
Flying Low: Simple Leases with Workspace Pilot 

Timothy Freeman1, Katarzyna Keahey1,2 

1Computation Institute, University of Chicago 
2Argonne National Laboratory 

{tfreeman,keahey}@mcs.anl.gov 

Abstract. As the use of virtual machines (VMs) for scientific applications becomes 
more common, we encounter the need to integrate VM provisioning models into the 
existing resource management infrastructure as seamlessly as possible. To address such 
requirements, we describe an approach to VM management that uses multi-level sched-
uling to integrate VM provisioning into batch schedulers such as PBS. We then evalu-
ate our approach on the TeraPort cluster at the University of Chicago.  

1 Introduction 

Resource leases – allowing a user to request direct access to resources rather than ask 
for a job to be run on those resources– are emerging as a fundamental abstraction of 
computing infrastructure. A lease may take the form of a static, long-term agreement 
with a hosting company, on-demand provisioning of a physical cluster partition with 
specified configuration as implemented by cluster-on-demand [1], or dynamically 
deploying a virtual machine for an hour on resources provided by Amazon’s EC2 
service [2]. A user can adapt such resource to his or her needs in a variety of ways: 
use it to support an interactive session, run computations requiring an application-
specific scheduler, or support portability tests across a variety of environments. The 
need for resource leases rather than running jobs is exemplified by the widespread 
popularity of various “pilot job” approaches [3-6] that use batch scheduler installa-
tions on sites to deliver a lease rather than submit a job to that scheduler. 

Virtual Machines (VMs) represent an ideal vehicle for implementing resource 
leases because of their isolation and enforcement properties. Among others, a VM 
configured by an application scientist can be deployed on many different sites without 
requiring the resource providers to understand the application and its dependencies, or 
integrate them into the configuration of their site [7, 8]. This makes VM-based re-
source provisioning attractive to both providers and consumers [9]. However, despite 
these advantages, VMs have not seen widespread adoption so far due to a relatively 
high barrier involved in adapting a site infrastructure for VM deployment. A solution 
is required that would allow sites to experiment with VM adoption without commit-
ting themselves to VM-based operations. 

In this paper, we use the “pilot jobs” approach, combined with the VM manage-
ment capabilities of the workspace service [10], to adapt local resource managers 
(LRMs), such as Torque [11] or SGE [12], for VM deployment. Our “workspace pi-
lot” allows a resource provider to continue making its resources available to run jobs 



via a batch scheduler within the model of operations prevalent today but also allows 
for the deployment of VMs as need arises. Further, since the workspace pilot requires 
no modifications to the LRM it extends, it enables non-invasive, easy adoption. We 
discuss the advantages and limitations of the proposed approach as well as the im-
plementation details of the relevant parts of the workspace service. The workspace 
pilot has been deployed at the TeraPort cluster at the University of Chicago [13] using 
Torque as the LRM: we evaluate and discuss the its performance on that system.  

This paper is structured as follows. Section 2 describes our approach and discusses 
its advantages and limitations. Section 3 describes the relevant implementation de-
tails. Section 4 contains the evaluation on the TeraPort cluster. Section 5 discusses the 
related work and we conclude in Section 6.  

2 Approach 

We use a multi-level scheduling approach, similar to that employed by Condor [3] 
glide-ins, to enable resource leasing with VMs. This approach relies on submitting a 
job to the LRM with a resource allocation request expressed in terms of duration and 
resources (such as number of nodes or memory). When scheduled, the job request 
results in the deployment of a “pilot program” that adapts the node for use within its 
framework and reports the availability of the node to an external framework (e.g. by 
joining a Condor pool). Our work leverages this mechanism to adapt physical re-
sources for VM deployment, and then reports their availability for VM hosting to the 
Workspace Service which provisions VMs on it.   

2.1   Overview of the Workspace Services 

The virtual workspace services (VWS) [10] are a group of WSRF [14] services that 
allow an authorized remote client to deploy and manage workspaces (implemented as 
VMs). The workspace factory makes available the descriptions of lease types avail-
able on a specific site (e.g., what resources can be assigned to a VM). Using the fac-
tory, a client can deploy a workspace, which can be represented by a VM, a group of 
n homogeneous VMs (each associated with the same image and resource allocation -- 
memory, CPU, etc. available to the VM), or a group of heterogeneous VMs on a 
specified set of resources [15]. Once the workspace is deployed, the workspace serv-
ice allows the client to access information related to each deployed VM. The client 
can also subscribe for notifications of events related to the VM lifecycle (e.g., it can 
be notified when a VM is deployed). The workspace group and workspace ensemble 
services allow a client to obtain information about and manage workspaces made up 
of homogeneous and heterogeneous VMs respectively. 

Workspace services are intended to be deployed on a service node of a cluster (i.e., 
“gatekeeper”, or headnode) and rely on a VM manager (workspace back-end) de-
ployed on a set of worker nodes to carry out VM management requests. The work-
space tools provide a default implementation of such manager (called “workspace 
default”) that provides a simple, “greedy” mapping of workspaces to nodes. The VM 



manager back-end could also be implemented by a datacenter technology or by the 
combination of an LRM and the workspace pilot described here.  

2.2 Two-Level Provisioning 

The approach described here assumes that VMs will be leased on a cluster equipped 
with n nodes each of which is configured such that they can serve both as job plat-
form and a VM platform (e.g., Xen [16] nodes that have been booted into domain 0). 
Each node has access to local disk storage, which we use to store VM images. The 
nodes are managed by an LRM.  

The objective of the “pilot program” submission is to obtain a time-constrained 
lease of a number of physical cluster nodes and adapt those nodes to make the de-
ployment of VMs possible. We call such lease a resource slot. As shown below, a 
resource slot can support the deployment of potentially multiple VMs (virtual re-
sources). We thus operate in a two-level provisioning model: resource slots are provi-
sioned from the resource provider (i.e., the physical clusters) and then virtual re-
sources are provisioned from those slots.  

 
Figure 1: Two level scheduling: (1) the pilot adjusts the memory to obtain a re-
source slot, and (2) the obtained slots are used to schedule VMs. 

The provisioning and deployment of resource slots takes place as follows. First, the 
workspace service submits a pilot job with requirements defining a resource slot to 
the LRM. The resource slot is defined in terms of duration, the number of nodes and 
the number of processors per node. The LRM queues and eventually executes the 
request. On execution, the pilot job adapts the platform for VM deployment (e.g., 
adjusts the memory of Xen domain 0 to allow for deployment of user domains). Then, 
the pilot notifies the workspace service that the resource slot has been obtained. When 
the resource slot terminates the pilot gracefully terminates the slot collaborating with 
the workspace service on cleanup actions.  

The provisioning of virtual machines (the workspace default) operates as follows. 
On receiving a client request, the workspace service estimates the amount of physical 
resource needed to provide the resource allocation requested by the client. If the 
physical resource is already available (as a result of a prior LRM request) the required 
resource slot is returned, otherwise a resource slot is requested via the LRM. Once the 
slot is obtained, the workspace service maps the VMs onto the resource slot using 



greedy algorithm and the client is notified of the availability of the VM. After the 
elapsed VM lifetime or upon client request the VMs are terminated.  

Note, that the approach described here replaces the assumption that workspace de-
ployment relies on a static set of physical resources with a dynamically provisioned 
(and dynamically released) set of physical resources. The Workspace Service may 
implement a variety of policies when requesting/releasing resources via the pilot and 
mapping VMs onto those resources, e.g. physical resources may be provisioned pro-
actively or in direct response to a request, they may be overprovisioned (e.g., allow 
for renegotiation of slot duration), or already provisioned resource may be opportunis-
tically used to schedule different workspaces. All these policies balance utilization 
costs versus flexibility, response time and request priority. The default policy (evalu-
ated in this paper) favors resource utilization: we request exactly as many physical 
resources as needed to support an incoming workspace request. Further, the default 
policy always translates the requested resources into the smallest resource slot into 
which they fit so that it can be provisioned by the LRM, mapping one VM per node. 

2.3 Leasing Resources with Workspace Pilot: Client’s Viewpoint 

Since the workspace pilot relies on the LRM to schedule physical resource leases, the 
lease semantics it can provide are limited by the LRM. In particular, if our default 
policy is followed (one physical lease gets requested per virtual lease) the lease se-
mantics will follow the LRM policies exactly. As many sites today do not give users 
the ability to do advance reservations (even when this functionality is provided by the 
scheduler) due to policy issues, the leases provided by the workspace pilot are likely 
to be “best effort” i.e., they will provision the lease as resources become available.  

Most scientific computations today are performed on integrated cluster infrastruc-
ture where nodes configured to perform specialized services (data access, compute 
nodes, worker nodes) collaborate on satisfying demands of specific computation. For 
a functional cluster to be deployed it is necessary to deploy all those nodes at once. 
Especially when the lease semantics are best-effort (i.e., we cannot time-synchronize 
that deployment), we need to provide mechanisms that will ensure that the VMs rep-
resenting cluster nodes are deployed together. This role is fulfilled by the workspace 
group and ensemble services (see Section 2.1) that allow users to prepare groups of 
services to be deployed together.  

We now describe an example of how various features of the workspace tools are 
used by a client in a simple deployment case. In order to deploy a complex cluster, 
e.g. an Open Science Grid (OSG) cluster consisting of a compute element (CE), a 
storage element (SE) and n worker nodes [17], a client performs the following ac-
tions. First, the client requests the creation a workspace (an “ensemble”) consisting of 
n worker node VMs, and a VM representing the SE and CE each. As part of the crea-
tion request, the worker nodes request an IP on a private network while each of the 
service nodes requests a public IP assignment in addition to the private network IP 
assignment. Since the ensemble workspace is created in one request, the workspace 
service will allocate resources to host all the members of the ensemble and they all 
will be deployed at the same time. The final remaining step is to “contextualize” the 



cluster (i.e., integrate deployment time configuration information into the cluster); 
this process exceeds the bounds of this paper and is described elsewhere [18]. 

3 Implementation 

To implement the approach described above we developed the workspace pilot pro-
gram, the workspace control program that integrates the VMs into the network fabric, 
and a simple LRM adapter. 

3.1 The LRM Adapter 

The implementation of the LRM adapter is composed of two components. The first is 
implemented by the workspace service and consists of control and monitoring inter-
faces to the LRM (e.g., qsub and qdel commands for Torque). We assume that the 
LRM may send a courtesy catchable signal before job termination (SIGTERM in 
Torque) which allows the pilot to implement graceful exit procedures upon receiving 
the signal. The second component (described in 3.2) is therefore implemented within 
the pilot program and consists of signal handlers. 

3.2 The Workspace Pilot 

The actions required to adapt a job platform for VM hosting depends on how much 
these two platforms differ. Our implementation assumes that the cluster which consti-
tutes a job platform is installed with Xen and booted into domain 0 with maximum 
amount of memory given to each node. Therefore, to bridge the gap between the job 
platform and VM hosting platform we only have to reduce domain 0 memory so as to 
be able to host user VMs. 

On deployment, the workspace pilot is given information about the expected dura-
tion of the slot and the requested resources. Based on this information the pilot re-
duces the domain 0 memory using the Xen balloon driver (this is a privileged opera-
tion which requires the pilot runs in to have sudo authorization). It is a matter of pol-
icy how the memory requirements of a VM are translated into the actual memory re-
duction: reserving more than absolutely necessary allows us to potentially schedule 
other VMs in the same slot but on the other hand leaving more memory in domain 0 
can favorably impact guest performance [9] (the minimum is currently set to 100 
MB). After the memory is adjusted, the pilot notifies the workspace service that the 
slot is ready. Under a normal set of circumstances the pilot is terminated either by a 
direct request from the workspace service or because the duration of the slot has ex-
pired. It then calls the “release slot” operation that will completely undo the effects of 
the “reserve slot”.  

Occasionally the pilot program may receive a catchable signal (SIGTERM) from 
the LRM, e.g. if it has exceeded its allotted time, is being preempted or removed by 
the LRM, or due to a reboot action. The workspace pilot catches the warning signal 



(which in effect offers a “grace period” before hard termination) and implements the 
following signal handler. It first notifies workspace service that it has received a pre-
emption signal. It then waits for a portion of the “grace period” for the workspace 
service to clean up any running VMs. If the cleanup does not occur, the pilot destroys 
the VMs itself, restores the memory, and notifies the workspace service of the per-
formed actions.  To address the situation where a system administrator has to manu-
ally restore the nodes to a job platform we implemented a standalone “kill all” pro-
gram (a direct call to the hypervisor to immediately destroy all local VMs and adjust 
the memory to release all available memory back to domain 0).   

The workspace pilot program communicates with the workspace service via a con-
figurable protocol by default relying on HTTP-based notifications (with SSH-based 
communications also possible). These notifications are time stamped so that they can 
be tracked by the workspace service for state recovery (e.g., in the event that the serv-
ice itself recovers from failure). 

3.3 The Nuts and Bolts of VM Deployment: Workspace Control Implementation 

The workspace control program manages VMs on individual nodes based on com-
mands received from the workspace service. Its primary functions are: (1) to start, 
stop and pause VMs, (2) to provide VM image reconstruction and management, (3) 
connect the VMs to the network, and (4) to deliver contextualization information [18].   

To carry out VM image management functions, workspace control transfers VM 
images from a location within the site to the node on which it executes. The work-
space service allows clients to request VM image reconstruction from disk partitions 
cached on the site, e.g. if a large disk partition is frequently used by images deployed 
on that site. Workspace control orchestrates mounting of the requisite disks and it can 
also generate blank partitions for images that require extra disk space. 

Workspace control connects the deployed VMs to the network via a mechanism 
that was designed to make the IP assignment process independent of any site DHCP 
servers while still leveraging this prevalent IP assignment mechanism.  It also boot-
straps a trusted network for the VMs: the MAC address and the IP address that are 
chosen for a specific VM are communicated to workspace control by the workspace 
service.  During instantiation, the VM's NICs are each assigned MAC addresses, each 
connected to a specific bridge port of a Linux bridge in domain 0, and ebtables is con-
figured to recognize the associations and prevent any divergence. The MAC address 
and IP address association is configured in the DHCP delivery tool which intercepts a 
VM's boot-up sequence DHCP broadcast, giving the correct IP address to the requests 
based on the request source's MAC address.  

The contextualization information (information allowing the cluster to interpret its 
context, see Section 6) is currently conveyed by “patching” the deployed image (i.e., 
mounting the image and copying the information into a well-defined location). Other 
methods are described in [18]. 

Workspace control is implemented is a set of lightweight Python programs and 
shell scripts installed on all the nodes managed by the workspace service. Its main 
dependencies are a DHCP delivery tool that aids in assigning IP addresses to VMs 



and the ebtables bridging packet filter package for Linux.  The workspace service 
communicates with workspace-control via an SSH-based protocol. 

4 Experimental Evaluation 

We evaluated the standup and teardown times for the virtual cluster within our sys-
tem. The experiments were conducted on 16 nodes of the TeraPort cluster [13], man-
aged by Torque 2.2.1 and Maui Cluster Scheduler 3.2.6-19, and consisting of AMD64 
IBM Opteron nodes with 4GB RAM each, connected by gigabit ethernet. The nodes 
were configured with Xen 3.1.0. During the measurements described here only the 
workspace pilot jobs were submitted to the nodes, such that they could be executed 
instantly. We measured creation times for differently-sized virtual clusters composed 
of single CPU nodes with 1GB of RAM. To isolate the performance specific to our 
service we assumed that images are already available on the nodes (work on coordi-
nating image transfer and deployment can be found in [19]).  

The measurements were taken by storing local timestamps of particular events dur-
ing cluster create/destroy sequences so we synchronized the clocks on all the ma-
chines using NTP. The results shown represent a mean taken over 45 measurements 
for each cluster size (for N>1 we took the mean over the nodes participating in the 
iteration). While measuring job startup times with Torque we found that in about 20% 
of the cases job startups for large N (15 and 16) would be delayed in scheduler queue 
-- this behavior was found to be specific to the site configuration which was outside 
of our control; we thus discarded those measurements.  

 
Figure 2: End to end client time Figure 3: Slot provisioning 

We first timed how long it takes to adapt a node for VM deployment using the Xen 
balloon driver. We used the the xm mem-set command to reduce the memory in do-
main 0; on average this took 743.6 ms (SD = 100.5). Restoring the memory includes 
system checks (e.g., for running VMs) and took 1317.2 ms (SD = 96.5). The kill-all 



command took 2336.27 ms (SD=236.7). Our trials showed no correlation to the size 
of adjusted memory and the time of the operation; all numbers were computed as 
arithmetic mean over 100 trials adjusting 1GB of memory.  

Figure 2 shows the time elapsed between the time when a client (located on the 
same node as the workspace service) submits a request and the time when the client 
receives notification of request completion. We broke the time into three parts: slot 
provisioning (slot), VM provisioning (vms), and client-side processing (proc). As can 
be seen, the time increases slightly as the number of nodes is doubled.  

We then examined slot provisioning time in detail (Figure 3). The main component 
responsible for the time increase is the Torque startup time (torque) and is caused by 
the pbsdsh program used by Torque to start jobs of more than one process (in general, 
this component depends on the LRM used).  The time increase in the pilot program 
(pilot) was tracked down to the use of sudo for invoking the memory reservation 
process: the cluster's user accounts are backed by an LDAP database and more (virtu-
ally simultaneous) memory calls put extra load on the LDAP server. The notification 
time (ping) increases the load on the workspace service as it is required to receive and 
respond to increasingly more HTTP notifications. 

Next, we looked at the time to create a virtual cluster (Figure 4). The invocation of 
workspace control mechanisms (invoke) is currently implemented with SSH and again 
with increasing N it puts increasing load on the workspace service (the sudo issue also 
plays a role). Faster messaging mechanisms that implement collective communication 
will reduce this time by an order of magnitude or more. The bulk of the time is spent 
in starting the VMs and connecting them to the network (create). The slight decreas-
ing tendency with increasing N is deceptive: it is accounted for by significant timing 
differences between individual nodes (VMs for small N were running on slow nodes 
hence the higher mean. The time spent in notifications (post) is insignificant com-
pared to the other times. 

 
Figure 4: Service mechanisms with-

out LRM and pilot time 
Figure 5: Destruction overview 

 



Figure 5 shows the time elapsed during a typical destruction sequence: a client is-
sues an explicit destroy request. In the figure below destroy shows the time it takes 
the workspace service to terminate all VMs, SIGTERM shows the time it takes for the 
scheduler to post a SIGTERM signal as a result of qdel request generated by the 
workspace service, and restore shows the pilot restore operation that includes mem-
ory adjustment and a substantial idling period. As in the creation times, the LRM is 
the least scalable component of the time although the use of sudo in the pilot invoca-
tion and SSH request processing also contribute to slowdown for larger N to a lesser 
degree. The use of pbsdsh accounts for the sudden jump of the sigterm component.  
When N is greater than one, pbsdsh runs on one node, the SIGTERM signal is sent to 
the local pilot process, and then only after several seconds is the message propagated 
to the other nodes in the group. 

6 Related Work 

Multi-scheduling systems have been proposed before. The Condor glide-in mecha-
nism [3] uses a “pilot program” approach similar to the one described here to provi-
sion resources which then join a Condor pool. The MyCluster project [4] uses a simi-
lar method to create Condor and Sun Grid Engine (SGE) clusters provisioned on top 
of TeraGrid resources. The Falkon system [6] provisions local resources to deploy a 
scheduler optimized for handling fine-grained high-througput tasks. All these ap-
proaches use LRMs to dynamically provision local resources on which they then 
overlay a custom scheduling mechanism. Our approach is different in that we deploy 
VMs over the dynamically provisioned resources; then the provisioned VMs can be 
further differentiated (e.g. join different scheduling pools). A cluster provisioned with 
the workspace pilot does not restrict the client’s choice of a scheduler (in fact the cli-
ent need not use a scheduler at all).  

Many groups have also explored the integration of LRMs and virtualization. The 
Dynamic Virtual Clustering (DVC) system [20] integrates the Moab scheduler [21] 
with Xen to create virtual clusters on a per-job basis so as to provide a unique soft-
ware environment for a particular application or a consistent software environment 
across multiple heterogeneous clusters (similar mechanisms are supported in the pro-
duction version of the Moab scheduler [22]). Fallenbeck et al. [23] proposed Xen-
based extensions to the SGE using two VM images (one representing the environment 
required for parallel and one for serial jobs) to optimize the scheduling functions of 
the cluster by suspending and resuming those images. All these approaches assume a 
priori preparation and vetting of images by the cluster administrator and deploy im-
ages on a per-job basis (i.e., the modified scheduler still dispatches and manages jobs 
running inside the VMs). Our approach is different in that we lease out the provi-
sioned VMs to be used via mechanisms independent of the original scheduler, allow 
clients to request the deployment of arbitrary images and use the contextualization 
process to adapt them to a particular deployment.  

The leasing approach has also been explored by the Shirako project [24], the Vio-
Cluster project [25], the Maestro-VS project [26] and the “cluster on the fly” project 
[27] all explore a leasing-based mode of cluster provisioning. But whereas our ap-



proach in this paper is to provide a leasing environment for VMs within the con-
straints of an existing scheduling infrastructure, the approaches described above pro-
pose new schedulers that could be develop to schedule and deploy VMs.   

7 Conclusions  

We have described a method that can be used to adapt a job hosting platform to pro-
vide a basic VM hosting ability in a non-invasive way. We describe both the imple-
mentation of the system and the client’s view of provisioning the virtual resources. 
While this method gives the client limited “terms of service” (constrained by the poli-
cies implemented by the batch scheduler), it also provides a simple way for existing 
resource providers to experiment with VM hosting.  

Our evaluation shows that, assuming image availability, virtual clusters can be 
provisioned reasonably cheaply and scalably using this approach: a 16 node cluster 
can be provisioned in 12 seconds including VM boot time (as compared to 8 seconds 
for a cluster of 1). In our experiments, the least scalable component of provisioning 
proved to be the LRM which took half the time of overall end-to-end deployment. 

Acknowledgements 

This work was supported by NSF SDCI award #0721867 and, in part, by the Mathe-
matical, Information, and Computational Sciences Division subprogram of the Office 
of Advanced Scientific Computing Research, SciDAC Program, Office of Science, 
U.S. Department of Energy, under Contract DE-AC02-06CH11357. We thank Greg 
Cross and Ti Leggett for discussion of the workspace pilot implementation.  

References 

1. Chase, J., L. Grit, D. Irwin, J. Moore, and S. Sprenkle, Dynamic Virtual 
Clusters in a Grid Site Manager. HPDC-12, 2003. 

2. Amazon Elastic Compute Cloud (EC2): www.amazon.com/ec2. 
3. Frey, J., T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, Condor-G: A 

Computation Management Agent for Multi-Institutional Grids. Cluster Com-
puting, 2002. 5(3): p. 237-246. 

4. Walker, E., J. Gardner, V. Litvin, and E. Turner, Creating Personal Adaptive 
Clusters for Managing Scientific Jobs in a Distributed Computing Environ-
ment. CLADE, 2006. 

5. Nilsson, P., Experience from a pilot based system for ATLAS.  CHEP 2007. 
6. Raicu, I., Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, Falkon: a Fast 

and Light-weight tasK executiON farmework. SuperComputing, 2007. 
7. Agarwal, A., R. Desmarais, I. Gable, A. Norton, R. Sobie, and D. Vander-

ster, Evaluation of Virtual Machines for HEP Grids. CHEP 2006. 



8. Keahey, K., T. Freeman, J. Lauret, and D. Olson. Virtual Workspaces for 
Scientific Applications. in SciDAC Conference. 2007. 

9. Freeman, T., K. Keahey, I. Foster, A. Rana, B. Sotomayor, and F. 
Wuerthwein, Division of Labor: Tools for Growth and Scalability of the 
Grids. ICSOC 2006. 

10. Keahey, K., I. Foster, T. Freeman, and X. Zhang, Virtual Workspaces: 
Achieving Quality of Service and Quality of Life in the Grid. Scientific Pro-
gramming Journal, 2005. 

11. Torque: http://www.clusterresources.com/pages/products/torque-resource-
manager.php. 

12. Sun Grid Engine: http://gridengine.sunsource.net. 
13. The TeraPort Cluster: 

http://www.ci.uchicago.edu/research/detail_teraport.php. 
14. Czajkowski, K., D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. 

Snelling, S. Tuecke, and W. Vambenepe, The WS-Resource Framework. 
2004: http://www.globus.org/wsrf. 

15. Virtual Workspaces: http://workspace.globus.org. 
16. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, 

I. Pratt, and A. Warfield. Xen and the Art of Virtualization. in ACM Sympo-
sium on Operating Systems Principles (SOSP). 

17. Freeman, T., K. Keahey, B. Sotomayor, X. Zhang, I. Foster, and D. Scheft-
ner, Virtual Clusters for Grid Communities. CCGrid, 2006. 

18. Bradshaw, R., N. Desai, T. Freeman, and K. Keahey. A Scalable Approach 
to Deploying and Managing Virtual Appliances. in TeraGrid 2007 

19. Sotomayor, B., K. Keahey, and I. Foster. Overhead Matters: A Model for 
Virtual Resource Management. in 1st International Workshop on Virtualiza-
tion Technology in Distributed Computing (VTDC). 2006. 

20. Emeneker, W., D. Jackson, J. Butikofer, and D. Stanzione, Dynamic Virtual 
Clustering with Xen and Moab. Workshop on Xen in HPC Cluster and Grid 
Computing Environments (XHPC), 2006. 

21. The MOAB Workload Manager: 
http://www.clusterresources.com/pages/products/moab-cluster-
suite/workload-manager.php. 

22. MOAB Administrator's Guide: Virtualization and Resource Provisioning: 
http://www.clusterresources.com/products/mwm/docs/5.6resourceprovisioni
ng.shtml. 

23. Fallenbeck, N., H. Picht, M. Smith, and B. Freisleben, Xen and the Art of 
Cluster Scheduling. VTDC, 2006. 

24. Irwin, D., J. Chase, L. Grit, A. Yunerefendi, D. Decker, and K. Yocum, 
Sharing Networked Resources with Brokered Leases. USENIX Technical 
Conference, 2006. 

25.     Ruth, P., P. McGachey, and D. Xu, VioCluster: Virtualization for Dynamic 
Computational Domains. IEEE Conference on Cluster Computing, 2005. 

26. Kiyanclar, N., G.A. Koenig, and W. Yurcik, Maestro-VS: A Paravirtualized 
Execution Environment for Secure On-Demand Cluster Computing. CCGrid, 
2006. 

27. Nishimura, H., N. Maruyama, and S. Matsuoka, Virtual Clusers on the Fly -- 
Fast, Scalable and Flexible Installation. CCGrid, 2007. 


