
Implementing Efficient Dynamic Formal

Verification Methods for MPI Programs?

Sarvani Vakkalanka1, Michael DeLisi1, Ganesh Gopalakrishnan1,
Robert M. Kirby1, Rajeev Thakur2, and William Gropp3

1 School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA
2 Math. and Comp. Sci. Div., Argonne Nat. Lab., Argonne, IL 60439, USA

3 Dept. of Computer Sci., Univ. of Illinois, Urbana, Illinois, 61801, USA

Abstract. We examine the problem of formally verifying MPI programs
for safety properties through an efficient dynamic (runtime) method in
which the processes of a given MPI program are executed under the con-
trol of an interleaving scheduler. To ensure full coverage for given input
test data, the algorithm must take into consideration MPI’s out-of-order
completion semantics. The algorithm must also ensure that nondeter-
ministic constructs (e.g., MPI wildcard receive matches) are executed
in all possible ways. Our new algorithm rewrites wildcard receives to
specific receives, one for each sender that can potentially match with the
receive. It then recursively explores each case of the specific receives. The
list of potential senders matching a receive is determined through a run-
time algorithm that exploits MPI’s operation ordering semantics. Our
verification tool ISP that incorporates this algorithm efficiently verifies
several programs and finds bugs missed by existing informal verification
tools.

1 Introduction

With the increasing use of MPI for the distributed programming of virtually
all high-performance computing clusters in the world, it is important that MPI
programs be verified to be free of bugs. With the need to re-verify MPI programs
after each optimization step, the process of verification must involve only modest
computing resources and limit manual tedium. As MPI programs can contain
many types of bugs, including deadlocks, resource leaks, and numerical inaccu-
racies, it is practically impossible for a single tool to guarantee the coverage of
bugs in all these classes. Therefore, approaches that focus on a limited bug class
and guarantee full coverage for that class are preferred.

In this paper, we present our C MPI program verification tool, named In-
situ Partial Order (ISP), that incorporates a novel scheduling algorithm called
POE (Partial Order reduction avoiding Elusive interleavings). ISP guarantees to
detect all deadlocks and local assertion violations in MPI programs containing
24 of the most commonly used MPI functions. For these MPI programs, the ISP
tool will explore close to the minimal number of interleavings. Furthermore, ISP

? Supported in part by NSF CNS-00509379, and Microsoft HPC Institutes Program.

1



does not require any modeling effort on part of users, allowing it to be easily re-
run during program development. ISP enjoys the same ease of use as the dynamic
verification tools Umpire [2], Marmot [3], ConTest [4], and Jitterbug [5] (to name
a few). However, the POE algorithm offers the formal guarantee of finding all
deadlocks. As shown by experiments on our web site [13], of the 69 Umpire tests,
30 contain deadlocks, and ISP detects all of them, while exploring a very small
number of interleavings. In contrast, Marmot fails to find deadlocks in eight of
these tests, despite being run multiple times. When these tests were run with
MPICH2 repeatedly, the deadlock detection success was unpredictable. Tools
that rely on perturbing schedules simply cannot guarantee coverage.

The main feature of POE is that it explores only relevant interleavings, using
a technique known as partial order reduction [6]. Without this idea, any explo-
ration method for MPI will go out of hand. For instance, consider the short
MPI program in Figure 1 that begins with two sends in P0 and P2, and a wild-
card receive in P1. The total number of interleavings of all these MPI calls is
210.4 However, to trigger error1, we need to consider the interleavings in which
the send of P2 matches the wildcard receive. Testing-oriented tools may easily
miss these interleavings. Thanks to partial order reduction, ISP will: (i) pick
an arbitrary order for executing P0’s first send and P1’s first receive, (ii) pick
an arbitrary order to execute P2’s first send and P1’s second receive, and then
(iii) consider both the Send matches with the wildcard receive (shown by *).

P0: MPI_Send(to P1...); MPI_Send(to P1, data = 22);

P1: MPI_Recv(from P0...); MPI_Recv(from P2...);

MPI_Recv(*, x); IF (x==22) THEN error1 ELSE MPI_Recv(*, x);

P2: MPI_Send(to P1...); MPI_Send(to P1, data = 33);

Fig. 1. A Simple MPI Example with Wildcard Receives

ISP has built-in knowledge of the commuting properties of MPI functions.
For example, consider an MPI program in which MPI_Barrier is invoked by
N processes. ISP would, in general, explore only one of the N ! ways in which
to have invoked the barrier calls. In our implementation of the 24 MPI func-
tions, alternate interleavings are explored for wildcard receives, WAIT_ANY, and
TEST_ANY.

Overview of ISP’s use of PMPI: We use the well-known PMPI mechanism,
normally used for performance studies, to support runtime model checking in
ISP. We introduce an extra process called the verification scheduler. ISP provides
its own version of “MPI f” for each MPI function f . Within MPI f , we arrange
for handshakes with the scheduler that realizes the POE algorithm. When the
scheduler finally gives permission to fire f , we invoke PMPI f from within our
version of MPI f . The MPI runtime only sees the PMPI f calls.

4 (7!)/((2!).(3!).(2!))

2



Related Work: Techniques for eliminating nondeterminacy for testing paral-
lel programs were studied in [14]. A dynamic verification approach for reactive
C programs was first proposed by Godefroid [7]. Flanagan and Godefroid [8]
extend this work, incorporating a more efficient dynamic partial order reduc-
tion (DPOR) algorithm. In [1], we presented the first DPOR-based verification
method for MPI programs that employ one-sided communication. In [9], we re-
ported a preliminary implementation of DPOR for MPI’s two-sided operations.
This algorithm did not address the full range of out-of-order behaviors of MPI. It
also proved incapable of controlling the MPI runtime to force the desired wild-
card receive matches (see Section 2). POE overcomes both these limitations,
and replaces DPOR – the former algorithm implemented within ISP. Exploiting
MPI’s semantics, POE employs a strategy of lookahead computation to discover
how sends and receives in an MPI program match. A formal presentation of the
POE algorithm is given in [10].

Roadmap: The remainder of this introduction presents in detail the three new
ideas used in POE: Forcing Wildcard Matches (Section 1.1), Handling Out-

of-order Completion (Section 1.2), and Discovering Match-Sets (Section 1.3).
Section 2 presents the POE algorithm in detail, focusing on sends, receives,
and barriers. Section 2.2 describes how many additional MPI commands are
smoothly handled by the extended POE algorithm implemented in ISP. We also
discuss how the user interface of a Visual Studio integration of POE works: we
strive to preserve the users’ view of their MPI program, despite the fact that our
POE algorithm changes the internal computation through dynamic rewriting.
Section 3 presents experimental results and Section 4 concludes.

1.1 Forcing Wildcard Matches

Consider the example in Figure 2, with 0 : // * means MPI_ANY_SOURCE

1 : if (rank == 0)

2 : { MPI_Irecv(&buff1, *, &req);

3 : MPI_Recv (&buff2, from 2);

4 : MPI_Wait (&req) }

5 : else if (rank == 1)

6 : { MPI_Isend(buff1, to 0, &req);

7 : MPI_Wait (&req); }

8 : else if (rank == 2)

9 : { MPI_Isend(buff2, to 0, &req);

10: MPI_Wait (&req); }

Fig. 2. Relevant Interleavings and

Elusive Matches during Dynamic

Verification of MPI Programs

line 2 containing a wildcard receive. A
match between the Isend on line 6 and
Irecv on line 2 (wildcard) will enable Recv
on line 3 to match with the Isend on line
9. However, if the Isend on line 9 were
to match the Irecv on line 2, a deadlock
would result, with Recv (line 3) no longer
able to match Isend (line 6). Clearly, we
cannot leave out this second option (pro-
cess interleaving) during testing.

The role of a dynamic verification tool
for MPI is to determine, at runtime, the
specific matches possible, and explore all
relevant ones - that is, a representative of
each equivalence class of equivalent interleavings. This method must be carried
out at runtime: (i) the outcomes of control branches through conditional state-
ments will be known only at runtime and (ii) the send/receive targets/sources,

3



and other details (communicator, tag, etc.) may be values that are computed at
runtime.5

We now explain briefly why DPOR does not work for MPI. Suppose a DPOR-
based algorithm is able to determine that Isend (line 6) matched Irecv (line 2),
and that Isend (line 9) is also a potential alternate match for this Irecv. Accord-
ing to the algorithm of [8], the dynamic verification scheduler must now somehow
force this alternative match – say by firing the Isend (line 9) in real-time order
before firing Isend (line 6). However, we know from MPI’s semantics that the
MPI runtime environments do not guarantee that this alternative matching will
occur. We call these scenarios (potentially) elusive matches. Tricks such as in-
serting ‘padding’ delays that can perturb schedules may make elusive matches
more likely, but still provide no guarantees. Therefore, we need an algorithm
different from DPOR, and POE is our answer.

POE solves the problem of elusive matches without requiring changes to the
MPI library and without adding padding delays. It dynamically rewrites wild-
card receives into specific receives, one for each actual sender that it com-
putes to be a certain match. In the context of the example in Figure 2, if we
can force two recursive explorations, with MPI_Irecv(buffer, from 1, &req);

and MPI_Irecv(buffer, from 2, &req); used successively in lieu of the exist-
ing line 2, we would have force-matched both the sends. The crucial fact is, of
course, to never force-match with a send that is not going to be issued – this
can cause a deadlock that does not exist. POE employs a strategy to discover
all potential senders precisely, as outlined in Section 1.2, and Section 2.

1.2 Handling Out-of-order Completion

In MPI, (i) two Isends targeting two different processes may finish out of order
(with respect to issue order), while two Isends targeting the same process must
match in order. Likewise, (ii) two non-wildcard receives sourcing from the same
source process must also match sends in order. Similarly, (iii) if the first receive
or both receives are wildcards, even then they must match in issue order. As for
waits and tests, (iv) they must not complete before their corresponding send/re-
ceive operations. Finally, (v) operations appearing after MPI barriers and MPI
waits must not finish before the barrier or wait. Notice that we did not say that
operations before a barrier must finish before the barrier! Section 2 will show
that operations issued before a barrier can linger even after crossing the barrier.

1.3 Discovering Match-Sets

POE employs an approach to bound the scope of search for locating potential
matching sends for a wildcard receive. It relies on a formal notion of fences
to determine when two operations issued by a dynamic verification scheduler
through the PMPI layer will be carried out (i) by the MPI runtime, (ii) in that
order. We are not saying that MPI has “fence instructions” akin to how CPUs
have assembly instructions to order intra-core execution. However, there are still
conceptually equivalent ordering points defined by the MPI semantics! Based on

5 In this paper, we suppress details pertaining to communicators and tags.

4



a formulation of MPI fences, we can form match-sets – sets of MPI operations
that can be issued out of order by a dynamic verification scheduler. This is the
idea of POE’s lookahead computation alluded to earlier.

2 Basic POE Algorithm

Consider Figure 3. Note that although the Isend on line 8 is issued after the
barrier on line 7, it is a potential match for the Irecv(*) on line 2. This is
precisely because MPI’s Isend can linger across a Barrier. The only ordering
that MPI guarantees is that functions after a barrier will not be called until
all functions before (and including) the barrier have been called on any process
(rank). The following steps describe how the dynamic verification scheduler im-
plementing the POE algorithm handles this example. Our POE scheduler will
intercept every MPI operation MPI_f issued from every MPI process. It will often
not issue these operations (through PMPI_f) immediately – but only make a note
of it, and later issue them. We employ a central scheduler process which helps
issue MPI operations in a serialized manner, and currently replays executions
by re-execution from MPI Init.6

Illustration of POE on the example of Figure 3

• Collect Irecv (line 2), and do not issue.
• Collect Barrier (line 3), and do not issue.
• Since Barrier is a fence, do not collect anything more from rank 0; switch

to rank 1.
• Collect Barrier (line 7), and do not issue; switch to rank 2.
• Collect Isend (line 11), and do not issue. Then collect Barrier (line 12),

and do not issue.
• A fence has been reached in every rank. Now, form a match set in priority

order, with the following priority order followed: barriers first, then non
wildcard send/receives, and finally wildcard send/receives.

• In our current state, there is indeed a highest-priority match set formed by
the barriers. Now, POE sends these Barriers into the MPI runtime through
PMPI_Barrier calls.

• The next ordering points (fences) are attained at Wait.
• No match-sets of non wildcard receives exist. Skip this priority order.
• At this point, we know the full list of senders that can match the wildcard

receive.
• Dynamically rewrite Irecv(*) into Irecv(1) and Irecv(2), in two different

executions.
• Form the first match set of Irecv(1) and Isend() of line 8. Pursue this

interleaving.
• Form the second match set of Irecv(2) and Isend() of line 11. Pursue this

interleaving though re-execution of the MPI program.

6 A distributed strategy allowing concurrent issues is slated for development; also a
more efficient re-execution method is reported in [9].

5



Note that for MPI programs with no wildcards, POE will examine the entire
program under exactly one interleaving.

2.1 Semi-Formal Description of POE

The POE algorithm works by find-1: if (rank == 0)

2: { MPI_Irecv (&buf0, *, &req);

3: MPI_Barrier ();

4: MPI_Wait (&req);

5: MPI_Recv (&buf1, from 2); }

6: else if (rank == 1)

7: { MPI_Barrier ();

8: MPI_Isend(buf1, to 0, &req);

9: MPI_Wait (&req); }

10: else if (rank == 2)

11: { MPI_Isend(buf0, to 0, &req);

12: MPI_Barrier ();

13: MPI_Wait (&req); }

Fig. 3. Ordering Semantics and Opera-

tion Lifetimes

ing match-sets of MPI operations and
issuing them (possibly out-of-order)
to the MPI runtime (using the PMPI
versions of these operations). An MPI
operation can essentially be in one of
the two states: issued and completed.
When an MPI operation is issued, it
means that the MPI runtime is aware
of the MPI operation. When an MPI
operation is completed, it means that
the operation has no presence in the
MPI runtime. For example, when we
say that an MPI receive operation is
complete, we mean that a matching
send has been found for that receive.

For simplicity, we only deal with the following MPI operations in this section:
MPI_Barrier, MPI_Isend, MPI_Wait, MPI_Irecv. We also assume that the op-
erations have the same tag and that the communicator is MPI_COMM_WORLD for
simplicity.

Since MPI semantics allow for nonblocking operations to linger across bar-
riers, POE needs to emulate this out-of-order completion behavior of the MPI
runtime. In addition, POE must also respect MPI’s send and receive ordering
guarantees. Therefore, rather than emulating the issue order of MPI operations,
POE must emulate the completion order of MPI operations. Before going into
more detail, we first define what we call fence MPI operations.

MPI Fence Operations: A fence is an MPI operation that must be completed
before any following MPI operations from the same process can be issued. Any
blocking MPI operation is a fence, as are MPI_Barrier, MPI_Wait, and MPI_Recv.

POE executes all C statements in program order; however, it issues MPI
operations to the MPI runtime only when they are guaranteed to complete im-
mediately. For example, an MPI receive (send) is issued only if a matching send
(receive) is found. This is the idea of POE forming match-sets as introduced in
Section 1.3. In order to correctly emulate the out-of-order completion inherent
within the MPI semantics (Section 1.2 presents it through examples; our web
page [13] has details), POE builds a graph data structure of completes-before
edges across MPI operations within the same process. We call these edges as
intra completes-before (IntraCB) edges. For an MPI process Pi with two MPI
operations i, j and i < j: an intra completes-before edge exists from i to j iff
one of the following holds:

6



– i is a fence MPI operation.
– i and j are MPI send operations to the same destination.
– i and j are MPI receive operations from the same source.
– If i is a wildcard receive and j is an MPI receive operation (either wildcard

or non-wildcard).

In addition to IntraCB, POE also maintains a conditional completes before
(CCB) edge which is added as follows. The purpose of this edge is to model
how wildcard receives may trump non wildcard receives. For example, suppose an
MPI process P0 has the code sequence Recv(from 1); Recv(from *); and MPI
process P2 has code sequence Send(to 0);. Then this Send matches Recv(from
*) because the first offered match “from 1” requires a send from P1 which is
not present. In this case, a CCB edge is not introduced between the receives in
P0. However, now if we consider the same P0 process, but a P1 process which is
Send(to 0);, then this Send matches Recv(from 1);. In this case, a CCB edge
is introduced between the receives in P0.

If there is an IntraCB or CCB edge from i to j, then we call i as the ancestor of
j. The POE algorithm described on Page 5 guarantees that no PMPI operation
will be issued contrary to the IntraCB or CCB edges, thus guaranteeing the
correctness of message matches within the MPI runtime.

It must be observed that the code snippet in Figure 1 can be verified with
DPOR if the technique of dynamic rewriting of the wildcard receives is employed.
However, the code snippet in Figure 3 cannot be verified with DPOR even with
dynamic rewriting of wildcard receives employed. Due to the presence of the
barrier, the MPI_Isend at line 8 can never be executed before the MPI_Isend

at line 11, whereas in DPOR, we will need dependent actions to be replayable
in both orders. In any interleaving of this example, however the send at line 11
is always issued before the send at line 8. The POE algorithm overcomes this
problem by executing the big-step move of MPI_Barrier of the three processes,
and then forming match-sets of the wildcard receive with MPI_Isends by re-
curively employing dynamic rewriting for both the match-sets each in a different
interleaving.

2.2 Implementing WAIT ANY and TEST ANY

ISP implements the POE algorithm that allows for executing MPI operations in
an order different from the actual program order. Hence, when ISP traps an MPI
request such as MPI_Irecv(buffer, count, datatype, source, mpi_request), ISP
stores the arguments for later issuance. Let op be an MPI operation.

When op is one of MPI_Wait, MPI_Waitall, MPI_Test, or MPI_Testall, the
out-of-order issuance does not cause any problems since the POE algorithm’s
IntraCB edges ensure that all ancestors, i.e, the MPI_Isends and MPI_Irecvs
corresponding to the requests are issued before op itself is actually issued. When
op is one of MPI_Testany or MPI_Waitany, all MPI_Irecv and MPI_Isend ances-
tors of op are not necessarily issued before op itself is issued. Hence, when ISP
invokes op, an error is thrown by the MPI runtime that the request structure is

7



invalid (since the MPI runtime is not aware of the as yet unissued MPI_Isend

or MPI_Irecv requests). In order to circumvent this problem, ISP issues op with
MPI_REQUEST_NULL for those send and receive requests that are not yet issued
and hence are ignored by the MPI runtime.

This allows the MPI_Testany and MPI_Waitany to work with POE’s out of
order issue when the MPI runtime does not know all the requests it is supposed
know as it would during an in-order execution.

3 Experimental Results

We have experimented with all 69 Umpire [2] test cases, and in all 30 tests
that have deadlocks, ISP finds the deadlocks, generating the fewest number of
interleavings. We have also run ISP on the Monte-Carlo calculation of Pi, and
the Game of Life example used in the EuroPVM/MPI 2007 Tutorial [12]. In
all examples that do not employ wildcard receives, WAIT_ANY, or TEST_ANY, ISP
examines exactly one interleaving. Some of these examples were instrumented
to detect resource leaks (e.g., MPI_Isend or MPI_Irecv without an MPI_Wait,
MPI_Comm_create without an MPI_Comm_free, etc.). For these examples, a suc-
cessful verification run using ISP implies a complete absence of these types of
issues in the program (more discussions under ‘data dependent control’ below).

Since ISP works by re-executing the given MPI program, the restart time
of the MPI system can become a significant overhead. This price is being paid
because as opposed to existing model checkers which maintain state hash-tables,
we cannot easily maintain a hash-table of visited states including the state of
the MPI program as well as the MPI run-time system. (Note: In resorting to re-
execution, we are, in effect, banking on deterministic replay.) One very promising
approach to eliminate restart overheads is the following. At MPI_Finalize, one
can reasonably assume that the MPI run-time state is equivalent to the one just
after MPI_Init, and therefore simply reset user state variables and transition
each process to the label after MPI_Init. We are further looking into when it is
appropriate to use this technique (see [9] for details).
Data Independent Control Flow: In most MPI programs, control flows are
unaffected by ‘data’ variables. For such MPI programs, a successful verification
using ISP on a fixed input data set is tantamount to verifying the program for all
possible input data. Also, for such programs, one can eliminate data variables,
and their associated update functions, since they would not contribute either to
control flow decisions or to the truth of the local assertions being checked. A
preliminary implementation exists to detect and eliminate such data variables
from MPI programs.

A preliminary Microsoft Visual Studio integration of ISP has also been im-
plemented. A problem faced in this implementation was due to the fact that
the actual run that occurs under ISP does not ever send wildcard receives into
the MPI runtime. Visual Studio issued wildcard receives would not necessarily
match with the correct sends, and mask the deadlock ISP found. This problem
was solved through a novel technique that (i) obtains trace information from

8



ISP, and (ii) mimics the dynamic rewriting of wildcard receives while making
the Visual Studio debugger step through error traces. With this approach, the
user’s view of their program is preserved (more details on our web page [13]).

4 Concluding Remarks

We described our dynamic verification approach for MPI C programs that in-
corporates partial order reduction and dynamic rewriting based scheduling of
MPI function call interleavings. ISP guarantees to detect all deadlocks and local
assertion violations in C MPI programs that fall within ISP’s range of supported
commands (the commands and our verification results are documented on our
website). MPI programs with additional calls may also be checked using ISP if
they do not interfere with the commands currently supported (these commands
will directly issue into the MPI runtime, without going through the PMPI mech-
anism). We detailed how we solved special problems posed by WAIT_ANY and
TEST_ANY, and also how we reconcile a user-interface view with our dynamic
rewriting process. We plan to release the full sources of ISP for experimentation,
parallelize ISP itself using MPI, and make ISP widely available.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

References

1. Salman Pervez, Robert Palmer, Ganesh Gopalakrishnan, Robert M. Kirby, Ra-
jeev Thakur, and William Gropp. Practical model checking method for verifying
correctness of MPI programs. In EuroPVM/MPI, pages 344–353, 2007.

2. Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic Software Testing of MPI
Applications with Umpire. Proc. of SC2000, pages 70–79, 2000.

3. Bettina Krammer and Michael M. Resch. Correctness checking of MPI one-sided
communication using Marmot. EuroPVM/MPI, LNCS 4192, pages 105–114, 2006.

4. O. Edelstein et.al, Framework for testing multi-threaded Java programs. Concur-
rency and Computation, 15(3-5):485–499, 2003.

5. R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and A. Saebjornsen. Improved
distributed memory applications testing by message perturbation. PADTAD 2006.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
7. Patrice Godefroid. Model checking for programming languages using Verisoft.

POPL, pages 174–186, 1997.
8. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for

model checking software. POPL, pages 110–121. ACM, 2005.
9. Sarvani Vakkalanka, Subodh V. Sharma, Ganesh Gopalakrishnan, and Robert M.

Kirby. ISP: A tool for model checking MPI programs. PPoPP 2008. 285-286.

9



10. Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dynamic
Verification With Reductions in Presence of Split Operations, Relaxed Orderings,
and Elusive Interleavings CAV 2008 (to appear).

11. Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley, 2004.
12. William D. Gropp and Ewing Lusk. Using MPI-2: A Problem-based Approach,

2007. Tutorial.
13. http://www.cs.utah.edu/formal verification/europvm-mpi08

14. Michael Oberhuber, “Elimination of Nondeterminacy for Testing and Debugging
Parallel Programs,” Automated and Algorithmic Debugging, 315-316, 1995.

10


