
A GridFTP Transport Driver for Globus XIO

Rajkumar Kettimuthu
1,2

, Liu Wantao
3,4

, Joseph Link
5
, and John Bresnahan

1,2,3

1
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL USA

2
Computation Institute, The University of Chicago, Chicago, IL USA

3
Department of Computer Science, The University of Chicago, Chicago, IL USA

4
Beihang University, Beijing, China

5
Globus Contributor, Addison, IL USA

Abstract

GridFTP is a high-performance, reliable data

transfer protocol optimized for high-bandwidth

wide-area networks. Based on the Internet FTP

protocol, it defines extensions for high-

performance operation and security. The Globus

implementation of GridFTP provides a modular

and extensible data transfer system architecture

suitable for wide area and high-performance

environments. GridFTP is the de facto standard

in projects requiring secure, robust, high-speed

bulk data transport. For example, the high

energy physics community is basing its entire

tiered data movement infrastructure for the

Large Hadron Collider computing Grid on

GridFTP; the Laser Interferometer Gravitational

Wave Observatory routinely uses GridFTP to

move 1 TB a day during production runs; and

GridFTP is the recommended data transfer

mechanism to maximize data transfer rates on

the TeraGrid. Commonly used GridFTP clients

include globus-url-copy, uberftp, and the

Globus Reliable File Transfer service. In this

paper, we present a Globus XIO based client to

GridFTP that provides a posix-like

(open/close/read/write) interface to the users.

Such a client greatly eases the addition of

GridFTP support to third-party programs, such

as SRB and MPICH-G2. Further, this client

provides an easier and familiar interface for

applications to efficiently access remote files.

We compare the performance of this client with

that of globus-url-copy on multiple endpoints in

the TeraGrid infrastructure. We perform both

memory-to-memory and disk-to-disk transfers

and show that the performance of this posix-like

client is comparable to that of globus-url-copy.

We also show that our GridFTP client

significantly outperforms the GPFS WAN on

the TeraGrid.

1. Introduction

Large-scale collaborative science applications

necessitate efficient and secure transport of data

across geographically dispersed locations. The

GridFTP [1] extensions to the File Transfer

Protocol [2] define a general-purpose

mechanism for secure, reliable, high-

performance data movement. The Globus

implementation of GridFTP [3] provides a

modular and extensible data transfer system

architecture suitable for wide-area and high-

performance environments. Key features of

GridFTP include the following:

1. Performance: Typical GridFTP provides

order of magnitude performance improvements

compared to standard FTP. GridFTP achieves

good performance by using non-TCP protocols

such as UDT [4] and parallel streams to

minimize bottlenecks inherent in TCP/IP.

2. Cluster-to-cluster data movement: GridFTP

can do coordinated data transfer by using

multiple computer nodes at the source and

destination. This approach can increase

performance by another order of magnitude.

3. Reliability: GridFTP provides support for

reliable and restartable data transfers.

4. Multicasting: Globus GridFTP is capable of

doing one-source-to-many-destination transfers.

5. Multiple Security options: The Globus

GridFTP framework supports various security

options, including Grid Security Infrastructure

(GSI) [5], anonymous access, username- and

password-based security such as regular FTP

servers, SSH-based [6] security, and Kerberos

[7].

6. Modularity: The XIO-based [8] Globus

GridFTP framework makes it easy to plug in

other transport protocols. The Data Storage

Interface (DSI) [9] allows for easier integration

with various storage systems.

7. Third-party control: GridFTP also allows

secure third-party clients to initiate transfers

between remote sites.

8. Partial file transfer: Scientists often find it

expedient to download only portions of a large

file, instead of the entire file. GridFTP supports

this capability by specifying the byte position in

the file to begin the transfer.

9. Negotiation of TCP buffer/window sizes:

GridFTP employs FTP command and data

channel extensions to support both automatic

and manual negotiation of TCP to get optimal

performance.

In this paper, we present a Globus extensible

input/output (XIO) [8] client to GridFTP that

provides users with a posix-like

(open/close/read/write) interface. Such a client

provides an easier and familiar interface for

applications to efficiently access remote files.

Also, it eases the addition of GridFTP support to

third-party programs, such as SRB [10] and

MPICH-G2 [11]. In addition to the

open/close/read/write interface, this client

provides interfaces to use the features of

GridFTP. It supports GridFTP features such as

partial file transfer, parallel TCP streams, and

connection caching.

The paper is organized as follows. Section 2

provides an overview of Globus XIO. Section 3

discusses the GridFTP driver for Globus XIO

and explains in detail how to use the driver.

Section 4 contains the experimental results.

Section 5 summarizes the benefits of GridFTP

XIO client.

2 Globus XIO

Globus XIO is the extensible input/0utput

component of the Globus Toolkit® [12]. It is a

framework that presents a single standard

open/close/read/write interface to many protocol

implementations. Globus XIO comprises two

main components: framework and drivers.

Figure 1 illustrates the architecture.

Figure 1: Globus XIO Architecture

2.1 Globus XIO Framework

The Globus XIO framework manages I/O

operation requests that an application makes via

the user API. The framework does not

manipulate or deliver the data in an I/O

operation; the drivers do all of that work. The

framework’s job is to manage requests and map

them to the drivers’ interface.

2.2 Drivers

A driver in Globus XIO is responsible for

manipulating and transporting the user’s data.

There are two types of drivers: transform and

transport. Transform drivers are those that

manipulate the data buffers passed to it via the

user API and the XIO framework. Transport

drivers are those that are capable of sending the

data over a wire.

Drivers can be grouped into a stack. When an

I/O operation is requested, the Globus XIO

framework passes the operation request to every

driver in the order the drivers are in the stack.

When the bottom-level driver (the transport

driver) finishes shipping the data, it passes the

request completion notification back to the XIO

framework. Globus XIO then delivers the

notification back up the stack in this manner

until it reaches the top, at which point the

application is notified that its request is

completed.

In a driver stack there must only be one

transport driver, and it must be at the bottom of

the stack. The reason is that the transport driver

is what actually moves the bits on a wire. The

protocols that use multiple transport drivers

have to construct multiple stacks. For example,

a protocol that uses TCP for exchanging control

information and UDP for transferring the actual

data needs two different stacks: one with TCP as

a transport and the other with UDP as the

transport driver. Any number of transform

drivers can be in a stack.

Good examples of transform drivers are security

wrappers and compression. Driver stacks can be

mixed and matched. An HTTP driver has been

created as a transform driver, and typically it

sits in a stack directly above TCP. For example,

if a driver is created by implementing UDT (a

reliability layer over UDP), a stack can be

formed of HTTP on top of UDT without a

single code change to any of the drivers

involved. A protocol may provide some special

features that other protocols may not support.

Globus XIO provides a way for the protocol

developers to expose the functionalities that are

specific to their protocols.

Each driver may have its own attribute structure.

Globus XIO provides user API to control the

attributes of a driver. It gives the user an

opportunity to tweak parameters that are

specific to a driver. The attribute support is

optional; a driver may choose to have no

attribute support.

Globus XIO has no extra memory copies. The

user passes data in a buffer to the framework.

The framework then passes a pointer to that

buffer down the driver stack. If any driver along

the way needs to insert a header or append a

footer, it can use the readv/writev functions that

XIO provides. If a driver needs to alter the data

(as a compression driver would), then a copy is

required. However, this is a mandatory copy to

achieve the desired functionality; it is not an

extra copy.

3 GridFTP Driver

A GridFTP driver for Globus XIO was created

to provide a posix-like client interface to

GridFTP servers. It can work with any FTP

server. The GridFTP driver uses the Globus FTP

client library to communicate with GridFTP or

any other FTP server.

The Globus FTP client library provides high-

level commands that implement the protocol

without requiring the developer to have an in-

depth knowledge of the protocol.

In the following section, we provide step-by-

step instructions and code snippets to

demonstrate the use of the user API. Globus

XIO is a C library. Since the core API is simply

Open/Close/Read/Write, the user API is fairly

straightforward.

We provide synchronous calls

(globus_xio_read()) and asynchronous calls

(globus_xio_register_read()) and have vector

variants of each (globus_xio_[register]

_readv()). Two important XIO data structures

must be considered when using a transport

driver:

1. Handle – this is returned to the user once the

XIO framework has all the information needed

to open a new connection. It is then used to

reference the connection on all future I/O calls.

2. Attribute – in order to set driver-specific

parameters, a custom attribute structure can be

used. For the GridFTP driver, number of TCP

streams, TCP buffer size etc., are supplied in

this way.

Step 1: Activate Globus

The first step is to activate the Globus module.

Until activation is complete, no XIO function

calls can be successfully executed. The module

is activated with the following line:

globus_module_activate(GLOBUS_XIO_MOD

ULE);

Step 2: Load Driver

The next step is to load all the GridFTP driver.

The function globus_xio_load_driver() is used

to load a driver.

globus_result_t res;

globus_xio_driver t driver;

res = globus_xio_load_driver(&driver,

”gridftp”);

If, upon completion of the above function call,

the variable “res” is equal to

GLOBUS_SUCCESS, then the driver was

successfully loaded and can be referenced with

the variable “driver.”

Step 3: Create Stack

Once globus xio is activated and a driver

loaded, a driver stack must be built. In this case,

the stack consists of only one driver, the

GridFTP driver. The stack is established with

the following code (building from the above

code snips):

globus_xio_stack_t stack;

globus_xio_stack_init(&stack);

globus_xio_stack_push_driver(stack, driver);

Step 4: Opening the Handle

Once the stack is created, a handle to the

GridFTP server can be opened. The following

code illustrates this step:

globus_xio_handle_t handle;

globus_xio_handle_create(&handle, stack);

res = globus_xio_open(handle, contact_string,

attribute);

This establishes connection with the gridftp

server. The contact string must contain the

scheme, host name, and the resource (path to the

file). Optionally, it may also contain the port

and subject. The format of the contact string is

as follows:

<scheme> "://" location ["/" [<path to

resource>]]

 scheme:

 gsiftp | ftp

 location:

 [auth-part] host-part

 auth-part:

 <user> [":" <password>] "@"

 host-part:

 ["<" <subject> ">"] host-name [":"

<port or service>]

 host-name:

 <hostname> | <dotted quad> | "[" <ipv6

address> "]"

The attribute is used to set driver-specific

features such as the number of TCP streams,

TCP buffer size, or partial transfer.

Step 5: Reading/Writing on the Handle

With an open handle to a GridFTP server, one

can read or write data to it with either

globus_xio_read() or globus_xio_write().

Step 6: Closing the Handle

After all I/O operations on the handle have been

performed, the final step is to call globus_xio

_close(handle).

In addition, the GridFTP driver provides a

control interface to perform seek operation.

res = globus_xio_handle_cntl(xio_handle,

GLOBUS_ XIO_GRIDFTP_SEEK, offset);

Seek is always started from the beginning of the

file.

4 Experimental Results

We compared the performance of the GridFTP

XIO client with that of globus-url-copy, a

commonly used GridFTP client. We transferred

files of various sizes ranging from 1 MB to 1

GB between two pairs of sites on the TeraGrid.

Figure 2 shows the result of the transfers

between Argonne National Laboratory and the

National Center for Supercomputing

Applications, a network with a round-trip time

of 4 ms. Figure 3 shows the result of the

transfers between Oak Ridge National

Laboratory and San Diego Supercomputing

Center. Each experiment was run 10 times, and

the average value was used to compare the

performance. The results show that GridFTP

XIO client provides almost the same throughput

as globus-url-copy; no additional overhead is

introduced.

Figure 2: Comparison of performance of the

GridFTP XIO client with globus-url-copy over a

TeraGrid network between Argonne and NCSA

(4 ms round-trip time)

Figure 3: Comparison of performance of the

XIO client with globus-url-copy over a

TeraGrid network between ORNL and SDSC

(72 ms round-trip time)

Figure 4: Comparison of performance of the

XIO client with GPFS WAN mounted at

Argonne

Figure 5: Comparison of performance of the

GridFTP XIO client with the GPFS WAN

mounted at Indiana University

In the next set of experiments, we compared the

performance of the XIO client with that of

GPFS WAN. On the TeraGrid infrastructure, the

GPFS WAN is physically located at SDSC and

is mounted at Argonne, NCSA, and Indiana

University. To measure the performance of the

GPFS WAN, we used the “cp” command to

copy files of various sizes (ranging from 1 MB

to 1 GB) from a local disk at Argonne to the

GPFS WAN mounted at Argonne. We did a

similar measurement at Indiana University by

copying from a local disk at Indiana to the

GPFS WAN mounted at Indiana. To make a fair

comparison, we performed wide-area transfers

of the (same) files on the local disks at Argonne

and Indiana to the GPFS (not the GPFS WAN)

file system at SDSC, using the GridFTP XIO

client. We ran the GridFTP server at SDSC and

the XIO client at Argonne and Indiana. We can

see that for small files, the GPFS-WAN and

GridFTP XIO client have similar performance,

while for larger files, the GridFTP XIO client

performs dramatically better than GPFS-WAN.

Figure 4 compares the performance of file

copies from Argonne to SDSC through GridFTP

XIO client with that of the GPFS WAN

mounted at Argonne. Figure 5 compares the

performance of file copies from Indiana to

SDSC through GridFTP XIO client with that of

the GPFS WAN mounted at Indiana.

5 Summary

The GridFTP XIO client provides a simple and

familiar open/close/read/write interface for

applications to access files from a remote

GridFTP server. The performance of this client

is comparable to globus-url-copy, a commonly

used command line client for GridFTP. Thus,

remote files can be accessed efficiently using

this tool. The access time is significantly faster

than that of the GPFS WAN. This client also

makes it easier to add GridFTP support to third-

party programs. Overall, this tool provides value

to TeraGrid and other Grid users by making

remote file access efficient and easy.

Acknowledgments
This work was supported in part by the

Mathematical, Information, and Computational

Sciences Division subprogram of the Office of

Advanced Scientific Computing Research,

Office of Science, U.S. Dept. of Energy, under

Contract DE-AC02-06CH11357, and in part by

National Science Foundation’s CDIGS.

References

[1] W. Allcock, “GridFTP: Protocol Extensions to FTP

for the Grid,” Global Grid Forum GFD-R-P.020, 2003.

[2] J. Postel and J. Reynolds, “File Transfer Protocol,”

IETF, RFC 959, 1985.

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,

C. Dumitrescu, I. Raicu, and I. Foster, “The Globus

Striped GridFTP Framework and Server, SC'05,” ACM

Press, 2005.

[4] Y. Gu and R. L. Grossman, “UDT: UDP-based

Data Transfer for High-Speed Wide Area Networks,”

Comput. Networks 51, no. 7 (May 2007), 1777–1799.

[5] www.globus.org/security/overview.html

[6] T. Ylonen and C. Lonvick, eds., “The Secure Shell

(SSH) Authentication Protocol,” IETF, RFC 4252,

2006

[7] http://web.mit.edu/Kerberos/

[8] W. Allcock, J. Bresnahan, R. Kettimuthu, and J.

Link, ”The Globus eXtensible Input/Output System

(XIO): A Protocol Independent IO System for the

Grid,” in Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium -

Workshop 4, Vol. 5, IEEE Computer Society,

Washington, DC, 2005. 179.1. DOI=

http://dx.doi.org/10.1109/IPDPS.2005.429

[9] R. Kettimuthu, M. Link, J. Bresnahan, and W.

Allcock, “Globus Data Storage Interface (DSI) –

Enabling Easy Access to Grid Datasets,” First

DIALOGUE Workshop: Applications-Driven Issues in

Data Grids, Aug. 2005.

[10] A. Rajasekar, M. Wan, R. Moore, W. Schroeder,

G. Kremenek, A. Jagatheesan, C. Cowart, B. Zhu, S.

Chen, and R. Olschanowsky, “Storage Resource

Broker - Managing Distributed Data in a Grid,”

Computer Society of India Journal, Special Issue on

SAN, 33, no. 4 (2003), 42–54.

[11] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-

G2: A Grid-enabled Implementation of the Message

Passing Interface,” Journal of Parallel and Distributed

Comput. 63, no. 5 (May 2003), 551–563. DOI=

http://dx.doi.org/10.1016/S0743-7315(03)00002-9.

[12] I. Foster and C. Kesselman, “Globus: A

Metacomputing Infrastructure Toolkit,” International

Journal of Supercomputer Applications 11, no. 2

(1997), 115–128. 1997.

The submitted manuscript has been created by

UChicago Argonne, LLC, Operator of Argonne

National Laboratory ("Argonne"). Argonne, a U.S.

Department of Energy Office of Science laboratory, is

operated under Contract No. DE-AC02-06CH11357.

The U.S. Government retains for itself, and others

acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to

reproduce, prepare derivative works, distribute copies

to the public, and perform publicly and display

publicly, by or on behalf of the Government.

