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Abstract. We examine the unsolved problem of automatically and ef-
ficiently detecting functionally irrelevant barriers in MPI programs. A
functionally irrelevant barrier is a set of MPI_Barrier calls, one per MPI
process, such that their removal does not alter the overall MPI commu-
nication structure of the program. Static analysis methods are incapable
of solving this problem, as MPI programs can compute many quantities
at runtime, including send targets, receive sources, tags, and commu-
nicators, and also can have data-dependent control flows. We offer an
algorithm called Fib to solve this problem based on dynamic (runtime)
analysis. Fib applies to MPI programs that employ 24 widely used two-
sided MPI operations. We show that it is sufficient to detect barrier calls
whose removal causes a wildcard receive statement placed before or after
a barrier to now begin matching a send statement with which it did not
match before. Fib determines whether a barrier becomes relevant in any
interleaving of the MPI processes of a given MPI program. Since the
number of interleavings can grow exponentially with the number of pro-
cesses, Fib employs a sound method to drastically reduce this number,
by computing only the relevant interleavings. We show that many MPI
programs do not have data dependent control flows, thus making the
results of Fib applicable to all the input data the program can accept.

1 Introduction

The barrier construct (MPI_Barrier) is an important function in the MPI li-
brary. It is a collective call, meaning that all processes in the communicator
must call the barrier. We define such a collective call defined by a set of barrier
calls (one from each process) to be a collective barrier. A collective barrier is
functionally irrelevant (“irrelevant” for short) if its removal does not alter the
overall MPI communication structure of the program in terms of correctness
and matching of operations. To the best of our knowledge, this problem has not
been solved before. In this paper, we present an algorithm called Fib to solve
this problem based on dynamic (runtime) analysis for MPI programs employing
24 widely used two-sided MPI operations (detailed on our web page [1]).

The importance of detecting irrelevant barriers comes from a number of per-
spectives. Many MPI users are known to employ collective barriers for “good
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measure;” they are unsure whether it is necessary. The authors of [2] narrate
the example of an MPI program where a barrier was considered irrelevant, and
removed. A year later, they were proven wrong, as a race condition was intro-
duced by its removal. In [3], it is shown that barriers can consume a significant
fraction of the total application time. Of course, users wanting to control per-
formance by avoiding network or I/O contention may insert collective barriers.
In this case, they are employing functionally irrelevant barriers for controlling
the non-functional aspects of their program. The Fib algorithm can help these
users by checking that these barriers are indeed functionally irrelevant.

Detecting irrelevant barriers by inspection is not straightforward, as we show
through a number of small examples in Section 2. While each example seems
to warrant a different justification, a nice feature of the Fib algorithm is that
it reduces all these justifications to a single mathematical relation called the
completes-before relation. This relation has two aspects: intra completes-before
(IntraCB), and inter completes-before (InterCB). In a nutshell, the Fib algorithm
detects a change in the set of communication possibilities by computing the
InterCB relation in the presence of a barrier, and checks whether the barrier
plays a role in ordering a send and a wildcard receive.

The examples given in Section 2 do not reflect the following additional diffi-
culties. In realistic MPI programs, a user may forget to use a collective barrier
(i.e. forget to place a barrier within a process), thus introducing a deadlock. Also,
realistic programs may compute many quantities at run time, including send tar-
gets, receive sources, tags, and communicators. They also have data-dependent
control flows which can determine the actual sends and receives issued. The Fib
algorithm works in the presence of all these realities:

• Since Fib is implemented as an extension to the dynamic formal verification
methodology employed in our tool ISP( [9, 13, 4]), it is capable of detecting dead-
locks, and then aborting its analysis. Here are some example deadlock scenarios
that ISP can detect: (i) deadlocks due to a collective barrier being incorrectly
placed, (ii) those introduced when the user forgets to issue the (supposed) col-
lective call from within some of the processes, (iii) the user employing the wrong
communicator for one of the barrier calls, or (iv) MPI messages not matching.

• Since Fib employs dynamic (runtime) analysis, all computed quantities would
be fully resolved, and become known. For the same reason, data-dependent con-
trol flows are also not an issue for Fib, in so far as path coverage goes. It is clear
that in general, the behavior of an MPI program can change in response to the
input data being analyzed (addressing this issue is considered future research).
However, a preliminary static analyzer that we have implemented confirms that
for many examples (e.g., all our examples in [1]), control flow does not depend
on data; for such programs, the analysis results of Fib are good for all input
data.

Fib flags a barrier as functionally irrelevant if and only if it is functionally ir-
relevant across all possible executions (process interleavings) of the program for

the given input data. Clearly, we cannot hope to examine all the interleavings
of any realistic MPI program näıvely, because this number grows exponentially
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with the number of processes. Fortunately, the ISP tool actually generates only
a miniscule fraction of all possible interleavings, by computing only the relevant

interleavings of an MPI program using a formal verification method called par-

tial order reduction [11, 12]. Without such a reduction algorithm, an algorithm
similar to Fib would be difficult to build.
Related Work: Fib is a significant extension of our POE algorithm imple-
mented in the ISP verification tool. The mathematical relation IntraCB is em-
ployed in POE (formally defined in [5], but summarized in this paper). The
relation InterCB builds on IntraCB, and is brand new to the Fib algorithm, and
this paper.

In [6], the authors provide a formal approach for arguing about the relevance
of barriers in MPI programs that do not employ wild-card receives. They prove
that for wild-card receive free MPI programs that are deadlock free, all barriers
are irrelevant. This justifies our criterion for relevant barrier detection, which is:
In a deadlock-free program, the removal of a barrier causes a wildcard receive
statement placed before or after a barrier to now begin matching a send state-

ment with which it did not match before. The examples in Section 2 provide
added insights into our criterion.

The work in [8] uses vector clocks [7], and provides a method for identifying
the racing messages in a single trace of an MPI program execution across “fron-
tiers” or consistent cuts [7]. While these ideas are somewhat related, the classical
vector clock formulation does not directly apply to MPI because of its out-of-
order completion semantics and barrier semantics, pointed out in Section 2.
Roadmap: Section 2 provides the intuition behind our Fib algorithm through
several examples. The Fib algorithm itself is detailed in Section 3, where we also
include sufficient background on the POE algorithm and our ISP tool. Section 4
provides experimental results, and Section 5 provides concluding remarks.

2 Overview of Fib, and the Completes-before Relation

In this section, we present a number of examples, introducing the concepts of
IntraCB and InterCB in context. These relations can be assumed to be always
maintained in a transitively closed manner. Please note that we omit the prefix
MPI_ in most cases, and also suppress irrelevant arguments of MPI calls. Also for
immediate-mode operations, we show a corresponding Wait only in some cases.
Example 1: As our simplest example, consider the following single process
(rank) MPI pseudo-code program:
P0: Irecv(from P0, x, &h); Wait(&h); Barrier; Isend(to P0, 22);

In this program, the collective barrier is a singleton set containing Barrier from
P0. Curiously, P0 is trying to send to itself, which is allowed in MPI. In this case,
Fib will report a deadlock whether there is a barrier or not. This is because of an
IntraCB edge from Wait to any following instruction. An IntraCB edge implies
the MPI guarantee of not issuing any instruction after a Wait until Wait has been
issued. In our example, there is an Isend after Wait, and unfortunately Wait

cannot finish unless Isend finishes—a circular dependency causing the deadlock.
In MPI, there is also an IntraCB edge from a Barrier to any following

instruction. This means that instructions following the barrier cannot be issued
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until the collective barrier can be crossed. Now, suppose we alter this example

by moving Wait to be after the Isend. In this altered example, Barrier can be
crossed after issuing Irecv, and this leads to Isend being issued. Thus, for this
altered example, the barrier is irrelevant.
Example 2: Here * indicates ANY_SOURCE (a wildcard receive):

P0: Irecv(*, x, &h); Barrier; Isend(to P0, 22); Wait(&h);

P1: Isend(to P0, 33); Barrier;

In this example, it is possible for x to attain the value 22, whether the collective
barrier is there or not! This is because even though there is an IntraCB edge
from Barrier to Isend in P0, there is no IntraCB edge from Irecv to Barrier

in P0, and similarly there is no IntraCB edge from Isend to Barrier in P1.
Therefore, for this program, Fib will flag the collective barrier as irrelevant.
Example 3: Consider the program:

P0: Irecv(*, x, &handle); Barrier; Wait(&handle);

P1: Isend(to P0, 33); Barrier; Isend(to P0, 22);

Here, the collective barrier is indeed irrelevant, and will be flagged as such by
the Fib algorithm, following this line of reasoning: (i) the first Isend of P1 and
the Irecv of P0 can be issued; (ii) the Barrier in the respective processes can be
crossed, as there is no IntraCB edge to these Barriers; (iii) before Irecv occurs,
Isend(to P0, 22); can also be issued; (iv) however, MPI’s message-matching
rules require process-to-process FIFO message ordering; in other words, there is
an IntraCB edge from the first Isend to the second Isend in P1. Therefore, x
can attain the value of 33 only.
Example 4: In contrast with Example 3, in this program, we move the second
send to process P2:

P0: Irecv(*, x, &handle); Barrier; Wait(&handle);

P1: Isend(to P0, 33); Barrier; ...rest of P1...

P2: ...some code... Barrier; Isend(to P0, 22);

The Isends are in different processes. Therefore, there is no IntraCB ordering
between them. However, the Irecv of P0 as well as Isend of P1 also do not have
an IntraCB to their barriers. Therefore, the collective barrier is irrelevant.

Now consider an alternative example (call it Example 4(a)) in which the
Wait in P0 is moved to be before its Barrier. Now, the collective barrier becomes
relevant. This is because there would be an IntraCB edge from Wait to Barrier.
Hence, Barrier cannot be crossed until the Irecv finishes. Therefore the Isend

from P2 cannot issue. Therefore, Irecv has to finish based on the Isend from
P1.
InterCB: The reasoning employed in this example highlights the need for the
notion of InterCB edges. Basically, the Isend of P2 “wishes to match” the Irecv
of P0. The only thing that prevents this is that the collective barrier orders
Irecv to be before it, and Isend to be after it. This is the ordering defined by
InterCB (detailed in Section 3). Furthermore, there is no alternative ordering
path starting from this Irecv to P2’s Isend that does not involve a barrier.
Hence the barrier is relevant.
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Example 5: In all previous examples, the wildcard receive statement appeared
before a barrier. In this example, it appears afterwards:

P0: Barrier; Send(to P2);

P1: Send(to P2); Barrier;

P2: Irecv(from P1); Barrier; Recv(*, ..);

Here, the barrier is irrelevant because P2’s Irecv(from P1) is ordered before
Recv(*). The reasoning now relies on another fact about MPI. If there is a
specific-source nonblocking receive followed by a wildcard receive in an MPI
program, the wildcard receive can trump the specific receive (i.e. may match
before it), if there is no matching sender to the specific-source receive! In Exam-
ple 5, however, there is a matching Send(to P2) in P1, and so trumping does
not happen. Since there is no trumping, the IntraCB ordering is maintained
between Irecv(from P1) and Recv(*,..).

3 The Fib Algorithm
We now provide an overview of the POE algorithm used in our ISP tool (Sec-
tion 3.1), and then describe the Fib algorithm (Section 3.2).

3.1 POE Overview

The crucial idea embodied in POE is the notion of exploring only relevant

interleavings—a technique known in model checking as partial order reduction [11].
Without this idea, any exploration method for MPI will go out of hand. For in-
stance, consider Example 6 below (used to illustrate the POE algorithm, and
not used to illustrate Fib) that begins with two sends in P0 and P2, and a wild-
card receive in P1. The total number of interleavings of all these MPI calls is
210.4 However, to trigger error1, we need to consider the interleavings in which
the send of P2 matches the wildcard receive. Testing oriented tools may easily
miss these interleavings. Thanks to partial order reduction, POE will: (i) pick
an arbitrary order for executing P0’s first send and P1’s first receive, (ii) pick
an arbitrary order to execute P2’s first send and P1’s second receive, and then
(iii) consider both the Send matches with the wildcard receive (shown by *). In
other words, POE will examine only two interleavings.
Example 6:

P0: MPI_Send(to P1...); MPI_Send(to P1, data = 22);

P1: MPI_Recv(from P0...); MPI_Recv(from P2...);

MPI_Recv(*, x); IF (x==22) THEN error1 ELSE MPI_Recv(*, x);

P2: MPI_Send(to P1...); MPI_Send(to P1, data = 33);

POE has built-in knowledge of the commuting properties of MPI functions. As
another example, consider an MPI program in which MPI_Barrier is invoked by
N processes. POE would, in general, explore only one of the N ! ways in which to
have invoked the barrier calls. In our implementation of the 24 MPI functions, the
cases where alternate interleavings are to be explored include wildcard receives,
WAIT_ANY, and TEST_ANY.

4 (7!)/((2!).(3!).(2!))
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Overview of POE’s use of PMPI: POE uses the well-known PMPI mecha-
nism. It introduces an extra process called the verification scheduler. POE pro-
vides its own version of “MPI f” for each MPI function f . Within MPI f , POE
arranges for handshakes with the scheduler that realizes the POE algorithm.
When the scheduler finally gives permission to fire f , POE invokes PMPI f .
The MPI runtime only sees the PMPI f calls.
Match Sets: Consider Example 6 above. If one repeatedly runs this example
under MPICH2 (for example), it is not guaranteed that error1 will be caught.
In other words, the matching of Send from P0 with the wildcard receive in P1

may prove elusive, as the MPI runtime may never schedule this match!
POE solves the problem of elusive matches without requiring changes to the

MPI library and without adding padding delays—these are expensive, and/or
brittle solutions. Instead, it dynamically rewrites wildcard receives into specific
receives, one for each actual sender that, it computes to be a certain match. In
the context of Example 6, if we can rewrite Recv(*) to Recv(from P0) and
Recv(from P1), in turn, and: (i) pair the first one with Send(to P1, data=22),
and (ii) pair the second one with Send(to P1, data=33), in turn, and (iii) issue
only these send/receive pairs into the MPI system, we can force these matches
to occur. Such groupings of sends and receives are called match sets in POE’s
parlance. In POE, in addition to match sets obtained by grouping dynamically
rewritten wildcard receives with their matching sends, (i) point to point sends
and their receives also form match sets, and (ii) a collective barrier also form
match sets.

3.2 Fib Algorithm
The Fib algorithm can be expressed through the following steps:

• Run the POE Algorithm
− For each interleaving explored by POE
− let result list.append(CheckRelevant());
− End For

• if result list == empty then print all the barriers as irrelevant
• else print result list as relevant

The CheckRelevant algorithm can be expressed through the following steps:

• Consider a Match Set with events x and y (in general, it will have N events;
we take two events for illustration)

• If there is any IntraCB edge from x to any operation op, then introduce an
InterCB edge from y to op. Repeat this till no InterCB edges can be added
starting from y.

• Do the above step for all the operations in the match set.
• Now, consider the set {R, S} where R is derived from a wildcard receive

(through rewriting) and S is a send that targets the process of the receive.
• If there exists a path using InterCB and IntraCB edges from R to S going

through a barrier B, and there is no alternate ordering path going from R

to S, flag the barrier as relevant.
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− Add the found relevant barrier to the local result list.
− Add the rest of the barriers that are in the match set of the barrier found

in the above step also to local result list.

• Do the above step with R and S swapped.
• Repeat the process until all such {R, S} sets are evaluated.
• Return local result list.

InterCB edge

IntraCB edge

Irecv (*, x, &handle)

Wait (&handle)

Barrier

Isend(to P0, 33)

Barrier Barrier

Isend(to P0, 22)

FinalizeFinalizeFinalize

P1 P2

{ Isend(to P0), Irecv(from P1) }

Match Sets is:

(Note: Isend of P2 won’t match

  Irecv of P0 )

P0

Fig. 1. Example 4(a) in Section 2 with InterCB and IntraCB edges

Illustration: In Example 4, there is no InterCB ordering from Irecv to the
Isend of P2. Now in the alternate example called Example 4(a) discussed ear-
lier, the above procedure will end up creating an IntraCB path from Irecv to
Wait to Barrier in P0. Also, all of Barrier also form a match set. Furthermore,
Isend of P2 is ordered to be after the Barrier. There is no alternate order-
ing path – so the collective barrier is relevant. Figure 1 summarizes the above
explanation. The IntraCB edges depicted in Figure 1 for process P0 are easy
to reason. In process P1, Isend(to P0) has no IntraCB edge to the following
Barrier since Isend being a non blocking call has no obligation to finish be-
fore the barrier. However, since Fib knows that Irecv(*) in P0 matches this
Isend, we add InterCB edges from Isend to operations that are bound to com-
plete after Irecv. This explains the InterCB edge between Isend( to P0) to
Wait(&handle). The same reasoning explains the InterCB edge from Irecv(*)

to Finalize of P1. After adding InterCB edges, the only path that reaches to
Isend(to P0) of P2 from Irecv(*) of P0 involves a barrier. Thus the barrier
and all the barrier operations from other processes that formed the match set
are flagged to be relevant.

4 Implementation and Experimental Results

We automatically instrument the MPI user code where all MPI Barrier(comm)

calls are replaced by MPI Barrier new(comm, LINE , FILE ). The two new
arguments are system macros that keep the information of line number the
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function call and the file name that contains it. Our instrumentation tool is
written using CIL [15] which offers a framework to create a custom source-to-
source program-instrumentation pass. We have run our Fib tool on several MPI
programs including: (i) the Monte-Carlo computation of Pi, (ii) 2D diffusion, and
(iii) all 69 tests that came along with UMPIRE tool [10]. As for runtimes, the ISP
algorithm introduces a slowdown because of its scheduler-mediated executions
(in [13], we provide ideas for improving the execution time). The added overhead
that Fib introduces over and above ISP is negligible. Our web page [1] provides
detailed results; here is a summary:

• Monte-Carlo: The code of Monte-Carlo, did not have any barrier calls. To
acid-test our implementation, we deliberately inserted an irrelevant collective
barrier, which our implementation flagged as such. The run times of the Fib
algorithm are as follows: (i) with 4 processes, it explored 6 interleavings
in 0.2 seconds, and with 5 processes, it explored 24 interleavings in 1.52
seconds.

• 2D Diffusion This code had 2 irrelevant barriers which were caught by the
tool. In fact, this example does not employ wildcard receives, and so all its
barriers are irrelevant, and Fib finishes with one interleaving. The runtime
of Fib on this example was less than a second. This reinforces that without
wildcards we need only one interleaving.

• Umpire test suite: We ran our tool successfully on all the 69 tests that
came along with Umpire tool [10]. Of the 36 tests that had barriers, all were
flagged as irrelevant, with negligible runtimes.

5 Concluding Remarks

Removing unnecessary barriers is important, because they needlessly add to the
program-execution time. This is particularly true for applications running on
petascale machines with thousands of processors. We presented an algorithm,
Fib, that is built as an extension to our verification tool ISP for MPI programs.
Fib works by detecting, for each barrier, whether its removal causes a wildcard

receive statement placed before or after a barrier to now begin matching a send
statement with which it did not match before. We report success in detecting
irrelevant barriers in a number of examples. Since all these examples have control
that does not depend on data, the analysis is good for all input data. Our
future plans include extending this analysis to cover interesting classes of data
dependent control, as well as aiming to cover all of MPI 2.0.
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