Toward Loosely Coupled Programming
on Petascale Systems

Toan Raicu”, Zhao Zhang', Mike Wilde™, Tan Foster” ', Pete Beckman”, Kamil Iskra”, Ben Clifford"

*Department of Computer Science, University of Chicago, Chicago, IL, USA
“Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA
*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA
iraicu@cs.uchicago.edu, zhaozhang@uchicago.edu, {wilde,foster,beckman,iskra}@mecs.anl.gov, benc@ci.uchicago.edu

Abstract— We have extended the Falkon lightweight task
execution framework to make loosely coupled programming on
petascale systems a practical and useful programming model.
This work studies and measures the performance factors
involved in applying this approach to enable the use of petascale
systems by a broader user community, and with greater ease.
Our work enables the execution of highly parallel computations
composed of loosely coupled serial jobs with no modifications to
the respective applications. This approach allows a new—and
potentially far larger—class of applications to leverage petascale
systems, such as the IBM Blue Gene/P supercomputer. We
present the challenges of I/O performance encountered in making
this model practical, and show results using both
microbenchmarks and real applications from two domains:
economic energy modeling and molecular dynamics. Our
benchmarks show that we can scale up to 160K processor-cores
with high efficiency, and can achieve sustained execution rates of
thousands of tasks per second.

Keywords-many task computing; high throughput computing;
loosely coupled applications; petascale; Blue Gene; Falkon; Swift

I. INTRODUCTION

Emerging petascale computing systems, such as IBM’s
Blue Gene/P [1], incorporate high-speed, low-latency
interconnects and other features designed to support tightly
coupled parallel computations. Most of the applications run on
these computers have a single program multiple data (SMPD)
structure, and are commonly implemented by using the
Message Passing Interface (MPI) to achieve the needed inter-
process communication.

We want to enable the use of these systems for task-parallel
applications, which are linked into useful workflows through
the looser task-coupling model of passing data via files
between dependent tasks. This potentially larger class of task-
parallel applications is precluded from leveraging the
increasing power of modern parallel systems because the lack
of efficient support in those systems for the “scripting”
programming model [2]. With advances in e-Science and the
growing complexity of scientific analyses, more scientists and
researchers rely on various forms of scripting to automate end-

This work was supported in part by the NASA Ames Research Center
GSRP grant number NNAO6CB89H, the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357, and the National Science Foundation
under grant OCI-0721939.

to-end application processes involving task coordination,
provenance tracking, and bookkeeping. Their approaches are
typically based on a model of loosely coupled computation, in
which data is exchanged among tasks via files, databases or
XML documents, or a combination of these. Vast increases in
data volume combined with the growing complexity of data
analysis procedures and algorithms have rendered traditional
manual processing and exploration unfavorable as compared
with modern high performance computing processes automated
by scientific workflow systems. [3]

The problem space can be partitioned into four main
categories (Figure 1). 1) At the low end of the spectrum (low
number of tasks and small input size), we have tightly coupled
MPI applications (white). 2) As the data size increases, we
move into the analytics category, such as data mining and
analysis (blue); MapReduce [4] is an example for this category.
3) Keeping data size modest, but increasing the number of
tasks moves us into the loosely coupled applications involving
many tasks (vellow); Swift/Falkon [5, 6] and
Pegasus/DAGMan [7] are examples of this category. 4)
Finally, the combination of both many tasks and large datasets
moves us into the data-intensive many task computing category
(green); examples of this category are Swift/Falkon and data
diffusion [8], Dryad [9], and Sawzall [10]. This paper focuses
on the third category, at the largest scales of today’s
supercomputers on hundreds of thousands of processors.

Input o *
Data
Size Data
Analysis, Big Data and
Mining Many Tasks
Med

Many Loosely Coupled Tasks

Low

\

1 1K 1M
Number of Tasks

Figure 1: Problem types with respect to data size and number of tasks

A. Many-Task Computing (MTC)

Grids have been the preferred platform for loosely coupled
applications that tend to be managed and executed through
workflow systems or parallel programming systems. These
loosely coupled applications make up a new class of
applications called Many-Task Computing (MTC), which are
composed of many tasks (both independent and dependent
tasks) that can be individually scheduled on many different
computing resources across multiple administrative boundaries
to achieve some larger application goal. MTC is reminiscent of
high throughput computing (HTC); MTC differs from HTC,
however, in the emphasis on using much large numbers of
computing resources over short periods of time to accomplish
many computational tasks, where the primary metrics are in
seconds (e.g., FLOPS, tasks/sec, MB/sec I/O rates). HTC, on
the other hand, requires large amounts of computing for longer
times (months and years, rather than hours and days), where the
primary metrics are generally in operations per month) [11].

MTC denotes high-performance computations comprising
multiple distinct activities, coupled via file system operations
or message passing. Tasks may be small or large, uniprocessor
or multiprocessor, compute-intensive or data-intensive. The set
of tasks may be static or dynamic, homogeneous or
heterogeneous, loosely coupled or tightly coupled. The
aggregate number of tasks, quantity of computing, and volumes
of data may be extremely large. Is MTC really different enough
to justify coining a new term? There are certainly other choices
we could have used instead, such as multiple program multiple
data (MPMD), high throughput computing, workflows,
capacity computing, or embarrassingly parallel.

MPMD is a variant of Flynn’s original taxonomy [12], used
to denote computations in which several programs each operate
on different data at the same time. MPMD can be contrasted
with SPMD, in which multiple instances of the same program
each execute on different processors, operating on different
data. MPMD lacks the emphasis that a set of tasks can vary
dynamically. High throughput computing [11], a term coined
by Miron Livny within the Condor project [13], to contrast
workloads for which the key metric is not floating-point
operations per second (as in high performance computing) but
“per month or year.” MTC applications are often just as
concerned with performance as is the most demanding HPC
application; they just don't happen to be SPMD programs. The
term “workflow” was first used to denote sequences of tasks in
business processes, but the term is sometimes used to denote
any computation in which control and data passes from one
“task” to another. We find it often used to describe many-task
computations (or MPMD, HTC, MTC, etc.), making its use too
general. “Embarrassingly parallel computing” is used to denote
parallel computations in which each individual (often identical)
task can execute without any significant communication with
other tasks or with a file system. Some MTC applications will
be simple and embarrassingly parallel, but others will be
extremely complex and communication-intensive, interacting
with other tasks and shared file-systems.

Is “many task computing” a useful distinction? Perhaps we
could simply have said “applications that are communication-
intensive but are not naturally expressed in MPI”. Through the

new term MTC, we are drawing attention to the many
computations that are heterogeneous but not “happily” parallel.

B. Hypothesis

We claim that MTC applications can be executed
efficiently on today’s supercomputers; this paper provides
empirical evidence to prove our hypothesis. The paper also
describes the set of problems that must be overcome to make
loosely coupled programming practical on emerging petascale
architectures: local resource manager scalability and
granularity, efficient utilization of the raw hardware, shared file
system contention, and application scalability. We address
these problems, and identify the remaining challenges that need
to be overcome to make loosely coupled supercomputing a
practical reality. Through our work, we have enabled a Blue
Gene/P to efficiently support loosely coupled parallel
programming without any modifications to the respective
applications (except for recompilation), enabling the same
applications that execute in a distributed Grid environment to
be run efficiently on a supercomputer. The Blue Gene/P that
we refer to in this paper is the new IBM Blue Gene/P
supercomputer (also known as Intrepid) at the U.S. Department
of Energy's Argonne National Laboratory, which is ranked
number 3 in the Top500 rankings [15] with 160K processor-
cores with a Rpeak of 557 TF and Rmax of 450 TF.

We validate our hypothesis by testing and measuring two
systems, Swift [5, 14] and Falkon [6], which have been used to
execute large-scale loosely coupled applications on clusters and
Grids. We present results for both microbenchmarks and real
applications executed on the Blue Gene/P. Microbenchmarks
show that we can scale to 160K processor-cores with high
efficiency, and can achieve sustained execution rates of
thousands of tasks per second. We also investigated two
applications from different domains, economic energy
modeling and molecular dynamics, and show excellent
application scalability, speedup and efficiency as they scale to
128K cores. Note that for the remainder of this paper, we will
use the terms processors, CPUs, and cores interchangeably.

C. Why Petascale Systems for MTC Applications?

One could ask, why use petascale systems for problems that
might work well on terascale systems? We point out that
petascale scale systems are more than just many processors
with large peak petaflop ratings. They normally come well
balanced, with proprietary, high-speed, and low-latency
network interconnects to give tightly-coupled applications that
use MPI good opportunities to scale well at full system scales.
Even IBM has proposed in their internal project Kittyhawk [16]
that the Blue Gene/P can be used to run non-traditional
workloads, such as those found in the general Internet, which
are by definition part of a loosely coupled system.

Four factors motivate the support of MTC applications on
petascale HPC systems.

1) The I/O subsystem of petascale systems offers unique
capabilities needed by MTC applications. For example,
collective I/O operations could be implemented to use the
specialized high-bandwidth and low-latency interconnects. We
have not explored collective 1/O operations in this work, but
will do so in future work. MTC applications could be

composed of individual tasks that are themselves parallel
programs, many tasks operating on the same input data, and
tasks that need considerable communication among
themselves. Furthermore, the aggregate shared file system
performance of a supercomputer can be potentially larger than
that found in a distributed infrastructure (i.e., Grid), with data
rates in the 8 GB/s range, rather than the more typical 0.1GB/s
to 1GB/s range of most Grid sites.

2) The cost to manage and run on petascale systems like the
Blue Gene/P is less than that of conventional clusters or Grids.
[16] For example, a single 13.9 TF Blue Gene/P rack draws 40
kilowatts, for 0.35 GF/watt. Two other systems that get good
compute power per watt consumed are the SiCortex with 0.32
GF/watt and the Blue Gene/L with 0.23 GF/watt. In contrast,
the average power consumption of the Top500 systems is 0.12
GF/watt [15]. Furthermore, we also argue that it is more cost
effective to manage one large system in one physical location,
rather than many smaller systems in geographically distributed
locations.

3) Large-scale systems inevitably have utilization issues.
Hence it is desirable to have a community of users who can
leverage traditional back-filling strategies to run loosely
coupled applications on idle portions of petascale systems.

4) Perhaps most important, some applications are so
demanding that only petascale systems have enough compute
power to get results in a reasonable timeframe, or to leverage
new opportunities. With petascale processing of ordinary
applications, it becomes possible to perform vast computations
quickly, thus answering questions in a timeframe that can make
a quantitative difference in addressing significant scientific
challenges or responding to emergencies. This work has
opened up the door for many important serial applications to
use emerging petascale systems.

II. RELATED WORK

Only recently have parallel systems with 100K cores or
more become available for open science research. Even scarcer
is experience or success with loosely coupled programming at
this scale. We found two papers [22, 23] that explored a similar
space, focusing on HTC on the IBM Blue Gene/L [18].

Cope et al. [22] aimed at integrating their solution as much
as possible in the Cobalt scheduling system (as opposed to
bringing in another system such as Falkon); their
implementation was on the Blue Gene/L using the HTC-mode
[21] support in Cobalt, and the majority of the performance
study was done at a small scale (64 nodes, 128 processors). The
results of Cope et al. were at least one order of magnitude
worse at small scales than the results we obtained in this paper,
and the performance gap would only increase with larger-scale
tests as their approach has higher overheads (i.e., nodes reboot
after each task, in contrast with simply forking another
process). Peter’s et al. from IBM also recently published some
performance numbers on the HTC-mode native support in
Cobalt [23], which show a similar one order of magnitude
difference between HTC-mode on Blue Gene/L and our Falkon
support for MTC workloads on the Blue Gene/P. Subsection
IV.C.1 compares and contrasts the performance between our

proposed system on the Blue Gene/P and the results presented
by Cope at al. [22] and Peters et al. [23].

In the world of high throughput computing, systems such as
Condor [13], MapReduce [4], Hadoop [24], and BOINC [25]
have used highly distributed pools of processors, but the focus
of these systems has not been on single highly parallel
machines such as those we focus on here. MapReduce is
typically applied to a data model consisting of name/value
pairs, processed at the programming language level. It has
several similarities to the approach we apply here, in particular
its ability to spread the processing of a large dataset to
thousands of processors. However, it is far less amenable to the
utilization and chaining of exiting application programs, and it
often involves the development of custom filtering scripts. We
have compared our work with Condor glide-ins [16] in the past
[6], but our work focuses on performance and efficiency, while
Condor emphasizes more on robustness and recoverability,
which limits its efficiency for MTC applications in large-scale
systems. An approach by Reid called “task farming” [26], also
at the programming language level, has been evaluated on the
Blue Gene/L as a proof of concept, but offered no performance
evaluation for comparison, and required that applications be
modified to run over the proposed middleware.

III. REQUIREMENTS AND IMPLEMENTATION

The contribution of this work is the ability to enable a new
class of applications—large-scale and loosely coupled—to
efficiently execute on petascale systems, which are traditionally
HPC systems. This is accomplished primarily through three
mechanisms: 1) multi-level scheduling, 2) efficient task
dispatch, and 3) extensive use of caching to minimize shared
infrastructure (e.g. file systems and interconnects).

Multi-level scheduling is essential on a system such as the
Blue Gene/P because the local resource manager (LRM, Cobalt
[27]) works at a granularity of psets [28], rather than individual
computing nodes or processor cores. On the Blue Gene/P, a
pset is a group of 64 quad-core compute nodes and one I/O
node. Psets must be allocated in their entirety to user
application jobs by the LRM, which imposes the constraint that
the applications must make use of all 256 cores. Tightly
coupled MPI applications are well suited for this constraint, but
loosely coupled applications generally have many single
processor jobs, each with possibly unique executables and
parameters. Naively running such applications on the Blue
Gene/P using the system’s Cobalt LRM would yield a
utilization of 1/256. We use multi-level scheduling to allocate
compute resources from Cobalt at the pset granularity, and then
make these resources available to applications at a single
processor core granularity. Using this multi-level scheduling
mechanism, we are able to launch a unique application, or the
same application with unique arguments, on each core, and to
launch such tasks repetitively throughout the allocation period.
This capability is made possible through Falkon [6] and its
resource provisioning mechanisms.

A related obstacle to loosely coupled programming when
using the native Blue Gene/P LRM is the overhead of
scheduling and starting resources. The Blue Gene/P compute
nodes are powered off when not in use and must be booted
when allocated to a job. As the compute nodes do not have

local disks, the boot-up process involves reading the
lightweight IBM compute node kernel (or Linux-based
ZeptoOS [29] kernel image) from a shared file system, which
can be expensive if compute nodes are allocated and de-
allocated frequently. Using multi-level scheduling allows this
high initial cost to be amortized over many jobs, reducing it to
an insignificant overhead. With the use of multi-level
scheduling, executing a job is reduced to its bare and
lightweight essentials: loading the application into memory,
executing it, and returning its exit code — a process that can
occur in milliseconds. Contrast this with the cost of rebooting
compute nodes, which is on the order of multiple seconds (for a
single node) and can be as high as a thousand seconds in the
case of concurrently booting 40K nodes (see Figure 3).

The second mechanism that enables loosely coupled
applications to be executed on the Blue Gene/P is a streamlined
task submission framework (Falkon [6]). Falkon relies on
LRMs for many functions (e.g., reservation, policy-based
scheduling, accounting) and client frameworks such as
workflow systems or distributed scripting systems for others
(e.g., recovery, data staging, job dependency management).
This specialization allows it to achieve several orders of
magnitude higher performance (2534 tasks/sec in a Linux
cluster environment, 3186 tasks/sec on the SiCortex, and 3071
tasks/sec on the Blue Gene/P, compared to 0.5 to 22 jobs per
second for traditional LRMs such as Condor [13] and PBS [30]
— see section IV.C). These high throughputs are critical in
running large number of tasks on many processors as
efficiently as possible. For example, running many 60-second
tasks on 160K processors on the Blue Gene/P requires that we
sustain an average throughput of 2730 tasks/sec; considering
the best LRM performance of 22 tasks/sec [31], we would need
two hour long tasks to get reasonable efficiency.

The third mechanism we employ for enabling loosely
coupled applications to execute efficiently on the Blue Gene/P
is extensive caching of application data to allow better
application scalability by minimizing the use of shared file
systems. Since workflow systems frequently employ files as
the primary communication medium between data-dependent
jobs, having efficient mechanisms to read and write files is
critical. The compute nodes on the Blue Gene/P do not have
local disks, but they have both a shared file system (GPFS [32])
and local file system implemented in RAM (“ramdisk™). We
make extensive use of the ramdisk local file system, to cache
files such as application scripts and binary executables, static
input data that is constant across many jobs running an
application, and in some cases output data from the application
until enough data is collected to allow efficient writes to the
shared file system. We found that naively executing
applications directly against GPFS yielded unacceptably poor
performance, but with successive levels of caching we
increased the efficiency to within a few percent of ideal.

The caching we refer to in this work is a different
mechanism from the data diffusion described in previous work
[34, 35, 8]. Data diffusion deals with dynamic data caching and
replication, as well as with data-aware scheduling. Because of
the network topology of the Blue Gene/P, and the architecture
changes in which we distributed the Falkon dispatcher (see
Section I11.B), where compute nodes are grouped into private

networks per pset (in groups of 256 CPUs) using the Tree
network, we have not been able to use data diffusion in its
current form on the Blue Gene/P. We have made good progress
in implementing TCP/IP over MPI to enable the use of the
Torus network for node-to-node communication, which should
allow us to test data diffusion on the BG/P; we will discuss this
more in the future work section. On the other hand, the simple
caching scheme we have employed on the Blue Gene/P deals
with two kinds of data: 1) static data (application binaries,
libraries, and common input data) that is cached at all compute
nodes, and the caches are reused for each task; and 2) dynamic
data (input data specific for a single task) that is cached on one
compute node, and tasks can run completely local in both
reading and writing data, and finally persisting the cache
contents to a shared file system. Note that dynamic data is only
used once by one task, and needs to be transferred from the
persistent storage location again if another task needs the same
input data. This simple caching scheme has proved to be quite
effective in scaling applications up to 128K processors, while
the same applications and workloads didn’t scale well beyond
8K processors. Our caching strategy is completely automated,
via a wrapper script around the application.

A. Swift and Falkon

To harness a wide array of loosely coupled applications that
have already been implemented and executed in clusters and
grids, we build on the Swift [5, 36] and Falkon [6] systems.
Swift enables scientific workflows through a data-flow-based
functional parallel programming model. It is a parallel scripting
tool for rapid and reliable specification, execution, and
management of large-scale science and engineering workflows.
The runtime system in Swift relies on the CoG Karajan [33]
workflow engine for efficient scheduling and load balancing,
and it integrates with the Falkon light-weight task execution
dispatcher for optimized task throughput and efficiency.

Swift and Falkon have been used in a variety of
environments from clusters, to multi-site Grids (e.g., Open
Science Grid [37], TeraGrid [38]), to specialized large
machines (SiCortex [39]), to supercomputers (e.g., Blue
Gene/P [1]). Large-scale applications from many domains (e.g.,
astronomy [40, 6], medicine [41, 6, 42], chemistry [36],
molecular dynamics [43], and economics [44, 45, 45]) have
been run at scales of up to millions of tasks on up to hundreds
of thousands of processors.

B. Implementation Details

Significant engineering efforts were needed to get Falkon to
work on systems such as the Blue Gene/P; this subsection
discusses these extensions.

Static Resource Provisioning: When using static resource
provisioning, an application requests a number of processors
for a fixed duration directly from the Cobalt LRM. For
example, the command “falkon-start-bgp-ram.sh prod 1024
60” submits a single job to Cobalt to the “prod” queue and asks
for 1024 nodes (4096 processors) for 60 minutes; once the job
goes into a running state and the Falkon framework is
bootstrapped, the application interacts directly with Falkon to
submit single processor tasks for the duration of the allocation.

Alternative Implementations: Performance depends
critically on the behavior of our task dispatch mechanisms. The
initial Falkon implementation was 100% Java, and made use of
GT4 Java WS-Core to handle Web Services communications.
[46] The Java-only implementation works well in typical Linux
clusters and Grids; but the lack of Java on the Blue Gene/L,
Blue Gene/P compute nodes, and SiCortex prompted us to re-
implement some functionality in C. To keep the
implementation simple yet able to support these specialized
systems, we used a simple TCP-based protocol (to replace the
prior WS-based protocol), internally between the dispatcher
and the executor. We implemented a new component called
TCPCore to handle the TCP-based communication protocol.
TCPCore is a component to manage a pool of threads that lives
in the same JVM as the Falkon dispatcher, and uses in-memory
notifications and shared objects for communication. For
performance reasons, we implemented persistent TCP sockets
so connections can be reused across tasks..

Distributed Falkon Architecture: The original Falkon
architecture [6] used a single dispatcher (running on one login
node) to manage many executors (running on compute nodes).
The architecture of the Blue Gene/P is hierarchical, in which
there are 10 login nodes, 640 I/O nodes, and 40K compute
nodes. This led us to the offloading of the dispatcher from one
login node (quad-core 2.5GHz PPC) to the many I/O nodes
(quad-core 0.85GHz PPC); Figure 2 shows the distribution of
components on different parts of the Blue Gene/P.

Login Nodes I/0 Nodes Compute Nodes
(x10) (x640) (x40K)
|
Client

Q)

Provisioner

Cobalt

Figure 2: 3-Tier Falkon Architecture for BG/P.

Experiments show that a single dispatcher, when running
on modern node with 4 to 8 cores at 2GHz+ and 2GB+ of
memory, can handle thousands of tasks per second and tens of
thousands of executors. As we ramped up our experiments to
160K processors (each executor running on one processor),
however the centralized design began to show its limitations.
One limitation (for scalability) was the fact that our
implementation maintained persistent sockets to all executors
(two sockets per executor). With the current implementation,
we had trouble scaling a single dispatcher to 160K executors
(320K sockets). Another motivation for distributing the
dispatcher was to reduce the load on login nodes. The system

administrators of the Blue Gene/P did not approve of the high
system utilization (both memory and processors) of a login
node for extended periods of time when we were running
intense MTC applications.

Our change in architecture from a centralized one to a
distributed one allowed each dispatcher to manage a disjoint set
of 256 executors, without requiring any inter-dispatcher
communication. The most challenging architecture change was
the additional client-side functionality to communicate and
load balance task submission across many dispatchers, and to
ensure that it did not overcommit tasks that could cause some
dispatchers to be underutilized while others queued up tasks.
Our new architecture solved both the scalability problem to
160K processors and the excess load on the login nodes.

Reliability Issues at Large Scale: We discuss reliability
only briefly, to explain how our approach addresses this critical
requirement. The Blue Gene/L has a mean-time-to-failure
(MTBF) of 10 days [18], which can pose challenges for long-
running applications. When running loosely coupled
applications via Swift and Falkon, the failure of a single node
affects only the task(s) being executed by the failed node at the
time of the failure. I/O node failures affect only their respective
psets (256 processors); these failures are identified by heartbeat
messages or communication failures. Falkon has mechanisms
to identify specific errors and act on them with specific actions.
Most errors are generally passed back up to the client (in this
case, Swift) to deal with them, but other (known) errors can be
handled by Falkon directly by rescheduling the tasks. Falkon
can suspend offending nodes if too many tasks fail in a short
period of time. Swift maintains persistent state that allows it to
restart a parallel application script from the point of failure, re-
executing only uncompleted tasks. There is no need for explicit
check-pointing as is the case with MPI applications; check-
pointing occurs inherently with every task that completes and is
communicated back to Swift.

IV. MICROBENCHMARKS PERFORMANCE

We use microbenchmarks to determine performance
characteristics and potential bottlenecks on systems with many
cores. We measure startup costs, task dispatch rates, and costs
for various file system operations (read, read+write, invoking
scripts, mkdir, etc.) on the shared file systems (GPFS) that we
use when running large-scale applications.

A. System Descriptions

The IBM Blue Gene/P supercomputer Intrepid [1, 47]
(hosted at Argonne National Laboratory) has quad-core
processors with a total of 160K cores. The Blue Gene/P is rated
at 557TF Rmax (450TF Rpeak) with 160K PPC450 processors
running at 850MHz, with a total of 80 TB of main memory.
The Blue Gene/P GPFS is rated at 8GB/s. In our experiments,
we use an alpha version of Argonne’s Linux-based ZeptoOS
[29] compute node kernel.

B. Startup Costs

Our first micro-benchmark captures the incremental costs
involved (see Figure 3) in booting the Blue Gene/P at various
scales (red), starting the Falkon framework (green), and
initializing the Falkon framework (blue). On a single pset (256

processors), it takes 125 seconds to prepare Falkon to process
the first task; on the full 160K processors, it takes 1326
seconds. At the smallest scale, starting and initializing the
Falkon framework constitutes 31% of the total time; but at
large scales, the boot time starts to dominate and on 160K
nodes the Falkon framework takes only 17% of total time. We
examine where the 1090 seconds is spent when booting
ZeptOS on 160K nodes. The largest part of this time (708
seconds) is spent mounting GPFS. The next big block of time
(213 seconds) is spent sending the kernels and ramdisks to the
compute and I/O nodes. Mounting NFS (to access system
software) takes 55 seconds. Starting various services from
NFS, such as SSH, takes 85 seconds. These costs account for
over 97% of the 1090 seconds required to boot the Blue
Gene/P.

M Initializing Falkon Resource
W Starting GT4 and Falkon Service
M Booting Partitions

1320 1
1200 |
1080
960
840
720
600
480
360
240
120
0
& &

Time (sec)

Number of Processors

Figure 3: Startup costs in booting the Blue Gene/P, starting the Falkon
framework, and initializing Falkon

C. Falkon Task Dispatch Performance

One key component to achieving high utilization of large-
scale systems is achieving high task dispatch and execute rates.
Figure 4 shows the dispatch throughout of Falkon across
various systems (Argonne/Univ. of Chicago Linux cluster,
SiCortex, and Blue Gene/P) for both versions of the executor
(Java and C, WS-based and TCP-based respectively) at
significantly larger scales.

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Throughput (tasks/sec)

ANL/UC, Java ANL/UC, C

SiCortex, C BlueGene/P, C BlueGene/P, C

5760 CPUs 4096 CPUs 163840 CPUs
1 service 1 service 1 service 1 service 640 services

Executor Implementation and Various Systems

200 CPUs 200 CPUs

Figure 4: Falkon dispatch throughputs across various systems

In previous work [6] we reported that Falkon with a Java
Executor and WS-based communication protocol achieves 487
tasks/sec in a Linux cluster (Argonne/Univ. of Chicago) with
256 CPUs, where each task was a “sleep 0” task with no I/O.
Our latest benchmarks for the Java Executor on a faster
machine achieved 604 tasks/sec and 2534 tasks/sec for the C
Executor (Linux cluster, 1 dispatcher, 200 CPUs). The rest of
the benchmarks only tested the C Executor as Java does not
have good support on either the SiCortex or the Blue Gene/P;
we achieved 3186 tasks/sec on the SiCortex (1 dispatcher, 5760
CPUs), 1758 tasks/sec on the Blue Gene/P with 1 dispatcher
(4096 CPUs), and 3071 tasks/sec on the Blue Gene/P with 640
dispatchers (163840 CPUs). The throughput numbers that
indicate “1 dispatcher” are tests done with the original
centralized dispatcher running on a login node. The last
throughput of 3071 tasks/sec was achieved with the dispatchers
distributed over 640 I/O nodes, each managing 256 processors.

1) Comparing Falkon to Other LRMs and Solutions

It is instructive to compare task execution rates achieved by
other local resource managers. In previous work [6], we
measured Condor (v6.7.2, via MyCluster [11]) and PBS
(v2.1.8) performance in a Linux environment (the same
environment where we test Falkon and achieved 2534 tasks/sec
throughputs). The throughput we measured for PBS was 0.45
tasks/sec and for Condor was 0.49 tasks/sec; other studies in
the literature have measured Condor’s performance as high as
22 tasks/sec in a research prototype called Condor J2 [31].

We also tested the performance of Cobalt (the Blue
Gene/P’s LRM), which yielded a throughput of 0.037
tasks/sec; recall that Cobalt also lacks the support for single
processor tasks, unless HTC-mode [21] is used. HTC-mode
means that the termination of a process does not release the
allocated resource and initiates a node reboot, after which the
launcher program is used to launch the next application. There
is still some management required on the compute nodes, as
exit codes from previous application invocations need to persist
across reboots (e.g. to shared file system), be sent back to the
client, and have the ability to launch an arbitrary application
from the launcher program. Running Falkon in conjunction
with Cobalt’s HTC-mode support yielded a 0.29 task/sec
throughput. We investigated the performance of HTC-mode on
the Blue Gene/L only at small scales, as we realized that it will
not be sufficient for MTC applications because of the high
overhead of node reboots across tasks; we did not pursue it at
larger scales, or on the Blue Gene/P.

As we discussed in Section II, Cope et al. [22] also explored
a similar space as we have, leveraging HTC-mode [21] support
in Cobalt on the Blue Gene/L. The authors conducted various
experiments, which we tried to replicate for comparison
reasons. The authors measured an overhead of 46.4+21.2
seconds for running 60 second tasks on 1 pset of 64 processors
on the Blue Gene/L. In a similar experiment running 64 second
tasks on 1 pset of 256 processors on the Blue Gene/P, we
achieve an overhead of 1.2+2.8 seconds, more than an order of
magnitude better. Another comparison is the task startup time,
which they measured to be on average about 25 seconds, but
sometimes as high as 45 seconds; the startup times for tasks in
our system are 0.842.7 seconds. Another comparison is average
task load time by number of simultaneously submitted tasks on

a single pset and executable image size of 8MB (tasks return
immediately, so the reported run time shows overhead). The
authors reported an average of 40~80 seconds for 32
simultaneous tasks on 32 compute nodes on the Blue Gene/L (1
pset, 64 CPUs). We measured our overheads of executing an
8MB binary to be 9.54+3.1 seconds on 64 compute nodes on the
Blue Gene/P (1 pset, 256 CPUs). Since these times include the
time it took to cache the binary in ramdisk, we believe these
numbers will remain relatively stable as we scale up to full
160K processors. Note that the work by Cope et al. is based on
Cobalt’s HTC-mode [21], which implies that they perform a
node reboot for every task, while we simply fork the
application as a separate process for each task.

Peter’s et al. also recently published some performance
numbers on the HTC-mode native support in Cobalt [23].
Their results show a similar order of magnitude difference
between the HTC-mode on Blue Gene/L and our Falkon
support for MTC workloads on the Blue Gene/P. For example,
the authors reported a workload of 32K tasks on 8K processors
and noted that 32 dispatchers take 182.85 seconds to complete
(an overhead of 5.58ms per task), but the same workload on the
same number of processors using Falkon completed in 30.31
seconds with 32 dispatchers (an overhead of 0.92ms per task).
Note that a similar workload of 1M tasks on 160K processors
run by Falkon can be completed in 368 seconds, which
translates to 0.35ms per task overhead.

2) Efficiency and Speedup

To better understand the performance achieved for different
workloads, we measured performance as a function of task
length. We made measurements in two different
configurations: 1) 1 dispatcher and up to 2K processors, and 2)
N/256 dispatchers on up to N=160K processors, with 1
dispatcher managing 256 processors. We varied the task
lengths from 1 second to 256 seconds (using sleep tasks with
no 1/0), and ran workloads ranging from 1K tasks to 1M tasks
(depending on the task lengths, to ensure that the experiments
completed in a reasonable amount of time). Figure 5 shows the
effects of efficiency of 1 dispatcher running on a faster login
node (quad core 2.5GHz PPC) at relatively small scales. With 4
second tasks, we can get high efficiency (95%+) across the
board (up to the measured 2K processors).

100% o—m 1 7 :@
90% 32 seconds \

-e-16 seconds
80% - -8 seconds
=4 seconds \.
70% | -==2 seconds
60% 1 second
o
50%
40%
30% A
20%
10% 1
0% T T T T T T T T T T T
N a9 ™

Efficiency

> © & > © I >
L AN LR S
Number of Processors

Figure 5: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and
task lengths from 1 to 32 seconds using a single dispatcher on a login node

Figure 6 shows the efficiency with the distributed
dispatchers on the slower I/O nodes (quad core 850 MHz PPC)
at larger scales. It is interesting to notice that the same 4 second
tasks that offered high efficiency in the single dispatcher
configuration now achieve relatively poor efficiency, starting at
65% and dropping to 7% at 160K processors. This is due to
both the extra costs associated with running the dispatcher on
slower hardware, and the increasing need for high throughputs
at large scales. If we consider the 160K processor case, based
on our experiments, we need tasks to be at least 64 seconds
long to get 90%+ efficiency. Adding I/O to each task will
further increase the minimum task length in order to achieve
high efficiency.

To summarize: distributing the Falkon dispatcher from a
single (fast) login node to many (slow) I/O nodes has both
advantages and disadvantages. The advantage is that we
achieve good scalability to 160K processors. The disadvantage
is significantly worse efficiency at small scales (less than 4K
processors) and short tasks (1 to 8 seconds). We believe both
approaches are valid, depending on the application task
execution distribution and scale of the application.

-=-256 seconds
128 seconds
=o=64 seconds

100% 7= = = :j ‘
32 seconds
—=—16 seconds

90% -

80% {———— \

70% \

0%, \'\\ R
0% SO\ T
40%

30% - \
20% A
10%

0% T T T T T

256 1024 4096 16384 65536 163840
Number of Processors

Efficiency

Figure 6: Efficiency graph for the Blue Gene/P for 256 to 160K processors
and task lengths ranging from 1 to 256 seconds using N dispatchers with each
dispatcher running on a separate I/O node

D. Shared File System Performance

Another key component to getting high utilization and
efficiency on large-scale systems is to understand the shared
resources well. This sub-section discusses the shared file
system performance of the Blue Gene/P. This performance is
important because many MTC applications use files for inter-
process communication, and these files are typically transferred
from one node to another through the shared file system. Future
work will remove this bottleneck, by using TCP pipes, MPI
messages, or data diffusion [34, 8] to transfer files directly
between compute nodes over the specialized networks of the
Blue Gene/P.

We conducted several experiments (see Figure 7) with
various data sizes (1KB to 10MB) on a varying number of
processors (4 to 16K); we conducted both read-only tests
(dotted lines) and read+write tests (solid lines). At 16K
processors, we were not able to saturated GPFS — note the
throughput lines never plateau. GPFS is configured with 16 I/O

servers, each with 10Gb/s network connectivity, and can
sustain 8GB/s aggregate 1/O rates. We were able to achieve
4.4GB/s read rates, and 1.3GB/s read+write rates with 10MB
files and 16K processors (we used the Linux “dd” utility to
read or read+write data in 128KB blocks). We made our
measurements in a production system, where the majority
(90%+) of the system was in use by other applications, which
might have been using the shared file system as well,
influencing the results from this micro-benchmark.

10000
-o R(10MB)
- = R(1MB)
1000 7 R(100KB)
_ R(10KB)
100 — -+ R(1KB)
g g - - —e—R+W(10MB)
= 10 - — | —=—R+W(1MB)
3 R+W(100KB)
5 1 - S R+W(10KB)
: e i
£ 0.1 —
0.01 =
0.001 .
4 256 4096 8192 16384

Number of Processors

Figure 7: GPFS Throughput in MB/s measured through Falkon on various file
sizes (1KB-10MB) and number of processors (4-16384)

It is important to understand how operation costs scale with
increasing number of processors (see Figure 8). We tested file
and directory creation in two scenarios: when all files or
directories are created in the same directory (single dir), and
when each file or directory is created in a unique pre-created
directory (across many dirs). We investigated the costs to
invoke a script from GPFS. We also measured the Falkon
overhead of executing a trivial task with no I/O (sleep 0).

10000 Directory Create (single dir)
- & File Create (single dir)
Directory Create (across many dirs)
—_ =& File Create (across many dirs)
o 1000 I Script Invocation
@2 - ® Falkon Overhead (i.e. sleep 0)
c
e L .e=="" A
=) . A"
o PR
g 100 e
o P
S .7
[.
=% o o
[e ———e e DU
E 10 £ —
- . ————— @ = = - -
pe—
1
256 4096 8192 16384

Number of Processors

Figure 8: Time per operation (mkdir, touch, script execution) on GPFS on
various number of processors (256-16384)

Both the file and directory create when performed in the
same directory are expensive operations as we scale up the
number of processors; for example, at 16K processors, it takes
(on average) 404 seconds to create a file, and 1217 seconds to
create a directory. These overheads translate to an aggregate

throughput of 40 file creates per second and 13 directory
creates per second. At these rates, 160K processors would
require 68 and 210 minutes to create 160K files or directories.
In contrast, when each file or directory create take place in a
unique directory, performance is significantly improved; at
small scales (256 processors), a file/directory create (in a
unique directory) takes only 8 seconds longer than a basic task
with no 1/O; at large scales (16K processors), the overhead
grows to 11 seconds. We conclude that I/O writes should be
split over many directories, to avoid lock contention within
GPFS from concurrent writers. These times reflect the costs of
creating a file or directory when all processors perform the
operation concurrently; many applications have a wide range of
task lengths, and read/write operations occur only at the
beginning and/or end of a task (as is the case with our caching
mechanism), so the time per operation will be notably less
because of the natural staggering of I/O calls.

V. LOOSELY COUPLED APPLICATIONS

Synthetic tests and applications offer a great way to
understand the performance characteristics of a particular
system, but they do not always easily translate into predictions
of how real applications with real I/O will behave. We have
identified various loosely coupled applications as potential
good candidates to run at large scales:

e Ensemble runs to quantify climate model uncertainty

o Identify potential drug targets by screening a database of
ligand structures against target proteins

o Study economic model sensitivity to parameters
o Analyze turbulence dataset from many perspectives

o Perform numerical optimization to determine optimal
resource assignment in energy problems

e Mine collection of data from advanced light sources

e Construct databases of computed properties of chemical
compounds

e Analyze data from the Large Hadron Collider
o Analyze log data from 100K-CPU parallel computations

We use two applications (DOCK and MARS) to evaluate
and demonstrate the utility of executing MTC applications on
the Blue Gene/P.

A. Molecular Dynamics: DOCK

This application, executed on the BG/P screens KEGG [48]
compounds and drugs against important metabolic protein
targets using the DOCK6 [43] application to simulate the
“docking” of small molecules, or ligands, to the “active sites”
of large macromolecules of known structure called “receptors”
A compound that interacts strongly with a receptor (such as a
protein molecule) associated with a disease may inhibit its
function and thus act as a beneficial drug. The economic and
health benefits o