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Abstract

Parallel I/O plays an increasingly important role in to-
day’s data intensive computing applications. While much
attention has been paid to parallel read performance, most
of this work has focused on the parallel file system, mid-
dleware, or application layers, ignoring the potential for
improvement through more effective use of local storage.
In this paper, we present the design and implementation of
Segment-structured On-disk data Grouping and Prefetching
(SOGP), a technique that leverages additional local stor-
age to boost the local data read performance for parallel
file systems, especially for those applications with partially
overlapped access patterns. Parallel Virtual File System
(PVFS) is chosen as an example. Our experiments show that
an SOGP-enhanced PVFS prototype system can outperform
a traditional Linux-Ext3-based PVFS for many applications
and benchmarks, in some tests by as much as 230% in terms
of I/O bandwidth.

1 Introduction

Recent years have seen growing research activities in
various parallel file systems, such as Lustre [3], IBM’s
GPFS [19], Ceph [24], the Panasas PanFS File System [17],
and PVFS [8]. In many cases, parallel file systems use a lo-
cal file system or object store to serve as a local data repos-
itory. Because of the interfaces used to access these local
resources, local storage systems are unaware of the behav-
ior of high-level parallel applications that talk directly to
parallel file systems. Likewise, because of interface limita-
tions the parallel file system itself is not aware of the un-
derlying local storage organization and operation. In other
words, there is an information gap between local file sys-
tem and parallel file system, and as a result access locality
from applications often gets lost. Specifically, the local stor-
age system can only see accesses to separate pieces of large
parallel files. Emerging Object Storage Device (OSD) in-
terfaces, used by parallel file systems [3, 24, 17], do appear
to present a more appropriate interface for local storage re-
sources, but at this time the OSD interface does not address
this knowledge gap.

As an example, if a large matrix is stored on I/O servers
in a row-major pattern, while a parallel program needs to
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Figure 1. Strided Access Pattern

conduct column-based processing of this matrix, then re-
quests become noncontiguous at the local storage system
level (Figure 1). This results in a non-sequential access pat-
tern and reduces the chances of prefetching being appro-
priately applied. If a sequence of operations, such as visu-
alizing the dataset from multiple viewpoints, will perform
column-based operations on the matrix, then a similar pat-
tern of noncontiguous accesses will be repeated each time
the matrix is accessed. If we could reorganize the on-disk
data on the fly such that the future accesses become sequen-
tial accesses, or keep a copy of the data in this more op-
timal organization, we could significantly improve the ob-
served local storage bandwidth, and we could do so without
changes to the rest of the I/O system.

We note that partially overlapped accesses are becoming
more common in many emerging scientific and engineering
applications [6]: these applications access the same data re-
gions more than once during their execution. Although sim-
ilar noncontiguous patterns were reported in HPC commu-
nity one decade ago [18], parallel file system and local file
system architectures have not been focused on addressing
these patterns. Examples of this pattern of access are com-
mon in mapping, Geographic Information Systems(GIS),
and visualization applications. In these applications, when
a user zooms in or out or changes viewpoint, some foci re-
gions remain in the display window, but new regions are
often accessed to be displayed in the new view (Figure 2).
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Figure 2. When a user zooms in on a partic-
ular region, data in that region is reused. If
data must be re-read, the accesses will over-
lap.

When the data is huge and cannot be held in the mem-
ory, such as in computational science visualization appli-
cations [4], the application is typically re-reading many of
the same regions for every new view.

Researchers have pursued two approaches to address the
information gap between parallel file systems and local stor-
age systems for better performance: application-directed
prefetching hints [7] and language and compiler techniques
that automatically insert speculative I/O access statements
when compiling application codes [14, 15]. Except for
MPI-IO hints, prefetching hints provided by applications
are typically limited to specific compilers and thus are not
portable. In addition, any application that would benefit
from this technique needs to be re-written to accommodate
the new feature. Compiler inserted prefetching seems to
be more promising. Kotz [12] proposed a prefetching tech-
nique for parallel file systems as well, based on access pat-
terns studied decades ago. While we believe that this ap-
proach is still relevant, we do not believe that prefetching
alone is adequate to address the challenges of these applica-
tions.

In this paper we describe an on-disk grouping and
prefetching technique named SOGP to bridge the gap be-
tween the local storage system and parallel the file system.
The main ideas behind SOGP are to store a copy of data
that is often accessed in a more efficient organization by
grouping noncontiguous file I/O requests and storing these
groups (called segments) on a local disk partition, and to use
this more efficient organization to improve the performance
of prefetching at the local storage level, better catering to
the needs of parallel file system. By using several synthetic
parallel I/O benchmarks, we see that our SOGP-enhanced
PVFS scheme outperforms an EXT3-based PVFS by 39%
to 230% in terms of aggregate I/O bandwidth in a testbed
cluster system.

2 Related Work

Kotz et.al. proposed several techniques to improve
parallel I/O performance including disk-directed I/O tech-
niques [11] and practical prefetching techniques [12]. The
first work proposes a new technique, disk-directed I/O to al-

low the disk servers to determine the flow of data for maxi-
mum performance by issuing large data requests. The sec-
ond work developed a local pattern predictor and a global
pattern predictor to catch the I/O access patterns in parallel
file systems. Our work differs from both of these in that we
use a combination of grouping and prefetching to aggregate
I/O into large requests and to overlap computation and I/O.

A number of research projects exist in the areas of par-
allel I/O and parallel file systems, such as PPFS [10] and
PIOUS [16]. PPFS offers runtime/adaptive optimizations,
such as adaptive caching and prefetching, but does not use
segment based on-disk grouping to maximize disk band-
width utilization. PIOUS focuses on I/O from the view-
point of transactions, not from that of scientific computing.
In addition, these parallel file systems, as well as I/O op-
timizations on them, are mostly research prototypes, while
our work is done on PVFS, a production-ready parallel file
system widely used on Linux clusters.

3 SOGP Design and Implementation

In this paper, we present the design and implementation
of a segment structured on-disk grouping and prefetching
technique to improve I/O system performance for parallel
file server based parallel file systems. The system works
as a cache, so the original data format on local storage is
preserved. At this time all metadata for SOGP is stored
in memory for performance reasons, so a node failure will
cause all the grouping information and on-disk segment
cache to be lost, but all data will still be present as stored
by the parallel file system, so the reliability of the parallel
file system is unaffected by our enhancements. In our cur-
rent implementation, we choose PVFS as our development
and test platform.

3.1 SOGP Architecture

SOGP consists of the following major components: a
segment-structured disk storage subsystem, an in-memory
segment lookup table, a locality-oriented grouping algo-
rithm and an in-memory segment cache. These compo-
nents are shown in Figure 3. The disk storage subsystem
is adopted to mainly implement segment I/O, which will be
elaborated in Section 3.3. The in-memory segment lookup
table is a data structure to index and manage all in-memory
and disk segments in SOGP.

3.2 Augmenting PVFS with SOGP

In PVFS, the storage management module is named
trove. At the time of this writing, the only implementation
of trove is called DBPF (i.e., DataBase Plus Files). This
version uses Berkeley DB for metadata storage and files on
a local file system (e.g. ext3) for storing file data. We mod-
ified the DBPF code so that SOGP is able to take over the
requests dispatched to DBPF. DBPF employs a set of file
service functions to handle file I/O requests, among which
the most representative ones are dbpf bstream read list and
dbpf bstream write list. These functions are main entries
for read/write operations initiated by the upper layers of



Figure 3. PVFS/SOGP software architecture
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PVFS. SOGP hooks into these service functions to intercept
the requests and process them before they reach the local
file system. SOGP monitors the requests received by DBPF
and transforms the requests into its own segment format.
For reads, if the segment is cached in memory in SOGP,
then the request is satisfied immediately. Otherwise SOGP
checks its in-memory segment lookup table to see if the seg-
ment is cached on the raw disk partition. If the data is stored
in segment form on disk, SOGP uses the POSIX read/write
system calls to access the raw disk partition as a device spe-
cial file. If the request is neither cached nor resident on disk,
the request is handed over back to DBPF for service. More
details on our I/O interception implementation are provided
in Section 3.4.

3.3 Segment I/O in SOGP

An I/O technique called segment I/O is used to facili-
tate large, sequential disk I/O operations even when non-
contiguous accesses are present. This technique employs
a dynamic grouping algorithm to organize related data, po-

tentially from multiple files, and to save this data on the disk
as a contiguous unit called a segment. Figure 4 illustrates a
common scenario — accessing multiple large file portions
by the segment I/O. This grouping of data into segments
improves locality of access when these data are accessed
again.

3.4 SOGP Data Flow

3.4.1 Read handling

When SOGP receives a read request, it works in the fol-
lowing steps (See Figure 5(a)). Note that in Steps 4 and 5,
the read operation fetches not only the requested data, but
also other data from the same or related files in the same
segment group. In other words, prefetching is implicitly
performed in these steps.

1. Receive a DBPF read request and translate the request
into SOGP format, i.e., a SOGP read request.

2. Determine if this file belongs to any groups identified
by its dynamic grouping algorithm. If so, continue
to next step; otherwise, hand over the original request
back to DBPF and then rebuild the locality group when
necessary.

3. Check the in-memory lookup table to determine if this
group is resident in SOGP in-memory cache or on
SOGP storage. If in memory, satisfy the request im-
mediately by copying data from the cache.

4. If the data is on SOGP storage, perform raw partition
read to retrieve data into the segment cache and return
the data.

5. Otherwise, fetch the data from the local file system to
the segment cache. Since the requested file belong to a
segment group which is not on SOGP, we also save the
group on SOGP as a segment for future reuse before
the request is returned to the user.

3.4.2 Write handling

In our prototype implementation, SOGP does not per-
form optimizations on write requests. We employ write-
invalidation as the segment cache consistency policy, so if
write data is found to be on one of SOGP segments, then
the entire segment is invalidated from both the disk and the
memory (if present). After clearing any old data out of
SOGP, write requests are handed over back to DBPF. The
detailed steps for writes are described in Figure 5(b).

3.5 Locality-based Grouping and
Prefetching

The purpose of SOGP is to group noncontiguous file I/O
requests into segments at runtime, helping to improve data
locality for the parallel file system and higher level applica-
tions. Segments are stored as physically continuous chunks
on raw disks or partitions. These segments are our atomic
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storage unit to read, prefetch, write, and invalidate. The
segment size is 16 MB in our current design trying to match
the disk cylinder group size [21]. By co-locating related
data in the same cylinder group, we reduce the number of
small I/Os and help maximize read performance. The suc-
cess of the technique is dependent on our ability to detect
and exploit locality in parallel file access.

3.5.1 Grouping in SOGP

We notice that there are temporal and spatial access local-
ity in existing parallel applications. Many compute nodes
may concurrently read the same large data file, e.g., a 3-
D object database, but in different portions. Researchers
have noted several representative access patterns existing
in today’s scientific computing applications, such as sim-
ple strided, nested strided, random strided, sequential, seg-
mented, tiled, and unstructured mesh accesses [20]. For ex-
ample, Figure 1 illustrates a nested strided access pattern
resulting from column based access to a 2-D matrix. Fig-
ure 2 shows the effect of zooming in on an image. In these
examples, the innate access locality between adjacent col-
umn elements disappears at both the file level and the local
storage level.

The problem is that parallel file systems may understand
these access patterns but do not have control of the disk
data organization; while local file systems do have control
of the data layout, but they lack knowledge of the higher
level parallel I/O access patterns. SOGP works around the
knowledge gap at the local storage level by speculating on
the parallel I/O access pattern and controlling the local disk
layout to better suit this pattern, bridging the gap between
parallel file systems and local file systems.

3.5.2 Grouping algorithm

We found that Probability-based Successor Group Predic-
tion [5] appears to be a good candidate for our grouping pur-
pose. Unfortunately, it is not a practical solution due to its
spatial complexity: it requires unbounded memory to hold
the entire online I/O trace in order to calculate the probabil-
ities of one file being a successor of another.

Since we are working on data grouping which requires
ideal accuracy, we choose to use Recent Popularity algo-
rithm to build the relationship graph. By adjusting the pa-
rameters j and k in best-j-out-of-k algorithm, we can con-
trol the accuracy of the prediction algorithm. Once the
graph is built, we need to divide the nodes into groups
for prefetching. For the purpose of prediction accuracy,
we adopt the most strict graph partitioning algorithm —
Strongly Connected Component algorithm [9].

3.5.3 Scheduling grouping

It is critical that grouping should not compete with normal
I/O operations. In our design, we choose storage system
idle periods to perform data grouping. In order to do this,
we modified the block device driver to allow reporting the
length of its request queue. SOGP periodically checks this
to make sure the queue is empty before sending grouping
requests. If an idle period is detected, then the grouping
request is sent. In our current implementation, we perform
this queue length query once per second so that the overhead
of this query is kept at a very low level. In addition, the idle
period threshold is set to five seconds.

3.5.4 Discarding prefetched group items

The prefetched items are located together in memory with
regular cached items. It is possible that prefetched items



get expunged before related requests arrive. In a parallel
file system, prefetching and caching can both improve the
I/O performance. However, prefetching is more effective
in parallel scientific computing domain [13]. In the typ-
ical situation, it would be desirable to have a large space
for prefetching. With the help of SOGP, such demand is
largely alleviated, because grouped segments are sequen-
tially stored on disk, and, to retrieve them from disk again,
large I/Os requesting many adjacent blocks are issued to the
disk, fully utilizing the maximum disk bandwidth.

4 Evaluation

Our evaluation was performed on two clusters. The
first cluster, the Computer Architecture and Storage System
(CASS), is a departmental storage cluster servicing multiple
research groups at the University of Central Florida. The
CASS cluster consists of 16 Dell PowerEdge 1950 nodes.
Each node has two dual-core Intel Xeon 2.33 GHz pro-
cessors, 4 Gbytes of DDR2 533 memory, and two SATA
500 Gbyte hard drives or two SAS 144 Gbyte hard drives.
Each node has two Gigabit Ethernet ports, one for man-
agement and one for data transfer. These nodes are con-
nected with a Nortel 5510-48T non-blocking 48 port high
speed network switch and running the Red Hat Enterprise
Linux operating system. PVFS 2.7.0 is installed on each
of these nodes with the same configuration. Eight nodes
out of the 16 nodes are configured as dedicated PVFS stor-
age nodes and each of them assumes multiple roles: PVFS
server and PVFS client. The remaining eight nodes are con-
figured solely as compute nodes. All PVFS files were cre-
ated with the default 64 KByte strip size, summing up to a
512 KByte stripe across all the eight server nodes. In ad-
dition, MPICH2 version 1.0.6p1 is installed as the MPI li-
brary. Unless stated otherwise, the tests on the CASS clus-
ter are performed with 16 PVFS servers and 8 PVFS clients.
Each test is repeated five times and the average is presented.
The caching effect is deliberately avoided by rebooting the
server nodes between runs.

To further test the scalability, we also ran some paral-
lel I/O benchmarks on the Chiba City cluster at Argonne
National Laboratory. The Chiba City cluster is a 512 CPU
cluster running Linux. The cluster also includes a set of
eight storage nodes. Each storage node is an IBM Netfin-
ity 7000 with 500 MHz Xeons, 512 MBytes of RAM, and
300 GBytes of disk. The interconnect for high performance
communication is 64-bit Myrinet. All systems in the clus-
ter are on the Myrinet. The software stack is the same as
CASS.

4.1 Software Configuration

We choose to compare the SOGP solution with an in-
stallation using the Ext3 file system, the most popular na-
tive file system for Linux-based clusters where PVFS re-
sides. For brevity, in the rest of this paper, PVFS with
Ext3 support is referred as PVFS2/Ext3, while PVFS with
SOGP as PVFS/SOGP. When performing experiments, we
alternated between PVFS/ext3 and PVFS/SOGP. Two inde-
pendent PVFS “storage spaces” were configured, with the

PVFS/SOGP configuration using Ext3 for DBPF data and a
separate local disk partition for cached SOGP data. Next we
describe our benchmarks in detail and compare the results
of both I/O systems.

4.2 Benchmarks

We use three popular parallel I/O benchmarks to evaluate
the benefit of our design over the traditional PVFS/Ext3 ap-
proach. We use mpi-tile-io to simulate visualization appli-
cation behavior, and we use noncontig and IOR to simulate
zooming behavior in various visualization applications.

As far as the I/O intensive parallel application is con-
cerned, the most important thing users would be interested
in is the aggregate I/O bandwidth (I/O bandwidth in brief
for the rest of the paper) of the entire parallel file system,
which is the sum of the I/O bandwidth of all storage nodes.
As a result, we choose the I/O bandwidth as the major met-
ric during the evaluation.

Noncontig is a publicly available parallel I/O benchmark
from Parallel I/O Benchmarking Consortium [2]. It is
designed for studying I/O performance using various I/O
methods, I/O characteristics and noncontiguous I/O cases.
This benchmark is capable of testing three I/O characteris-
tics (region size, region count, and region spacing) against
two I/O methods (list I/O and collective I/O) in four I/O
access cases (contiguous memory contiguous disk, noncon-
tiguous memory contiguous disk, contiguous memory non-
contiguous disk, and noncontiguous memory noncontigu-
ous disk).

In real world visualization applications, image zooming
is an important and common behavior [22]. For a very large
dataset, the user might want to see a single picture that rep-
resents the entire data at first. After a quick preview, the
user might want to focus on a particular region of inter-
est, i.e., zooming to see more detail. Zooming is simulated
by increasing veclen while reducing elmtcount so that the
product of them is kept constant.

Mpi-tile-io is another synthetic benchmark from the Par-
allel I/O Benchmarking Consortium benchmark suite [2].
It has been widely used in many parallel I/O related stud-
ies [23, 26, 25]. The application implements tile access on
a two-dimensional dataset, with overlapped data between
adjacent tiles. The size of the tiles and the overlap ratio is
adjustable. Collective I/O support is optional in this appli-
cation. We studied both cases with and without collective
I/O support in our experiments.

IOR is developed at Lawrence Livermore National Lab-
oratory [1]. It is designed for benchmarking parallel file
systems using POSIX, MPI-IO, Parallel netCDF, or HDF5
interfaces. To test the scalability of our SOGP design, we
run the IOR benchmark on the Chiba City cluster by varying
the number of clients from 8 to 256. At the same time, we
also turned on the use file view option in IOR and changes
the view during runs to keep the total size of working set
constant while simulating the partially overlapped access
pattern.



4.3 Prefetching Accuracy

In order to better understand the source of benefit
— group access locality, we further investigate SOGP
application-level buffer cache — group cache behaviors.
In our experiments, we enable a small amount of logging
code in SOGP to collect the group cache utilization statis-
tics while PVFS/SOGP server is running. The results are
then written into a server log file. The storage system layer
configuration at the time of testing is described in Table 1.
We ran noncontig benchmark five times with different pa-

SOGP segment cache SOGP partition Ext3 partition
1 GB 20 GB 180 GB

Table 1. Storage system layers configuration

rameters to simulate the image zooming effect. The aggre-
gated working set is approximately 100 GB. After the test,
we extract the data from the server log file, as shown in Ta-
ble 2. There are 52917 segment groups in total built during

Number of Hit
processes Hits Misses Total rate(%)

4 4090515 654311 4744826 86.21
16 4144802 726278 4871080 85.09
64 4421932 864930 5286862 83.64
256 4652093 1051098 5703191 81.57

Table 2. Group access locality analysis

the test and 98.27% of them are accessed more than once.

4.4 I/O Bandwidth

For the noncontig benchmark, which exhibits noncon-
tiguous file accesses in some phases, we expect that PVFS
will significantly benefit from SOGP in these phases. For
contiguous file access phases, the corresponding disk ac-
cesses may still become non-contiguous because of the gap
between the file system and the disk, and therefore PVFS
can still possibly benefit from the group access feature of
SOGP.

In addition to the performance implications of SOGP, we
notice that the results for collective I/O method and non-
collective I/O method exhibit some differences. We ran the
test on CASS cluster and collected results for both collec-
tive and non-collective methods, as shown in Figure 6 to
allow a side-by-side comparison.

In Figure 6, PVFS/SOGP exhibits a read performance
gain of 92% to 230% over the PVFS/Ext3 baseline sys-
tem. These results suggest that, by combining highly re-
lated accesses into groups, SOGP can boost the I/O perfor-
mance dramatically. The simple strided pattern of noncon-
tig benchmark issues I/O accesses to the same data repeat-
edly, which translates into better group access locality that
SOGP is able to take the best advantage of.

We were concerned that these results might result from
a particularly good match between the vector length used
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in the test, which determines the number of regions and re-
gion spacing, and our SOGP configuration. Figure 7 ex-
plores the impact of vector length on performance for the
range between 4 Kbytes and 512 Kbytes. We see that at
very small sizes there is a drop-off in performance, possi-
bly due to the general inefficiency of servicing a very large
number of small and noncontiguous regions, but otherwise
the performance improvement is consistent.

Figure 8 presents the I/O bandwidth results collected
on CASS when running mpi-tile-io on PVFS/Ext3 and
PVFS/SOGP, respectively. In this test, the total request
size was 128 GBytes. To show that the performance im-
pact of collective I/O is orthogonal to that of SOGP, we
plot the results for both collective I/O and independent
I/O (non-collective) method in this figure. In both cases,
PVFS/SOGP exhibits approximately 50% higher I/O band-
width than PVFS/Ext3. This derives from PVFS/SOGP
grouping multiple small I/Os into larger ones for read access
and prefetching. With this total size, the entire dataset fits
into the SOGP partitions on the servers, allowing for better
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locality of access on reads. A possible reason why the per-
formance gain is not that “conspicuous” lies in that mpi-tile-
io, as a read-once/write-once dominant application, does
not make good use of the grouping feature of SOGP in a
repeated fashion.

4.5 Overlapped Access

In this section we analyze the percentage of overlapped
access in several applications such as mpi-tile-io. These ap-
plications are known to have overlapped accesses. For mpi-
tile-io, the tiles to be accessed can be specified by the verti-
cal and horizontal spread of the tile, so it is easy to specify
to what degree accesses will overlap. Since the resulting
I/O accesses are not exactly the same, in many cases they
are only partially overlapped. We defined the partially over-
lapped access as the number of bytes accessed more than
once. We use this number to the total number of bytes ac-
cessed to obtain the percentage of overlapped access.

In Figure 9 we present the impact of overlapped access
over performance gains of SOGP. As we would expect, the

0

10

20

30

40

50

60

8 16 32 64 128 256
Number of Clients

B
a
n

d
w

id
th

 (
M

B
/s

)

PVFS/SOGP Read

PVFS/Ext3 Read

Figure 10. IOR benchmark bandwidth com-
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larger the percentage of overlapped accessed region, the
larger the benefit of grouping.

4.6 Scalability study using IOR

From the results shown in Figure 10, one can observe
that both PVFS/SOGP and PVFS/Ext3 show performance
gains in proportion to the number of clients (i.e., processes)
within a certain range (less than 128). The I/O bandwidth
of both systems degrades at 256 clients on this test sys-
tem, likely because the PVFS servers are saturated. On
the other hand, PVFS/SOGP outperforms PVFS/Ext3 by up
to 132% in terms of absolute read performance (in unit of
I/O bandwidth). Even when the PVFS becomes saturated,
PVFS/SOGP performance exceeds that of PVFS/Ext3 by
39%. Another observation is that the benefit gain of
PVFS/SOGP over PVFS/Ext3 from group access locality
is not decreased by increasing the number of processes that
issue the read requests. These results indicate that for read
workloads PVFS/SOGP retains the scalability properties of
PVFS while providing significantly higher bandwidth at a
given number of clients.

5 Conclusions

In this paper, we present the design and implementation
of the first version of SOGP for a state-of-the-art parallel
file system — PVFS. SOGP employs a segment I/O tech-
nique and a grouping based prefetching methodology to re-
solve some of the limitations existing in today’s parallel file
systems in how they interact with local storage and the im-
pact of this method of interaction in the face of overlap-
ping noncontiguous access, such as seen in many compu-
tational science post-processing and visualization applica-
tions. Using several parallel I/O benchmarks in different
Linux-based cluster testbeds, we conclude that an SOGP-
enhanced PVFS prototype system can significantly outper-
form a Linux-Ext3-based PVFS by up to 230% in terms of
I/O bandwidth. This work also identifies possible enhance-



ments for object storage systems as well, because this issue
of lack of communication is also true for object storage sys-
tems. More generally, this work points out the advantages
of storing application data in more than one organization
when ready-heavy workloads are anticipated. We plan to
investigate how storing multiple representations of applica-
tion data may be best managed, using SOGP and our group-
ing technology as a starting point.
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