
Petascale System Management Experiences

Narayan Desai #, Rick Bradshaw #, Cory Lueninghoener †,
Andrew Cherry †, Susan Coghlan †, William Scullin †

#Mathematics and Computer Science Division
†Leadership Computing Facility
Argonne National Laboratory

Argonne, IL 60439, USA
{desai,bradshaw}@mcs.anl.gov

{lueningh,acherry,smc,wscullin}@alcf.anl.gov

August 25, 2008

Abstract

Petascale HPC systems are among the largest systems in the world.
Intrepid, one such system, is a 40,000 node, 556 teraflop Blue Gene/P
system that has been deployed at Argonne National Laboratory. In this
paper, we provide some background about the system and our admin-
istration experiences. In particular, due to the scale of the system, we
have faced a variety of issues, some surprising to us, that are not common
in the commodity world. We discuss our expectations, these issues, and
approaches we have used to address them.

1 Introduction

High-performance computing (HPC) systems are a bellwether for computing
systems at large, in multiple regards. HPC users are motivated by the need
for absolute performance; this results in two important pushes. HPC users
are frequently early adopters of new technologies and techniques. Successful
technologies, like Infiniband, prove their value in HPC before gaining wider
adoption. Unfortunately, this early adoption alone is not sufficient to achieve the
levels of performance required by HPC users; parallelism must also be harnessed.

Over the last 15 years, beowulf clustering has provided amazing accessibility
to non-HPC-saavy and even non-technical audiences. During this time, substan-
tial adoption of clustering has occurred in many market segments unrelated to
computational science. A simple trend has emerged: the scale and performance
of high-end HPC systems are uncommon at first, but become commonplace
over the course of 3-5 years. For example, in early 2003, several systems on the

1



Top500 list consisted of either 1024 nodes or 4096-8192 cores. In 2008, such
systems are commonplace.

The most recent generation of high-end HPC systems, so called petascale
systems, are the culmination of years of research and development in research
and academia. Three such systems have been deployed thus far. In addition
to the 556 TF Intrepid system at Argonne National Laboratory, a 596 TF
Blue Gene/L-based system has been deployed at Lawrence Livermore National
Laboratory, and a 504 TF Opteron-based system has been deployed at Texas
Advanced Computing Center (TACC). Intrepid is comprised of 40,960 nodes
with a total of 163,840 cores. While systems like these are uncommon now, we
expect them to become more widespread in the coming years.

The scale of these large systems impose several requirements upon system
architecture. The need for scalability is obvious, however, power efficiency and
density constraints have become increasingly important in recent years. At the
same time, because the size of administrative staff cannot grow linearly with
the system size, more effecient system management techniques are needed.

In this paper we will describe our experiences administering Intrepid. Over
the last year, we have experienced a number of interesting challenges in this
endevour. Our initial expectation was for scalability to be the dominant system
issue. This expectation was not accurate. Several issues expected to have minor
impact have played a much greater role in system operations. Debugging, due to
the large numbers of components used in scalable system operations, has become
a much more difficult endeavor. The system has a sophisticated monitoring
system, however, the analysis of this data has been problematic. These issues
are not specific to HPC workloads in any way, so we expect them to be of general
interest.

This paper consists of three major parts. First, we will provide a detailed
overview of several important aspects of Intrepid’s hardware and software. In
this, we will highlight aspects that have featured prominently in our system
management experiences. Next, we will describe our administration experiences
in detail. Finally, we will draw some conclusions based on these experiences.
In particular, we will discuss the implications for the non-HPC world, system
managers, and system software developers.

2 System Background

The Blue Gene architecture is unusual among computing platforms. It is a
completely integrated system, including computational resources, management
infrastructure and multiple networks that interconnect them. Much of the hard-
ware and software used in these systems are purpose built. Both of these ap-
proaches are at odds with the prevailing trends in commodity clusters. We
will provide basic background relating to system management on Blue Gene
systems; more detailed information can be found elsewhere[1]. In this section,
we will provide an overview of Intrepid’s hardware configuration. From there
will proceed to a description of relevant system architecture details. Finally, we

2



detail the control system, a nerve center for system management. The control
system is the setting for all administration on the compute complex.

2.1 Intrepid Configuration

Intrepid is a 40 rack Blue Gene/P system with a pset size of 64. This sys-
tem is comprised of nearly 160,000 cores, with a peak performance of 556 TF.
The compute complex is managed by a single service node. A 10 gigabit data
network connects I/O nodes in the compute complex with 136 file servers and
several other storage resources. This network is comprised of 512 port switches
assembled in a non-blocking configuration to provide 1100 client ports. The
system includes 17 Data Direct 9900 storage arrays. Each array is connected
to eight fileservers via direct-connected Infiniband; each can provide fail over
support for the other seven. This architecture is shown in Figure 1. The ser-
vice infrastructure is modestly sized, and almost exclusively uses traditional
hardware and software.

 

Login 
Server

I/O 
Nodes

Compute 
Nodes

Service 
Node

10 Gbit 
Network

File 
ServerRaid 

Array

File 
Server

File 
Server

File 
Server

File 
Server

Login 
Server

Login 
Server

Login 
Server

Login 
Server

Raid 
Array

Raid 
Array

Raid 
Array

Raid 
Array

Compute Complex

Service Network

Figure 1: Intrepid System Architecture

Intrepid is a capability HPC system, operated as a part of the US Depart-
ment of Energy INCITE program[2]. This means that it is intended to run
large-scale jobs. Individually, these jobs often consume a large portion of the
machine. It is common to see 32,768 core and 65,536 core jobs on Intrepid,
occasionally at the same time.

2.2 System Architecture

Blue Gene/P compute nodes use quad core PowerPC 450, with access to multiple
specialized networks. Compute jobs have access to a mesh network that can be

3



connected into a 3-D torus for collective communication. Also, there is a tree
network used to connect compute nodes to dedicated I/O nodes. I/O nodes are
connected to fileservers using 10 gigabit ethernet. All compute and I/O nodes
also have access to a dedicated management network. This network is used for
node booting, diagnostics, and monitoring.

The system is partitioned for each user job. Each partition contains a distinct
set of compute and I/O nodes, and the associated mesh network resources. The
mesh network must be built into a large rectangular solid. This limits the valid
combinations of node resources. Provided sufficient resources are available, a
mesh network can be wrapped into a full 3-D torus, providing better network
performance. Each of these constraints limit the ways that the system can be
allocated, and provide a complicated set of variables when debugging application
problems.

2.3 The BG/P Control System

The BG/P control system has three main tasks: partition control, job control
and system monitoring. It is a single, monolithic process that is run on the
system service node. It stores large amounts of data into a DB2 database, run
on the same service node. In this section, we will describe each function in turn.

As we mentioned earlier, partitions are the entities where jobs can be run.
The architecture of the system depends on a detailed understanding of the
topology of the constituents of a partition. This means that partitions are
typically rebooted between jobs, upon either user or partition changes. For
example, if two jobs were running on a small pools of resources, and these
pools needed to be joined for a new job, all of these resources would need to be
rebooted before job execution could occur.

The control system plays three main roles in the partition allocation and
boot process. It stores and validates the partition configuration, it reserves
that hardware used in an active partition, and it implements the partition boot
process. The first two of these are straightforward data management issues,
while the partition boot process is a little more subtle.

During partition boot, a partition-specific OS image is served to all nodes.
This OS image contains all configuration data needed to properly configure
the system. The service network internal to each pset implements a hardware
broadcast, so the service node need only send the OS images to each pset in
the partition; from there it can be broadcast to all nodes. Simultaneously,
the control system serves a different set of OS images to the I/O nodes in the
partition. When the boot process is complete, each compute node stands ready
to execute a user application, and all I/O nodes have mounted all filesystems
that can be used by a user job. Also, all I/O nodes run a compute node I/O
daemon, ciod, that is responsible for executable loading and the proxying of I/O
for user jobs.

Once node boot has completed, the user’s job executable is loaded, via the
ciod. The control system sends the user executable to each I/O node in the
partition, which, in turn, loads the user executable on each compute node.

4



Once a job starts on the partition, the ciod begins its main task of proxying
I/O requests. When a user process on a compute node performs an I/O related
system call, this call is packaged up and sent to the I/O node, where the ciod
performs it and sends the request back to the compute node.

The final responsibility of the control system is to monitor the service net-
work for RAS events. Compute and I/O nodes can directly issue these events to
the low-level service network. These events signal a variety of problems, includ-
ing correctable and uncorrectable hardware errors, and some software errors.
The data available from this interface substantially improves the visibility into
the compute complex.

2.4 Service Infrastructure Management

The service infrastructure is a fairly standard set of systems, both in terms of
hardware and software. All of the hosts run a standard version of Suse Enter-
prise Linux and are managed using a set of standard management tools. Con-
figuration management is nicely handled by Bcfg2[3], while Nagios[4] is used for
monitoring. The service infrastructure is only about 200 systems, and doesn’t
pose any scalability problems. Most of those 200 or so systems are fileservers,
which have a standardized set of software and services.

The service infrastructure is largely run of the mill. This highlights another
unique aspect of this system. On typical large scale systems, standard manage-
ment tools have reach across the whole system. On Intrepid, the combination
of specialized and commodity hardware and software make this impossible. Dif-
ferent software and methods must be used on the different parts of the system.
This poses a cross-training and coverage problem.

3 Experiences and Observations

We took delivery of our first BG/L system in January of 2005. This system
was comprised of a single rack, with 1024 dual-core nodes. This system was
run with a combined set of research and production computation goals and was
retired mid-summer 2008. We found this system to be robust and popular with
users; these good experiences provided the justification for Intrepid and other
associated smaller BG/P systems.

During the summer of 2007, we got initial access to prototype Blue Gene/P
systems at IBM. These systems, still under development at the time, were used
to port software, both applications and system software, to the new architecture.
We also used this opportunity to gain experience with the new control system
and runtime environment.

In October of 2007, we took delivery of our first batch of BG/P racks, with
delivery and assembly continuing until December. Friendly users have been
present on the system since. At the time of this writing, a small development
system, Surveyor, is open for general use, while the larger system, Intrepid has
eight compute node racks in production and thirty-two more in “early science”

5



mode. These last thirty-two racks are in the process of transitioning to produc-
tion.

The administrative team of this system is fairly seasoned; many are veterans
of other large HPC centers. In anticipation of Intrepid, we each had concerns
about different potential system management issues. Many of these concerns
focused around standard concerns in large systems: scalability, fault tolerance,
and general robustness. To our surprise, several of the issues that we expected
to be problematic were handled well by the system, while others proved to be
difficult issues to handle. We will discuss several of these in detail throughout
the rest of this section.

3.1 Control System Issues

As we mentioned earlier, we had expected to encounter scalability issues with the
Blue Gene control system. Each BG/P system is managed by a single instance
of the control system running on a single service node. Running a system the
size of Intrepid with a single control system seemed to be pushing the limits; we
had anticipated trouble. On the contrary, control system scalability, thus far,
as not been an issue for us. Instead, control system serviceability has been a
bigger issue.

Due to the system’s reliance on a single instance of the control system,
control system restarts are catastrophic; the system must be drained of jobs and
no new jobs can be started until the restart has completed. We encountered
several bugs in the control system early in the deployment process that caused
critical failures, requiring a restart control system to reclaim resources. While
these issues have been fixed, we are still vulnerable to this behavior when control
system problems occur. When the control system goes south due to unexpected
system behavior, the entire system must be idled.

The control system workload has three major components: partition boot-
ing, RAS messaging, and state management. Increases in system size have the
expected effect on the control system workload; both booting and RAS messag-
ing grow with the system size. Job size and length also have a dramatic impact
on the control system workload. The boot process scales non-linearly (in a good
way) with the number of nodes, so a single large job boots more quickly than
two half-sized jobs. Job length controls how often the boot process and job
setup and teardown occur, so longer jobs are gentler on the system.

In this section, we discuss issues related to control system scalability and
serviceability. We proceed through the three major areas of the control system,
describing our workload, decisions we have made and their combined impact.

3.1.1 Node Boot

On of the main tasks performed by the BG/P control system is providing the
node boot infrastructure. The boot process on BG/P systems is highly par-
allelized, and hence scalable. However, this scalability comes at a cost. The
boot process consists of a variety of tasks operating in parallel; any of these

6



can fail. The robustness of the boot process has been improved through the
use of simple mechanisms for system boot; due to the integrated nature of this
system, standards like PXE need not be applied. Instead, the control system
uses a Joint Test Action Group (JTAG) network to load kernels on the compute
complex. This network provides low-level access capabilities to individual hard-
ware components in the compute complex. It has a limited hardware broadcast
capability which greatly improves the scalability of the boot process.

After the kernels have been loaded onto the compute complex, the compute
nodes boot a custom light-weight kernel, called the CNK (compute node ker-
nel). The I/O nodes boot Linux, start services consumed by compute nodes,
bring up external networking, and mount all filesystems. A majority of boot
problems occur when the compute complex is interfaced with the external ser-
vice infrastructure. In particular, these problems happen during network and
filesystem bringup.

As we mentioned earlier, due to limitations in the BG/P runtime system,
nodes must be rebooted between jobs if their partition configuration changes.
In light of this restriction, and other factors discussed later, we have opted to
reboot nodes between each job. Due to this operational decision, partitions are
rebooted in advance of each job. The boot process is sufficiently quick to make
this convenient; a 16 rack (64K task) partition boots in less than 5 minutes.
This performance is a marked departure for the boot process on commodity
systems, where network boots are considerably slower and more fragile.

Despite this relatively low cost, this approach has other tradeoffs. A higher
load is placed on the control system, due to the increased frequency of node
boots. Also, while the boot process itself is scalable, I/O and network related
problems do occasionally occur during the boot process. An increased frequency
of node boots increases the possibility of this occurrence.

On the plus side, per-job node reboots reduce the ability of latent state to
impact jobs; the system starts from a clean slate for each job. This makes job
performance consistent and reproducible. Moreover, it minimized the occur-
rences of idiosyncratic software problems. On the balance, this decision has
been the right one; we are convinced this policy has allowed us to avoid far
more problems than it caused.

Debugging boot problems requires a wide view of the activities of all of the
components included in a partition. Failures fall into two basic categories: single
component failures and workload dependent failures. Single component failures,
of course, are far easier to diagnose that workload dependent failures; however,
even single component failures can be difficult to locate.

The most frequent sort of single component failures cause network or filesys-
tem failures on I/O nodes. I/O nodes use a simplified Linux boot process that
runs a series of configuration scripts. The boot process is fundamentally serial;
I/O nodes independently start up, and are not made aware of failures on other
nodes. Even if failures can be locally detected, they are not adequately commu-
nicated to other components in the system. Direct access to the RAS system
is not conveniently available from this context, however, enhancements in this
area are forthcoming.

7



Load-related errors can also cause issues on the network during large-scale
partition boots. Because I/O nodes are rebooted along with compute nodes
for each job, the network must be able to properly cope with large numbers of
nodes frequently leaving and joining the network. All the while, I/O is being
performed for other active jobs. Workloads of this sort have triggered a variety
of switch firmware bugs, all of which have been difficult to replicate. When these
problems occur, they are painful to troubleshoot and resolve. We currently have
no mechanisms that help us with this process.

3.1.2 RAS Messaging

The BG/P control system includes a scalable logging framework for RAS events.
These events are generated in a variety of conditions corresponding to hardware
and software failures. When software failures occur, they frequently occur across
an entire job. Because large jobs are common on Intrepid, these errors can cause
up to 160,000 RAS messages per incident. This count corresponds to a RAS
event per task on a full-system job. Even a more modest job size could easily
result in upwards of 32,768 events for a single error. The control system also
stores a variety of data about system hardware and current and historical jobs.

This volume of logging data cannot be retained indefinitely. Even though
Intrepid has been in operation for less than a year, we already face difficult
data retention policy questions. The amount of stored data has a direct impact
on the performance of the control system; as more data is added, queries take
longer. Ideally, data would be retained forever, to allow for long-term trend
analysis; this is clearly not possible.

The introduction of a data-intensive system like this into system manage-
ment is an abrupt departure from the usual approach used on HPC systems.
We were frankly unprepared to deal with data and transaction volumes at this
level. In the last few months, we have added a dedicated DBA to the system
management staff; this appears to be improving the situation.

The scalability of the RAS messaging infrastructure itself has not been a
problem; during acceptance tests we were able to successfully simulate intense
storms of RAS messages without issue. The system is even responsive during
these situations.

The RAS subsystem is a critical resource for debugging system issues, though
the volumes of data involved make this task somewhat difficult. These issues
are discussed detail in Section 3.2.3.

3.1.3 Partition State Management

The final role of the BG/P control system is to track compute system states
through the partition and job lifecycles. This process is scalable, however, it is
the largest current source of serviceability problems. In some cases, partitions
end up in a state where they cannot be reclaimed. When this occurs, only a
full control system restart can restore the partition to operation. In order to
perform a control system restart, the machine needs to be drained of all jobs,

8



resulting in diminished utilization. This problem has posed the largest issue
of all of the control system issues mentioned in this section. While IBM has
been quite responsive, and bugs have usually been fixed relatively quickly, the
potential for trouble remains. This is the main detriment caused by the control
system’s implementation as a single scalable component.

3.2 Fault Management

Large scale systems are more sensitive to hardware failure than decoupled sys-
tems. This sensitivity occurs due to the properties of parallel workloads; many
HPC applications will fail outright upon single component failure. Moreover,
the increase in component counts in large-scale systems cause failures to occur
more often.

Some of the fault management work on Intrepid consists of traditional com-
ponent diagnosis and replacement, however, the scale and workload of the sys-
tem makes failure isolation difficult. Because of this, more sophisticated tech-
niques are to discover failing components.

Intrepid also has a number of useful features for fault management. The
compute complex ships with comprehensive hardware diagnostics. The RAS
system provides detailed information about unexpected hardware and software
events at runtime.

In this section, we will discuss role of system diagnostics in system manage-
ment operations, the processes employed between runs of the diagnostic system
and use of the RAS system in debugging.

3.2.1 System Diagnostics

The Blue Gene system ships with a set of diagnostic routines. These tests verify
the proper function of all components in the system. While the full set of tests
are quite comprehensive and accurate, they are quite time consuming to run.
A single rack full diagnostics takes on the order of an hour to run diagnostics
and currently a maximum of two racks may be run in parallel. The cost to
run regular full diagnostics on a system this size is simply unreasonable at this
point. In order to guide regular diagnostics, IBM has developed a smaller,
general health check that can be run in parallel across the full 40 rack system
in a reasonable amount of time (under two hours). This general test can call
out problem areas which can later have a full diagnotics test suite run against
them.

These diagnostics greatly improve our lives; at the same time, they present
us with a difficult choice. Diagnostics are able to discover marginal hardware
before it has failed outright, so we benefit from frequent diagnostics. On the
other hand, diagnostics monopolize system resources, reducing the number of
cycles delivered to users. This issue is similar to the one faced by users choosing
a checkpoint frequency in parallel jobs[5].

The addition of the general health check capability and more accurate as-
sessments of hardware failure rates will allow us to pick a reasonable frequency

9



for system diagnostics. That said, hardware failures will always occur in the in-
tervals between diagnostic runs, so manual troubleshooting techniques are also
needed.

3.2.2 Diagnostic Search

Regardless of the quality and frequency of system diagnostics, unexpected fail-
ures will still occur. When they do, users report erroneous system behavior.
This behavior must be diagnosed by the system administrators. Parallel systems
and workloads are problematic in this regard. Large numbers of components
operate in parallel to accomplish a given task; a single failure in this context
frequently causes overall process failure.

Much of the BG/P’s scalability results from aggregation. While aggregation
is good for scalability, it can have a detrimental effect on diagnostic procedures.
Grouping individual components into parallel, aggregated process often obscures
the source of failures. Incorrect collective behavior is observed, but that alone
does not provide enough data to isolate the cause.

In this case, we use a binary search of system hardware to isolate the failing
component. Luckily, most tasks can be run on partitions of arbitrary size, so we
can use the same test on smaller partitions until a cause emerges. This technique
is quite effective; it provides a fast path to isolate a faulty midplane. Once a
midplane is isolated, system diagnostics can be performed without affecting
other midplanes. This combination of search processes and system diagnostics
has been an effective tool for faulty hardware isolation, even when problems
occur in large groups of components.

3.2.3 RAS-based Debugging

Problem identification is substantially harder on Intrepid due to the system
architecture and workload. Many operational issues on Intrepid do not result
in a single log message that describes the issue. Rather, problem identification
consists of the correlation of log data from a variety of locations. In addition to
RAS events and control system data, many other components in the system also
log information in a variety of formats. I/O nodes and service infrastructure
nodes run Linux and produce standard logs.

Identification of problems in real-time or even near-real-time requires the
correlation of events from a large number of sources potentially entering the sys-
tem at a high rate. While several correlation frameworks exist and are publicly
available[6, 7], correlation at this scale is an open research issue. Our current
approaches to these problems use small volumes of data, heuristics, and intu-
ition, to a reasonably good effect. However, progress on this front would greatly
improve our ability to recognize subtle problems in a more timely manner.

10



3.3 Management Effort

Intrepid is administered by a team of three full-time system administrators and
a DBA. Assistance from others provides for off-hours coverage and user support.
Two of these administrators are primarily concerned with the compute complex
and control system, while the other manages the service infrastructure. This
division is purely practical; the service infrastructure requires much more daily
administration effort, scaled for system size, than the compute complex does.

Considering the relative sizes of the systems, this ratio of administration
effort is surprising; the 40960 node compute complex only takes twice the op-
eration effort as a 200 node commodity system. We have determined a variety
of factors that play a part in the decreased administration costs of the compute
complex. In this section, we will contrast each of these with the traditional
model used in commodity systems.

3.3.1 Persistence

One major difference between the service infrastructure and the compute com-
plex is the workload. The compute complex is a consumer of services, and is
frequently rebooted. On the other hand, the service infrastructure provides all
services consumed by the compute complex. In particular, the compute complex
interacts with the control system and several file systems served from storage
nodes.

Frequent reboots of the compute complex, as new jobs are run, minimize
the amount of problematic state that can be accumulated. This approach is
not possible on the service infrastructure as the services provided must persist
beyond a single job. This need for continuity makes the service infrastructure
far more difficult to administer than the compute complex.

3.3.2 Configuration Complexity

Each half of the system uses a different configuration methodology. When a
partition is booted, the same OS image is sent to all compute nodes; a (different)
single OS image is sent to all I/O nodes as well. Each of these OS images contains
the union of all configuration data needed for all nodes, yet still remains quite
small. Frequently these images are less than 16 MB.

By contrast, commodity systems running standard distributions of Linux
have a higher configuration requirement. Bcfg2[3] configurations for Linux sys-
tems configured in the service infrastructure contain information about nearly
800 aspects of system configuration; these configuration specifications can be
upwards of a megabyte in total. This difference is quite striking; the configu-
ration burden on compute nodes is substantially lower than that of commodity
systems.

The reduced complexity of compute complex configurations has both positive
and negative repercussions. The compute complex is substantially less agile than
we, as administrators, have become accustomed to with commodity systems. In
an HPC workload, with relatively small numbers of large jobs, this shortcoming

11



has not yet posed a serious problem to us. We anticipate this to become more
of an issue as sites start to use BG/P-style systems for varied workloads.

Moreover, for the reasons described above, all configuration management
must be performed incrementally on the service infrastructure, due to service
continuity requirements. Incremental reconfiguration processes are clearly more
error-prone and resource intensive. Incremental approaches have a much higher
burden in terms of compliance monitoring. Due to the frequency of partition
reboots in the compute complex, incremental approaches are not needed as
drastically.

3.3.3 Hardware Robustness

The compute complex hardware is substantially more robust than even server-
grade commodity hardware. The addition of robust diagnostics make the opera-
tion of the compute complex considerably easier than the service infrastructure,
or any other commodity system. While we face issues in isolating failing hard-
ware in the compute complex, this process still takes less time than maintanance
activities in the service infrastructure. As purely annecdotal evidence, we have
replaced as many compute nodes as we have serviced fileservers during system
operations. This demonstrates the drastic difference between the failure rates
in the different parts of the system.

4 Conclusions

In this paper, we have provided a discussion of our experiences managing In-
trepid, a large-scale Blue Gene/P system. Our main operational issues focus
around serviceability and fault management. One striking finding was the rel-
ative level of effort required to operate the halves of the system. Due to the
capabilities provided by the BG/P control system and RAS infrastructure sys-
tem management efficiency is drastically higher in the compute complex com-
pared with the service infrastructure. For this reason, we anticipate that design
choices similar to those made by the BG/P design team will become common in
other systems as well. System administrators will have no choice but to cope.

4.1 Applicability to Other Environments

System sizes have been on the rise for the last two decades and this trend shows
no sign of slowing. Meanwhile, the relative costs of administration and main-
tenance of these systems has continued to grow. The relatively low operations
cost and high scalability of integrated systems like the IBM Blue Gene/P or
other integrated MPP systems make them appealing for wider scale use. How-
ever, these benefits come at a substantial complexity cost. Nonetheless, IBM
has begun to adapt Blue Gene/P systems to non-HPC workloads[8].

Virtualization and cloud computing have become popular recently. Large
scale systems, whether composed of real hardware or virtual nodes pose many

12



similar problems in administration. These systems, once they grow to a sufficient
size, will experience many of the same management and problem determinations
issues that we have seen on Intrepid.

Consolidated systems such as these will introduce complex interdependencies
between components and even between nodes in some cases. I/O starvation
has long been a problem in the HPC space. It has become a pressing issue
in virtualized environments as well. As the number of entities competing for
resources in virtualized environments grows, administrators must be able to
diagnose multi-system, workload-dependent issues in an effective way.

Moreover, administrators are frequently tasked with the operation of systems
of increasing size without corresponding increases in staffing. These issues will
be exaserbated in virtual environments, where new virtual machine instances
are effectively free.

4.2 Implications for System Software and Tools

Our experiences have a variety of implications for system management tool
developers. Scalability has long been the the boogy-man of the system software
world. Perhaps it isn’t as frightening as everyone has been assuming. Certainly
there are cases where scalability is a dire concern, but this is not universally the
case. A more nuanced understanding of service scalability is needed.

At the same time, in some cases, scalable operations are required. These
mechanisms cost. For example, the boot process uses a hardware broadcast
capability in order to scale. In terms of configuration, this approach is a step
backwards to the days of shared NFS root file systems. In this case, we have
lost a substantial amount of flexibility, compared to modern Linux systems.

Data analysis is much more difficult than we had initially anticipated. Real-
time analysis of our volume of data is not possible with the current generation of
publicly available analysis tools such as Sec[6]. We are unsure that commercial
tools will scale to this level, although large scale web service providers probably
have home-grown tools in this space. This is one area where a scalable, most
likely parallel, approach will be needed.

Collective approaches to system management need to be developed. While
some initial work in this area has occurred[9, 10], collective approaches to sys-
tem management have not yet become convenient enough to deploy in practice.
For example, a reasonable distributed control mechanism could be used to pro-
vide fine-grained configuration management capabilities in a scalable fashion.
Similarly, distributed approaches to data correlation could provide the scaling
needed on systems of this sort.

Finally, much of the configuration complexity present in traditional systems
have been eliminated outright from this architecture. In some cases, we find
functionality missing, however, on balance, we have found the system quite
usable. Might we be near the end of our collective configuration nightmare?

13



Author Biographies

Rick Bradshaw is currently a Senior Systems Administrator for the Mathematics
and Computer Science Division of Argonne National Laboratory. His interests
are mainly focused around configuration management, and experimental and
HPC computing. He holds a bachelors of Computer Science from Edinboro
University of Pennsylvania, and is currently working on a Masters in Computer
Science at the University of Chicago.

Andrew Cherry is a UNIX system administrator who has worked on a va-
riety of systems, in both commercial and non-commercial environments. He
is currently an HPC system administrator at Argonne National Laboratory,
where he is responsible for day-to-day management of Argonne’s Blue Gene/P
supercomputer.

Susan Coghlan has worked on parallel and distributed computers for 20
years, from developing scientific applications, such as her work on a model of
the human brain at the Center for NonLinear Science at Los Alamos to man-
aging ultra-scale supercomputers like ASCI Blue Mountain, a 6144 processor
supercomputer at Los Alamos National Laboratory. In her current role as As-
sociate Division Director and Director of Operations for the Argonne Leadership
Computing Facility, she is responsible for the installation and operation of the
world’s fastest open science computer (Top500, June 2008) the ALCF’s 557TF
Blue Gene/P production system. She is well known within the HPC community,
and has presented numerous tutorials, lectures, and papers on her work. When
not fiddling with some of the world’s largest computers, she does so with other
Irish traditional musicians.

Narayan Desai is a researcher in the MCS Division of Argonne National
Lab. He specializes in system software, particularly as it relates to system
management, fault tolerance and scheduling.

Cory Lueninghoener is an HPC System Administrator with the Leadership
Computing Facility at Argonne National Laboratory. When not keeping a 40-
rack BlueGene/P system running, he spends time hacking at tools like Bcfg2.
Cory can be reached at lueningh@alcf.anl.gov.

William Scullin is a Senior High Performance Computing Systems Adminis-
trator at Argonne National Lab’s Leadership Computing Division. His favorite
systems administration tools after Bcfg2 and BlueGene Navigator are macro-
mancy and python, though that may be repetitive. Outside of work, he seeks
to raise awareness of tyrophagia.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

This work for the Argonne Leadership Computing Facility was supported by

14



the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357

References

[1] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. Giampapa,
R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Lieb-
sch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas,
“Overview of the blue gene/l system architecture,” IBM Journal of Re-
search and Development, vol. 49, no. 2-3, pp. 195–212, 2005.

[2] Innovative and novel computational impact on theory and experiment
(incite) program. US Department of Energy. [Online]. Available:
http://www.er.doe.gov/ascr/incite/index.html

[3] N. Desai. Bcfg2 web site. Argonne National Laboratory. [Online].
Available: http://trac.mcs.anl.gov/projects/bcfg2

[4] Nagios web site. Nagios Enterprises, LLC. [Online]. Available: http:
//www.nagios.org

[5] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. S. Gupta, “Performance
implications of periodic checkpointing on large-scale cluster systems,” in
IPDPS. IEEE Computer Society, 2005.

[6] J. P. Rouillard, “Real-time log file analysis using the simple event correlator
(sec),” in LISA. USENIX, 2004, pp. 133–150.

[7] Splunk web site. Splunk, Inc. [Online]. Available: http://www.splunk.com

[8] J. Appavoo, V. Uhlig, and A. Waterland, “Project kittyhawk: building
a global-scale computer: Blue gene/p as a generic computing platform,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 1, pp. 77–84, 2008.

[9] C. McEniry, “Moobi: A thin server management system using bittorrent,”
in LISA. USENIX, 2007, pp. 253–260.

[10] N. Desai, R. Bradshaw, A. Lusk, and E. Lusk, “MPI cluster system soft-
ware,” in Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, ser. Springer Lecture Notes in Computer Science, D. Kran-
zlmuller, P. Kacsuk, and J. Dongarra, Eds., no. 3241. Springer, 2004, pp.
277–286.

15

http://www.er.doe.gov/ascr/incite/index.html
http://trac.mcs.anl.gov/projects/bcfg2
http://www.nagios.org
http://www.nagios.org
http://www.splunk.com

	Introduction
	System Background
	Intrepid Configuration
	System Architecture
	The BG/P Control System
	Service Infrastructure Management

	Experiences and Observations
	Control System Issues
	Node Boot
	RAS Messaging
	Partition State Management

	Fault Management
	System Diagnostics
	Diagnostic Search
	RAS-based Debugging

	Management Effort
	Persistence
	Configuration Complexity
	Hardware Robustness


	Conclusions
	Applicability to Other Environments
	Implications for System Software and Tools


