ∈ R6nb×3nA , $ = [$T

1 . . .$T
nA ]T ∈ R3nA , and,

for i ∈ A(q(l),%), Di ≡ [Di,n Di,u Di,w] ∈ R6nb×3 and $T
i ≡

[$i,n $i,u $i,w]. Next, the vector b ∈ R3nA is defined as bT ≡
[ 1

h#1(q(l)) 0 0 . . . 1
h#nA (q(l)) 0 0]. Here, for an arbitrary vector

h ∈ R3nA , the notation hi, 1 ≤ i ≤ nA , is used to represent the
entries in rows 3(i−1)+1, 3(i−1)+2, 3i, that is, the entries as-
sociated with contact i. Finally, with the notation N ≡ DT M−1D,
and d≡ b+DT M−1Q, the configuration of the multibody system
at t(l+1) is obtained as the solution of the following:

−
(

N$(l+1) + d
)

i
∈ C ◦

i ⊥ $i
(l+1) ∈ Ci , 1 ≤ i ≤ nA , (13)

Mv(l+1) = Q+ D$, (14)
q(l+1) = q(l) + hL(q(l))v(l+1). (15)
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The frictional contact forces $(l+1) are obtained by solving
the cone complementarity problem in Eqs. (13) and (14),
where, at each iteration, the velocity is evaluated as v (l+1) =
M−1

(
Q+ D$(l+1)

)
. The attitude of each body in the system is

obtained by using Eq. (15). Note that N is positive semidefinite,
while M is diagonal, constant, and positive definite. Equation
(13) in fact represents the optimality condition of the following
cone complementarity problem:

min f ($) =
1
2
$T N$+ dT $ s.t. $i ∈ Ci , ∀ 1 ≤ i ≤ nA ,

whose solution is found by using an iterative algorithm that, start-
ing with an arbitrarily chosen $(0), computes the iteration r + 1,
r ≥ 0,

$r+1
i = * +Ci

[
$r

i −",i (N$+ d)i + '
m∈D(i,r)

Kr
i,m

(
$r+1

m − $r
m
)
]

+(1−*)$r
i , (16)

where ,i will be defined in Algorithm 1 below, 0 < * ≤ 1 and
" > 0 are two parameters, and, for each r, K r

i,m is a coeffi-
cient matrix that indicates how the frictional contact force as-
sociated with contact m gets reflected in the computation of the
frictional contact force associated with contact i. Here D(i,r)
represents the set of contacts considered when updating the fric-
tional contact forces associated with contact i. Note that for a
Gauss-Jacobi-type iteration D(i,r) = /0 and for a Gauss-Seidel
type iteration D(i,r) = {1,2, . . . , i− 1}, but other update strate-
gies, which might depend on the iteration index r, can and will
be pursued. Finally, the operator +Ci is the cone i projection
operator; see, for instance, [27].

The iterative scheme in Eq. (16) was proved to converge un-
der mild assumptions that can be met by a suitable choice of
relaxation parameter " [2]. Therein, it was also pointed out that
a Gauss-Seidel update sequence in the iterative process led to
a robust algorithm. Although convenient for the convergence
analysis, Eq. (16) is not the form that is considered for software
implementation. Rather, an inner loop iteration algorithm, that
also updates the speed v(l+1), is provided in the following pseu-
docode, Algorithm 1:

Algorithm 1: Inner Iteration Loop

1. For 1 ≤ i ≤ nA , evaluate ,i = 3/Trace(DT
i M−1 Di).

2. If warm start with initial guess $∗, then set $0 = $∗, otherwise
$0 = 0.

3. Initialize speeds: v(l+1) = '
nA
i=1 M−1 Di$0 + M−1Q.

4. For i = 1, . . .nA , perform the updates:
$prelim

i = $r
i −",i

(
DT

i v(l+1) + bi

)
;

$r+1
i = * +Ci

(
$prelim

i

)
+(1−*)$r

i ;
-$r+1

i = $r+1
i − $r

i ;
v(l+1) := v(l+1) + M−1 Di-$r+1

i .
5. Repeat step 4 by looping on the list of contacts in reverse

order, if symmetric updates are desired.
6. r := r+1. Repeat from 4 until convergence or until r > rmax.

The stopping criterion is based on the value of the velocity
update. The overall algorithm that provides an approximation to
the solution of Eqs. (13) through (15) relies on Algorithm 1 and
requires the following steps, Algorithm 2

Algorithm 2: Outer, Time-Stepping, Loop

1. Set t = 0, step counter l = 0, and provide initial values for
q(l) and v(l).

2. Perform collision detection between bodies, obtaining nA
possible contact points within a distance %. For each con-
tact i, compute Di,n, Di,u, Di,w, and residual #i(q), which
also provides bi.

3. For each body, compute forces f(t (l),q(l),v(l)) and then Q.
4. Use Algorithm 1 to solve the cone complementarity problem

and obtain unknown impulse $ and velocity v (l+1).
5. Update positions using q(l+1) = q(l) + hL(q(l))v(l+1).
6. Increment t := t + h, l := l + 1, and repeat from step 2 until

t > tend.

Note that choosing a proper value % for the collision enve-
lope is not trivial. On the one hand, if a very small or zero value
is used, contacts will enter the CCP solver only when it is too
late, and some amount of interpenetration will be unavoidable,
which in turn adversely impacts the stability of the method. On
the other hand, if too large a value is used, the collision detection
algorithm will return too many potential contacts that waste com-
putational resources and could occasionally create trouble with
convex shapes, which decreases the efficiency of the method. If
v is known, a simple yet efficient heuristic is to choose % as a
rough approximation of the maximum distance that can be trav-
eled within a step size by an arbitrary point of a moving body.

Parallel Implementation Details
The parallel implementation for the multibody dynamics

frictional contact problem depends heavily on the underlying
hardware used to run the simulation. Specifically, the algorithm
proposed is well suited for running on parallel platforms that sup-
port the single instruction multiple data computational paradigm,
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which is ideally suited for handling problems with contacts in ex-
cess of hundreds of thousands. NVIDIA’s GeForce 80 family of
GPUs has been adopted as the implementation platform. Priced
at $460 per card, the GeForce 8800 GTX has been clocked at
320 GFlop, about seven times faster than an Intel Core 2 Duo
running at 3 GHz, and this gap is bound to grow in the imme-
diate future2. A description of the hardware behind the GeForce
8800 GTX card used is beyond the scope of this paper. It suffices
to indicate that for the frictional contact problem discussed here,
contacts are processed by each of the 16 streaming multiproces-
sors in warps of 16 contacts per streaming multiprocessor. As far
as memory allocation is concerned, each streaming multiproces-
sor has 8,192 registers that each can hold a float or an integer,
and each has 16 KB of shared memory that can be shared by all
live threads associated with the respective streaming multipro-
cessor. In this context, the maximum number of live threads is, at
768, much larger than the batch of 16 threads that are executed at
each time, since some of threads are active but parked while wait-
ing for global memory fetches, a strategy that hides the memory
latency and improves the overall efficiency. The recommended
strategy for GPU computing on GeForce 8800 GTX is to try to
maximize the number of parallel threads active at any given time,
which in an ideal situation would be at 12,228 threads. Since reg-
ister and shared memory resources are fixed, however, the more
threads active, the fewer the resources per thread. In the end,
an optimal point is reached where, while the number of threads
per streaming processor is still large, the memory allocated to
each thread is enough to allow it to run a batch of commands
associated with Algorithm 1. In the current parallel implemen-
tation, Algorithm 1 runs with 6,144 active threads at any given
time; in other words, the GPU is working with 6,144 contacts
at each time. The number of active threads can be further in-
creased but at the price of an increased number of global memory
accesses, where “global” here represents the 768 MB GDDR3
on-chip GPU memory. While global memory fetches are still
fast because of low latency and high memory bandwidth (86.4
GB/sec), they are still two orders of magnitude slower than reg-
ister or shared-memory access and should be avoided whenever
possible.

In the context of this work, the most relevant consequence of
using a parallel execution approach is that this execution model
can lead to a random velocity update sequence. In a sequential
execution mode, the loop over the active contact set in Algorithm
1 is carried out in an orderly fashion. If symmetric updates are
desired, then the order is reversed, but it is still predefined and
deterministic. When implementing a parallel version of Algo-
rithm 1, two approaches can be followed. The first falls back on
a Gauss-Jacobi approach and, referring back to Eq. (16), corre-

2Note that through a new product line called Larrabee, Intel is integrating the
GPU and CPU on the same chip and is expected to support in early 2010 the
same parallel computation model promoted by NVIDIA, only with larger shared
memory and L1 cache.

sponds to D(i,r) = /0. Numerical experiments suggest that the
convergence rate decreases and, for certain models, leads to a
large number of iterations r or even lack of convergence. The
second approach investigated in this work allows for a random
update sequence, to the extent that in general D(i,r) 2= D(i, p),
for r 2= p. In this context, for the Gauss-Seidel there is no de-
pendency in Algorithm 1 of D(i,r) = {1,2, . . . , i− 1} on r, and
in fact each iteration follows the same update sequence. Enforc-
ing a similar update sequence in a parallel execution scenario
would unacceptably compromise performance, as this has to rely
on a system of semaphores similar to the mutex support in the
POSIX standard threading library API, which in fact is not sup-
ported by CUDA library support [25]. Note that there is a remote
chance that during some iteration r a certain update produced by
contact i would fail altogether because of a race condition and
lack of mutex-type support. This situation is not expected to
impact the convergence of the algorithm, however, particularly
for large frictional contact problems with hundreds of thousands
of contacts, where the probability of having 2 out of 256 contacts
associated with the same body and of updating its velocity at the
same time is small, but not zero. Note also that the 256 value
corresponds on GeForce 8800 GTX to the number of streaming
multiprocessors (16), each processing simultaneously a warp of
16 threads (frictional contacts).

Data Structures
At each simulation step, the CPU, that is, the “host”, feeds

data into the GPU memory, launches one or more kernels (func-
tions to be performed simultaneously on many parallel GPU
threads), and gathers the results of the computations by copy-
ing select portions of the GPU memory back into the host RAM.
Special care should be paid to minimize the memory overhead
caused by repeated transfers of large data structures. Moreover,
data structures should be organized to exploit fast GPU coalesced
memory access to fetch data for all parallel threads in a warp.
Provided that bytes are contiguous and that the k− th thread ac-
cesses the k − th element in the data structure, up to 512 bytes
can be fetched in one operation by a warp of threads. Failing to
perform coalesced memory access may slow the kernel signif-
icantly. For the algorithm developed, the data structure for the
contacts has been mapped into columns of four floats, as shown
in Fig. 2.

There is no need to store the entire D i matrix for the i− th
contact because it has zero entries for most of its part, except for
the two 12x3 blocks corresponding to the coordinates of the two
bodies in contact. Hence, the product DT

i v(l+1) in the fourth step
of Algorithm 1 can be performed as

DT
i v(l+1) = DT

i,vA ṙA + DT
i,"A"A + DT

i,vB ṙB + DT
i,"B"B (17)
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with the adoption of the following 3x3 matrices.

DT
i,vA = −AT

i,p (18a)

DT
i,"A

= AT
i,pAA ˜̄si,A (18b)

DT
i,vB = AT

i,p (18c)

DT
i,"B = −AT

i,pAB ˜̄si,B (18d)

Similarly, the update v(l+1) := v(l+1) + M−1 Di-$r+1
i can be

computed explicitly as the following sparse update to the speeds
of two bodies only.

ṙ(l+1)
A := ṙ(l)

A −m−1
A Di,vA-$

r+1
i (19a)

"A
(l+1) := "A

(l) + J−1
A Di,"A-$

r+1
i (19b)

ṙ(l+1)
B := ṙ(l)

B + m−1
B Di,vB-$

r+1
i (19c)

"B
(l+1) := "B

(l)−J−1
B Di,"B-$

r+1
i (19d)

Since DT
i,vA

= −DT
i,vB

, there is no need to store both matrices, so
in each contact data structure only a matrix DT

i,vAB
is stored, which

is then used with opposite signs for each of the two bodies.
Figure 3 shows that for each body there is a data structure

containing the state (speed and position), the mass moments of
inertia and mass values, and the external applied force F j and
torque C j. Forces and torques, if any, are used to compute the
third step of Algorithm 1. Note that, in order to speed the itera-
tion, it is better to store the inverse of the mass and inertias rather
than their original values, because the operation M−1 Di-$r+1

i
must be performed multiple times. Each contact will reference
its two touching bodies through the two pointers B A and BB, in
the fourth and seventh rows of the contact data structure.

Numerical experiments show that for high memory through-
put, it is better to pad the data into a four-float width structure
even at the cost of wasting memory space when several entries
end up not being used. Also, the variables in the data structures
are organized in a way that minimizes the number of fetch and
store operations. This approach maximizes the arithmetic inten-
sity of the kernel code, as recommended by the CUDA develop-
ment guidelines.

Another software design decision that improved the overall
performance regards the delegation of contact preprocessing step
to the GPU. Specifically, instead of computing the data structures
of the contacts on the host, only the contact normals and contact
points were copied into the GPU memory. Then, a GPU kernel
computed DT

i,vAB
, DT

i,"A
, DT

i,"B
, ,i, bi,n, as shown in Fig. 4. This

strategy leads to faster code, not only because the preprocessing

Thread 

 Thread block              … Thread block 

 Thread grid 

 GPU contacts buffer i-th contact data 

bi,n 
bi,u 
bi,v 
Bi,A 

Bi,B 

,i 
$i,n $ i,u $ i,v µi 

DT     i,vA,B 

DT     i,"A 

1

2

3

4

5

6

7

8

9

10

float4 

DT     i,"B 

Figure 2. Grid of data structures for frictional contacs, in GPU memory.

 

Thread 
 Thread block              … Thread block 

 Thread grid 

 GPU bodies buffer 

   j-th body data 

vj,x vj,y vj,z   

" j,x " j,y " j,z   

x j,x x j,y x j,z   

*j,0 *j,1 *j,2 *j,3 

Jj,x Jj,y Jj,x mj 

Fj,x Fj,y Fj,z   

Cj,x Cj,y Cj,z   

     -1 

1

2

3

4

5

6

7

float4 

     -1      -1      -1 

Figure 3. Grid of data structures for rigid bodies, in GPU memory.

kernel runs in parallel on the GPU, but also because it avoids the
memory overhead if copying the full contact structures from host
to GPU. Note that bi,v and bi,w are always zero and that the data
structures for both bodies and contacts on the GPU are processed
in thread blocks, which are organized in block grids.

The Parallel Algorithm
The pseudocode in Algorithm 3 outlines how Algorithm 1

and Algorithm 2 can be combined and turned into a sequence
of computational phases, for the most part executed as parallel
kernels on the GPU. In terms of resource allocation, the compu-
tation kernels followed a one-thread-per-body or a one-thread-
per-contact philosophy, depending on the phase of the algorithm.

Algorithm 3: Complete Time Stepping, when GPU is Avail-
able.

1. (Host, serial ) Perform collision detection between bodies,
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Figure 4. Contact data structure, before and after the preprocessing ker-
nel.

obtaining nA possible contact points within a distance %, as
contact positions si,A, si,B on the two touching surfaces, and
normals ni. If warm start is used, then fetch the last reactions
in contact point $∗i (obtained in previous frame, if the contact
is persistent) and set $i = $∗i , otherwise $i = 0.

2. (Host, serial ) Copy the contact and body data structures
from host memory to GPU memory.

3. (GPU, body-parallel ) Force kernel. For each body, com-
pute forces f(t (l),q(l),v(l)), if any. Store these forces and
torques into Fj and Cj. For example, apply the gravitational
and gyroscopic forces.

4. (GPU, contact-parallel ) Contact preprocessing kernel. For
each contact, given contact normal and position, compute in-
place the matrices DT

i,vAB
, DT

i,"A
and DT

i,"B
, then compute ,i

and the contact residual bi,n = 1
h#i(q). Set bi,u and bi,w as

zero.
5. (GPU, body-parallel ) CCP force kernel. For each body

j, initialize body speeds: ṙ(l+1)
j = h m−1

j F j and "(l+1)
j =

h J−1
j C j.

6. (GPU, contact-parallel ) CCP initialization kernel. For
each contact i, update initial speeds of bodies A and B us-
ing Eq. (19), with the initial values of $ i. This set can be
skipped if no warm start is used. Project to friction cones
when necessary.

7. (GPU, contact-parallel ) CCP iteration kernel. For each
contact i, do $prelim

i = $r
i −",i

(
DT

i v(l+1) + bi

)
. Note that

DT
i v(l+1) must be done with sparse data, using Eq. (18).

Also do $r+1
i = * +Ci

(
$prelim

i

)
+ (1 − *)$r

i , by projecting
multipliers onto the ith friction cone. After computing
-$r+1

i = $r+1
i − $r

i , update the speeds of the two connected
bodies A and B as in Eq. (19).

8. Repeat the previous kernel until convergence or until num-

 

Figure 5. Frame from the simulation of a brick wall. Frictional contact is
present between the bricks in the wall and between the bricks and ground.

ber of CCP steps reached r > rmax.
9. (GPU, body-parallel ) Time integration kernel. For

each j body, perform time integration as q (l+1)
j = q(l)

j +

hL(q(l)
j )v(l+1)

j
10. (Host, serial ) Copy body data structures from GPU memory

to host memory. Copy contact multipliers from GPU mem-
ory to host memory.

Numerical Results
A set of two numerical experiments was carried out with a

benchmark problem to assess the performance of the frictional
contact method discussed when executed in a sequential compu-
tational framework and to compare the sequential to the parallel
solution approach proposed in the paper. For each numerical ex-
periment three scenarios were considered, differentiated by the
number of brick elements: 1000, 2000, and 8000 bricks, respec-
tively. Initial conditions were such that the wall slowly collapsed.
Figure 5 presents a snapshot of the dynamics of the process. The
wall in the picture has a small number of bricks yet qualitatively
captures the essence of the dynamics for the larger models con-
sidered here. The friction coefficient between bricks, and be-
tween bricks and ground, was set to 0.6.

The simulation was carried out with a numerical integration
step-size h = 0.01s, which is three orders of magnitude larger
than typically required by the DEM method in [36]. Perhaps less
relevant are absolute timing results, since they depend on issues
such as cache management that can vastly change with different
compilers and optimization levels. With respect to the sequential
simulation results, the scaling of the algorithm with the num-
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Table 1. Average simulation times (in sec.) required to capture one sec-
ond of the dynamics of the falling wall.

Bricks Sequential GPU Coprocessing

Version Version

1000 43 6

2000 87 10

8000 319 42

ber of bodies is of interest. These and other results obtained for
large-scale simulation of models with frictional contact suggest
that the algorithm discussed here displays linear complexity [2].
In other words, the simulation time increases linearly with the
number of bodies in the model. Comparing the sequential and
parallel simulation results, one can see a speedup of a factor of 7
when relying on the GPU in coprocessor mode. In spite of using
the NVIDIA GTX8800 GPU model with 128 parallel threads, the
speedup is limited to 7x because the collision detection draws on
an open source package that does not yet leverage GPU paral-
lelism [37].

Conclusions
The paper proposes a theoretically rigorous approach to sim-

ulating multibody dynamics problems with frictional contact.
The algorithm proposed is backed by convergence results for
measure differential inclusions [24] and by a rigorous conver-
gence analysis [2]. The methodology leverages commodity high-
performance parallel computing on the GPU. Preliminary results
obtained with the proposed parallel algorithm demonstrate that
for very large problems the computational bottleneck associated
with the sequential algorithm — that is, the solution of the cone
complementarity problem — has been eliminated. The computa-
tion is now dominated by the collision detection stage, which at
this time runs sequentially. Four issues remain to be addressed.
First, a rigorous convergence analysis for the case of random ve-
locity updates is needed. Although preliminary results show that
this update strategy works in conjunction with large frictional
contact models, it is important to understand and possibly ad-
dress some of the limitations associated with this approach. Sec-
ond, the methodology should be expanded to include the case
of bilateral and unilateral constraints present in a multitude of
mechanical system models. It is expected that the latter will pos-
itively impact the RATTLE and SHAKE algorithms in molecular
dynamics simulation. Third, the cone complementarity problem
approach needs to be extended to deformable multibody dynam-
ics problems. Fourth, a parallel collision detection engine would
allow for an entirely parallel approach to multibody dynamics
with frictional contact that, given the recent advances in com-

modity high-performance parallel computing hardware, opens up
new fields of simulation-based engineering in materials science,
the pharmaceutical industry, and granular flow dynamics. The
first three open issues will be addressed in future work; the fourth
one is essentially a challenging computer science problem that is
currently being addressed by that community.
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