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Abstract. Modern HEC systems, such as Blue Gene/P, rely on achiev-
ing high-performance by using the parallelism of a massive number of
low-frequency/low-power processing cores. This means that the local pre-
and post-communication processing required by the MPI stack might
not be very fast, owing to the slow processing cores. Similarly, small
amounts of serialization within the MPI stack that were acceptable on
small/medium systems can be brutal on massively parallel systems. In
this paper, we study different non-data-communication overheads within
the MPI implementation and their impact on the performance of the IBM
Blue Gene/P system.

1 Introduction

As we move closer to the petaflop era, modern high-end computing (HEC) sys-
tems are undergoing a rather drastic change in their fundamental architectural
model. With processor speeds no longer doubling every 18-24 months owing to
the exponential increase in power consumption and heat dissipation, modern
HEC systems tend to rely as little as possible on the performance of single pro-
cessing units. Instead, they try to extract parallelism out of a massive number
of low-frequency/low-power processing cores. IBM Blue Gene/L [1] was one of
the early supercomputers to follow such an architectural model, soon followed
by other systems such as Blue Gene/P (BG/P) [5] and SiCortex [2].

While such an architecture provides the necessary ingredients for building petaflop
and larger systems, the actual performance perceived by users heavily depends
on the capabilities of the systems-software stack used, such as the MPI imple-
mentation. While the network itself is quite fast and scalable on these systems,
the local pre- and post-data-communication processing required by the MPI
stack might not be as fast, owing to the slow processing cores. For example,
local processing tasks within MPI that were considered quick on a 3.6 GHz Intel
processor, might form a significant fraction of the overall MPI processing time
on the modestly fast 850 MHz cores of a BG/P. Similarly, small amounts of
serialization within the MPI stack which were considered acceptable on a system
with a few hundreds or thousands of processors, can be brutal when running on
massively parallel systems with hundreds of thousands or even millions of cores.

In this paper, we study the non-data-communication overheads in MPI and
their impact on the performance of the IBM BG/P system. We identify various
bottleneck possibilities within the MPI stack, with respect to the slow pre- and
post-data-communication processing as well as serialization points, and stress
the overheads added by them using different benchmarks. We also analyze the
reasons behind such overheads and describe potential solutions for solving such
issues in the future.
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2 BG/P Software and Hardware Stacks

In this section we describe three components within the BG/P: (a) the BG/P
communication hardware, (b) the Deep Computing Messaging Framework (DCMF)
messaging library, and (c) the MPI implementation on top of DCMF.

2.1 Communication Hardware
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Fig. 1. BG/P Messaging Framework [5].

BG/P has five different networks [6].
Two of them, 10-Gigabit Ethernet
and 1-Gigabit Ethernet with JTAG
interface, are used for file I/O and sys-
tem management. The other three are
used for MPI communication.

3-D Torus Network: Used for MPI
point-to-point and multicast opera-
tions and connects all compute nodes
to form a 3-D torus. Thus, each node
has six nearest-neighbors. Each link
provides a bandwidth of 425 MBps
per direction (total 5.1 GBps).

Global Collective Network: This
is a one-to-all network for compute
and I/O nodes used for MPI collec-
tive communication and I/O services. Each node has three links to this network
(total of 5.1 GBps bidirectional bandwidth).

Global Interrupt Network: This is an extremely low-latency network for
global barriers and interrupts. For example, the global barrier latency of a 72K-
node partition is approximately 1.3µs.

On BG/P, the compute cores in the nodes do not handle packets on the torus
network; a DMA engine on each node offloads most of the network packet in-
jecting and receiving work, which enables better overlap of computation and
communication. The DMA interfaces directly with the torus network. However,
the cores handle sending/receiving packets from the collective network.

2.2 DCMF Messaging Library

BG/P is designed for multiple programming models (Figure 1). The Deep Com-
puting Messaging Framework (DCMF) and the Component Collective Messag-
ing Interface (CCMI) are used as general purpose libraries to support different
programming models on this system [9]. DCMF implements point-to-point and
multisend protocols. The multisend protocol connects the abstract implemen-
tation of collective operations in CCMI to targeted communication networks.
DCMF API provides three types of message-passing operations: two-sided send,
multisend and one-sided get. All three have nonblocking semantics.

2.3 MPI on DCMF

IBM’s MPI on BG/P is based on MPICH2 and is implemented on top of DCMF.
Specifically, the MPI on BG/P implementation borrows most of the upper-level
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code from MPICH2, including the ROMIO implementation of MPI-IO and MPE
profiler, while implementing BG/P specific details within a device implementa-
tion called dcmfd. The DCMF library provides low-level communication support.
All advanced communication features such as allocation and handling of MPI
requests, dealing with tags and unexpected messages, multi-request operations
such as MPI Waitany or MPI Waitall, derived-datatype processing and thread
synchronization are not handled by the DCMF library and have to be taken
care of by the MPI implementation.

3 Experiments and Analysis
In this section, we study the non-data-communication overheads in MPI with dif-
ferent benchmarks stressing both pre- and post-data-communication overheads
as well as serialization that happens within the MPI stack on BG/P.

3.1 Basic MPI Stack Overhead

An MPI implementation can be no faster than the underlying communication
system. In the case of BG/P, this is DCMF. Our first measurements, shown in
Figure 2, compare the communication performance of MPI (on top of DCMF)
with the communication performance of DCMF. For MPI, we used the OSU
micro-benchmark suite [10] for evaluating the performance, while for DCMF, we
used our own communication benchmarks written on top of the DCMF API, that
imitate the OSU MPI benchmarks. The latency test completely relies on block-
ing communication operations while the bandwidth test relies on non-blocking
communication operations for maximum performance in each case.
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Fig. 2. MPI stack overhead

The difference in the performance of the two stacks is the overhead introduced
by the MPI implementation on BG/P. We observe that the MPI stack adds close
to 1.1µs overhead for small messages; that is, close to 1000 cycles are spent for
pre- and post-data-communication processing within the MPI stack. We also
notice that for message sizes larger than 1KB, this overhead is much higher
(closer to 4µs or 3400 cycles). This additional overhead is because the MPI
stack uses a protocol switch from eager to rendezvous for message sizes larger
than 1200 bytes. Though DCMF itself performs the actual rendezvous-based
data communication, the MPI stack performs additional book-keeping in this
mode which causes this additional overhead. In several cases, such redundant
book-keeping (both in MPI and DCMF) is unnecessary and can be avoided in
future enhancements to the stack.
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3.2 Request Allocation and Queueing Overhead

MPI provides non-blocking communication routines that enable concurrent com-
putation and communication wherever the hardware can support it. However,
from the MPI implementation’s perspective, such routines require managing
MPI Request handles that are needed to wait on completion for each non-blocking
operation. These requests have to be allocated, initialized and queued/dequeued
within the MPI implementation for each send or receive operation, thus adding
additional overhead, especially on low-frequency processing cores.
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Fig. 3. Request allocation and queuing. The chart on the right shows the difference
between the blocking and nonblocking cases.

In this experiment, we measure this overhead by running two versions of the
typical ping-pong latency test—one using MPI Send and MPI Recv and the other
using MPI Isend, MPI Irecv, and MPI Waitall. The latter incurs the overhead
of allocating, initializing, and queuing/dequeuing the request handles. Figure 3
shows that this overhead is roughly 0.4 µs or a little more than 300 clock cycles.3

While this overhead is expected due to the number of request management oper-
ations (initializing various fields and queue management), carefully redesigning
these operations can potentially bring this overhead down significantly.

3.3 Overheads in Tag and Source Matching

MPI allows the concept of tags to allow application developers classify different
messages into different categories. Each sent message carries a tag. On the re-
ceiver side, each receive request contains a tag and information about which
source the message is expected from. When a message arrives, the receiver
searches the queue of posted receive requests to find the one that matches the
arrived message (both tag and source information) and places the incoming data
in the buffer described by this request. Most current MPI implementations use a
single queue for all receive requests, i.e., for all tags and all source ranks. This has
a potential scalability problem when the length of this queue becomes large. In
fact, on low-frequency processor architectures such as BG/P, even for moderate
sized queues, this can be a huge overhead.

3 This overhead is more than the entire point-to-point MPI-level shared-memory com-
munication latency on typical commodity Intel/AMD processors [7].
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To demonstrate this problem, we designed an experiment that measures the
overhead of receiving a message with increasing request-queue size. In this ex-
periment, process P0 posts M requests for each of N peer processes with tag T0,
and finally one request of tag T1 to receive 0 bytes of data from process P1. Once
all the requests are posted (ensured through a low-level hardware barrier that
does not use MPI), P1 sends a 0-byte message with tag T1 to P0. P0 measures
the time to receive this message not including the network communication time.
That is, the time is only measured for the post-data-communication phase to
receive the data after it has arrived in its local temporary buffer.

Request Matching Overhead vs. Number of Requests
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Request Matching Overhead vs. Number of Peers
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Fig. 4. Request matching overhead: (a) requests-per-peer, (b) number of peers.

Request Matching Overhead per Request
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Fig. 5. Matching overhead per request

Figure 4 shows the increase in time
taken by the MPI stack to receive the
data after it has arrived in the local
buffer. Figures 4(a) and 4(b) show two
different versions of the test—the first
version keeps the number of peers to
one (N = 1) but increases the number
of requests per peer (M), while the
second version keeps the number of re-
quests per peer to one (M = 1) but in-
creases the number of peers (N). For

both versions, we can see that the time taken increases rapidly with increasing
number of total requests (M × N). In fact, for 4096 peers, which is modest
considering what size BG/P can scale to, we notice that even just one request

per peer can result in a queue parsing time of about 140000µs.

Another interesting observation in the graph is that the time increase as we vary
the number of peers is not linear. To demonstrate this, we present the average
time taken per request in Figure 5—the average time per request increases as the
number of requests increases! Note that parsing through the request queue should
take linear time, which means that the time per request should be constant and
not increase. There are several reasons for such a counter-intuitive behavior;
we believe the primary cause for this is the limited number of pre-allocated
requests that are reused during the life-time of the application. If there are
too many pending requests, the MPI implementation runs out of these pre-
allocated requests and more requests are allocated dynamically. Further analysis
and quantification of this behavior will be provided in the final version.
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3.4 Algorithmic Complexity of Multi-request Operations

MPI provides operations such as MPI Waitany, MPI Waitsome and MPI Waitall

that allow the user to provide multiple requests at once and wait for the com-
pletion of one or more of them. In this experiment, we measure the MPI stack’s
capability to efficiently handle such requests. Specifically, we post several re-
quests (MPI Irecv) on the receiver process and once all the requests are posted
(ensured through a low-level hardware barrier) the sender process sends just one
message that matches the first receive request. We measure the time taken to
receive the message, not including the network communication time, and present
it in Figure 6.

Waitany Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of requests

T
im

e
 (

u
s
)

Fig. 6. MPI Waitany Time

In the figure, we notice that the time
taken by the MPI Waitany call in-
creases linearly with the number of
requests passed to it. Note that we
expect this time to be constant since
the incoming message matches the
first request itself. The reason for this
is the algorithmic complexity of the
MPI Waitany implementation. While
the MPI Waitany call would have a
worst-case complexity of O(N), where

N is the number of processes, it should be able to perform this operation in con-
stant time in the best case (when the first request in the provided list is already
complete when the call is made). However, the current implementation performs
this in two steps. In the first step, it gathers the internal request handles for each
request (that takes O(N) time) and in the second step does the actual check for
whether any of the requests have completed. Thus, overall, even in the best case
where the completion is constant time, the acquiring of internal request handlers
can increase the time taken linearly with the number of requests.

Such problems are common in MPI implementations as they do not add too
much overhead on fast processors or small- to moderate-scale systems and thus
are generally ignored by MPI developers. However, such issues can be extremely
expensive for slow processors or massive-scale systems.

3.5 Overheads in Derived Datatype Processing

MPI allows non-contiguous messages to be sent and received by using derived
datatypes to describe the message. Implementing these efficiently can be chal-
lenging and has been a topic of significant research [8, 11, 3]. Depending on how
densely the message buffers are aligned, most MPI implementations pack sparse
datatypes into contiguous temporary buffers before performing the actual com-
munication. Such packing of data stresses both the processing power as well as
the memory/cache bandwidth of the system. To explore the efficiency of derived
datatype communication on BG/P, we looked only at the simple case of a sin-
gle stride (vector) type. These experiments consider the case of a stride of two.
Thus, every other data item is skipped, but the total amount of data packed and
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Derived Datatype Latency (Large Messages)
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Fig. 7. Derived datatype latency: (a) long messages and (b) short messages

communicated is kept uniform across the different datatypes (equal number of
bytes). The results are shown in Figure 7.

These results show a significant gap in performance between sending a contiguous
messages and a non-contiguous message (with the same number of bytes). The
situation is particularly serious for a vector of individual bytes (MPI CHAR). It is
also interesting to look at the behavior for shorter messages (Figure 7(b)). This
shows a roughly 2 µs gap in performance between a contiguous send and a send
of short, integer or double precision data with a stride of two.

3.6 Buffer Alignment Overhead

For operations that involve touching the data that is being communicated (such
as datatype packing), the alignment of the buffers that are being processed can
play a role in overall performance if the hardware is optimized for specific buffer
alignments (such as word or double-word alignments), which is common in most
hardware today.

In this experiment (Figure 8), we measure the communication latency of a vec-
tor of integers (4 bytes) with a stride of 2 (that is, every alternate integer is
packed and communicated). We perform the test for different alignment of these
integers—“0” refers to perfect alignment to a double-word boundary, “1” refers
to an misalignment of 1-byte. We notice that as long as the integers are within
the same double-word (0-4 byte misalignment) the performance is better as com-
pared to when the integers span two different double-words (5-7 byte misalign-
ment), the performance difference being about 10%. This difference is expected
as integers crossing the double-word boundary require both the double-words to
be fetched before any operation can be performed on them.

Buffer Alignment Overhead on Datatype Processing
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Unexpected Message Overhead vs. Number of Requests
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Unexpected Message Overhead vs. Peers
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Fig. 9. Unexpected message overhead: (a) Increasing number of messages per peer,
with only one peer; (b) Increasing number of peers, with only one message per peer.

3.7 Unexpected Message Overhead

MPI does not require any synchronization between the sender and receiver pro-
cesses before the sender can send its data out. So, a sender can send multiple
messages which are not immediately requested for by the receiver. When the re-
ceiver tries to receive the message it needs, all the previously sent messages are
considered unexpected, and are queued within the MPI stack for later requests
to handle. To illustrate this behavior with an example, consider the sender first
sending multiple messages of tag T0 and finally one message of tag T1. If the
receiver is first looking for the message with tag T1, it considers all the previous
messages of tag T0 as unexpected and queues them in the unexpected queue. Such
queueing and dequeuing of requests (and potentially copying data corresponding
to the requests) can add significant overhead.

To illustrate this, we designed an experiment that is a symmetric-opposite of the
tag-matching test described in Section 3.3. Specifically, in the tag-matching test,
we queue multiple receive requests and receive one message that matches the last
queued request. In the unexpected message test, we receive multiple messages,
but post only one receive request for the last received message. Specifically, pro-
cess P0 first receives M 0-byte messages of tag T0 from each of N peer processes
and finally receives one extra 0-byte message of tag T1 from process P1. The time
taken to receive the final message (tag T1) is measured, not including the net-
work communication time, but rather only the post-communication processing
once the data has arrived at the local temporary buffer.

Figure 9 shows the time to receive the last message in two cases: (a) when there
is only one peer, but the number of unexpected messages per peer increases
(x-axis), and (b) the number of unexpected messages per peer is one, but the
number of peers increases. We see that the time taken to receive the last message
increases linearly with the number of unexpected messages.

3.8 Overhead of Thread Communication

To support flexible hybrid programming model such as OpenMP plus MPI,
MPI allows applications to perform independent communication calls from each
thread by requesting for MPI THREAD MULTIPLE level of thread concurrency from
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the MPI implementation. In this case, the MPI implementation has to perform
appropriate locks within shared regions of the stack to protect conflicts caused
due to concurrent communication by all threads. Obviously, such locking has
two drawbacks: (i) they add overhead and (ii) they can serialize communication.
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Fig. 10. Threads vs. Processes

We performed two tests to measure the
overhead and serialization caused by lock-
ing in MPI THREAD MULTIPLE. In the first
test, we use four processes on the dif-
ferent cores which send 0-byte mes-
sages to MPI PROC NULL (messages to
MPI PROC NULL incur all the overhead of
the MPI stack, except that they are never
sent out over the network, thus emulat-
ing an infinitely fast communication sub-
system). In the second test, we use four
threads with MPI THREAD MULTIPLE thread concurrency to send 0-byte messages
to MPI PROC NULL. In the threads case, we expect the locks to add overheads and
serialization, so the performance to be lesser than in the processes case.

Figure 10 shows the performance of the two tests described above. The difference
between the one-process and one-thread cases is that the one-thread case requests
for the MPI THREAD MULTIPLE level of thread concurrency, while the one-process
case requests for no concurrency, so there are no locks. As expected, in the
process case, since there are no locks, we notice a linear increase in performance
with increasing number of cores used. In the threads case, however, we observe
two issues: (a) the performance of one thread is significantly lower than the
performance of one process and (b) the performance of threads does not increase
at all as we increase the number of cores used.
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Fig. 11. Error checking overhead

The first observation (difference in one-
process and one-thread performance) points
out the overhead in maintaining locks. Note
that there is no contention on the locks in
this case as there is only one thread access-
ing them. The second observation (constant
performance with increasing cores) reflects
the inefficiency in the concurrency model
used by the MPI implementation. Specifi-
cally, most MPI implementations perform
a global lock for each MPI operation thus
allowing only one thread to perform com-
munication at any given time. This results in virtually zero effective concurrency
in the communication of the different threads. Addressing the issue of this lack
of concurrency is the subject of a separate paper [4].

3.9 Error Checking Overhead

Since MPI is a library, it is impossible for the MPI implementation to check for
user errors in arguments to the MPI routines except at runtime. These checks
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cost time; the more thorough the checking, the more time they take. MPI imple-
mentations derived from MPICH2 (such as the BG/P MPI) can be configured
to enable or disable checking of user errors. Figure 11 shows the percentage over-
head of enabling error checking. For short messages, it is about 5% of the total
time, or around 0.1-0.2 µs. This overhead is relative small compared to the other
overheads demonstrated in this paper, but should ideally be further reduced, by
letting the user specify which parts of the code she would prefer to have error
checking enabled, for example.

4 Conclusions and Future Work

In this paper, we studied the non-data-communication overheads within MPI
implementations and demonstrated their impact on the IBM BlueGene/P sys-
tem. We identified several bottlenecks in the MPI stack including request han-
dling, tag matching and unexpected messages, multi-request operations (such as
MPI Waitany), derived-datatype processing, buffer alignment overheads, thread
synchronization and error checking, that are caused by the low processing ca-
pabilities of the individual processing cores on the system as well as scalability
issues aggravated by the massive scale of the machine. Together with demon-
strating and analyzing these issues, we also described potential solutions for
solving these issues in future implementations.
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