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Abstract 

As computational science progresses toward petascale, innovations in analysis and visualization of the 

resulting datasets are necessary. Rather than evaluating visualization performance by rendering speed only, 

we take a systemwide view and evaluate where bottlenecks actually are when scaling parallel software 

volume rendering on the IBM Blue Gene/P (BG/P) to over 10,000 cores. We first examine the relative costs 

of I/O, rendering, and compositing for a variety of dataset sizes, and we show the benefit of an alternative 

rendering distribution scheme that improves load balance. Next we examine the cost of adding high-quality 

lighting in the rendering phase. We also investigate the use of multiple parallel pipelines to partially hide 

the I/O cost when rendering many time-steps. We conclude that BG/P is an effective platform for volume 

rendering of large-scale datasets and that the rendering capabilities of BG/P cores are not the limiting factor 

in performance. 

 

Classification, Keywords 

I3.1 [Hardware Architecture]: Parallel processing, I3.2 [Graphics Systems]: Distributed / network graphics, 
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1. Introduction 

In the face of the petascale era, innovative visualization technologies will be required to keep pace with 

dramatically increasing datasets. One idea is not an innovation at all: supercomputer software rendering is a 

throwback to the past, before the proliferation of hardware-accelerated graphics. Figure 1 shows an 

example of modern software volume rendering applied to astrophysics data. This research through the U.S. 



Department of Energy’s SciDAC Institute for Ultra-Scale Visualization [4] applies software volume 

rendering to a very new supercomputer, the IBM Blue Gene/P (BG/P) at Argonne National Laboratory.  

While parallel volume rendering algorithms are well known, unprecedented scales are tested here: over 

10,000 cores are employed to target ever-increasing data sizes. Our testing at these scales has produced 

several new optimizations to the method and uncovered the need for others. The new contributions of this 

paper are threefold: a significant increase in efficiency due to improved load balancing, use of high-quality 

lighting and shading to add visual realism and visual content, and multiple levels of parallelism to hide I/O 

cost. We demonstrate the implementation of these contributions at scales of up to 16K cores. 

Much of the visualization research in recent years has focused 

on the exploitation of GPU hardware to increase performance by 

representing volumetric data as 3D textures. Software rendering 

rates are several orders of magnitude slower than graphics 

hardware and clearly software volume rendering cannot compete 

with GPU methods in the same space of problems. However, 

GPU methods, while highly parallel at the hardware level, are 

limited by video memory size and degrade in performance the 

farther the data are removed from the rendering hardware: across 

the CPU-GPU bus, on another physical node, or in storage. 

When raw rendering time is not the bottleneck in end-to-end performance, a modern supercomputer such 

as the BG/P becomes a viable alternative to a graphics cluster. With its tightly coupled interconnection 

backbone, parallel file system, and massive amounts of cores, such an architecture scales more predictably 

once the problem size grows to billions and tens of billions of data elements, where factors such as I/O and 

communication bandwidth - not rendering speed  - dominate the overall performance. 

The opportunity for in situ visualization is another advantage associated with enabling visualization on 

the same architecture as the simulation. Because postprocessing and transporting data can take as long as its 

computation, moving the analysis and visualization closer to the data is usually less expensive than the 

other way around. In situ visualization [16], [24],  [30], or overlapping visualization with an executing 

 
Figure 1: Software volume 
rendering of the early stages of 
supernova core collapse 



simulation, is a largely uncharted area ripe for discoveries; we hope that the results presented here will 

contribute to the advancement of in situ visualization and data analysis.  

In situ techniques grow in importance as simulations grow in size. For example, Yeung et al. already 

routinely compute flow simulations at 2048
3
 data elements [28], and their next target is 4096

3
 using the 

IBM Blue Gene architecture. This equates to approximately 270 GB per time-step per variable. At these 

scales, every extra iteration through the dataset is extremely costly in terms of both time and storage space; 

hence, overlapping computation with analysis into a single step is the only practical way to extract 

information from the simulation results. Similar dataset sizes are currently being produced by Woodward et 

al. [26], again in the area of fluid dynamics, and by Chen et al. [7] in earthquake simulation. Both of these 

groups are working within the context of shared-memory architectures. Chen et al., for example, perform 

both simulation and visualization using the NEC Earth Simulator. 

Concepts implemented in this paper such as round-robin load distribution or multiple parallel pipelines 

have been published earlier. Our contribution is to evaluate these concepts in the context of massive 

parallelism, improve them as necessary to operate in this environment, and note additional areas needing 

improvement. In so doing, we address common challenges that appear across architectures and problem 

domains in parallel computing: parallel I/O, load balancing, and compositing of partial results to a final 

solution. These parallelization problems are stress-tested in this work and the lessons learned may be 

broadly applied to other computing, analysis, and visualization algorithms such as unstructured meshes or 

adaptive mesh refinement (AMR) [12], [25]. Other supercomputer architectures and large graphics clusters 

face similar parallelization problems as they scale up, and perhaps so will future architectures of massively 

parallel collections of GPUs or cell processors.  

 

2. Background 

Sort-last parallel rendering methods [19] accommodate large data by dividing the dataset among nodes 

[27]. This approach can cause load imbalance in the rendering phase because of variations in scene 

complexity. Although it might seem that empty blocks should be fastest, the opposite is true in this 

algorithm. Early ray termination causes the volume rendering integral computation along a ray to terminate 

once a maximum opacity is reached, but empty regions never reach this maximum opacity and are 



evaluated fully. Load imbalances occur only in the rendering phase; the compositing phase is inherently 

load balanced by dividing the resulting image into uniform regions such as scan lines [23]. Approaches to 

load balancing in the rendering phase can be either dynamic [17] or static [14], and distribution can occur 

in data space, image space, or both [10]. 

Figure 2 shows that the algorithm consists of three main stages: I/O, rendering, and compositing. Each 

core executes I/O, rendering, and compositing serially, and this set of three operations is replicated in 

parallel over many cores. In the I/O stage, data is simultaneously read by all cores of a pipeline. The middle 

section, rendering, occurs in parallel without any intercore communication. The third stage, compositing, 

requires many-many communication using the direct-send method [21]. Finally, a completed image from a 

pipeline is either saved to disk or streamed over a network. 

Times are compiled for each of the three stages and add up to a total frame time, or the latency between 

viewing one time-step to the next. (Frame rate is the reciprocal of frame time.) The relative costs of the 

three phases shift as the number of cores increases, but ultimately the algorithm is I/O bound [29]. 

Rendering performance scales linearly assuming perfect load balance because it requires no interprocess 

 

 
 
Figure 2: Functional diagram of the parallel volume rendering algorithm 



communication. Cost of the direct-send compositing portion of the algorithm is dominated by many-to-

many communication and becomes a significant factor beyond 4K cores and eclipses rendering time 

beyond 8K cores. Both strong scaling and weak scaling are tested: performance for the same dataset is 

tabulated across both increasing numbers of cores and increasing data sizes. 

We do not use compression or multiple levels of detail, which can impose extreme load imbalance and 

degrade visual quality. We do not preprocess the data to detect empty blocks, nor do we hierarchically 

structure the data as in [9] because the preprocessing costs are incompatible with our time-varying data 

context.  

A single-pipeline version of the structure in Figure 2, tested by Peterka et al. [22], resulted in the 

following conclusions: 

 

1. Leadership-class supercomputers are viable volume rendering platforms for data > 1 billion elements. 

2. I/O cost dominates performance and must be mitigated. 

3. Rendering inefficiency is caused by load imbalance. 

4. With enough cores, the performance budget allows higher-quality illumination models to be used. 

5. Many-many compositing strategies such as direct-send will not scale effectively beyond 8K cores. 

 

This paper presents solutions to items 2, 3, and 4, further reinforcing the claim made in item 1. Work is 

ongoing for item 5. 

As a benchmark for our results, we review the landscape of comparable large dataset visualization results 

in the literature. Table 1 lists some of those results. From a survey of current performance we conclude that 

it is possible to visualize structured meshes of 1 billion elements at interactive rates of several frames per 

second, including I/O time for time-varying data. Unstructured meshes can be visualized in tens of seconds, 

excluding I/O and preprocessing time. Large structured meshes of tens of billions of elements fall in 

between, requiring several seconds excluding I/O time. Lighting is typically not possible at these 

performance levels, and image sizes are usually limited to 1 megapixel. 



 

3. Method 

In this section we elaborate on details of the implementation. We begin by describing the nature of the 

dataset and of the BG/P architecture. We then discuss the program parameters that vary in order to generate 

results, and discuss how performance data are collected and analyzed. 

 

3.1 Dataset 

Our datasets originate from Anthony Mezzacappa of Oak Ridge National Laboratory and John Blondin 

of North Carolina State University and represent physical quantities during the early stages of supernovae 

core collapse [6]. Variables such as entropy, angular momentum, density, pressure, and velocity are stored 

in netCDF [3] file format. Data elements are stored in structured grids, although we expect the majority of 

our research to be applicable to unstructured grid and AMR data in the future as well.  

In order to visualize the data, each time-step is preprocessed to extract a single variable from the netCDF 

file and to write it in 32-bit floating-point format into a separate file. Currently we have two sizes of actual 

data, 864
3
 and 1120

3
 data elements, or 0.65 and 1.4 billion elements per time-step, respectively. 

Additionally, we created two simulated larger datasets by doubling each of the actual datasets in three 

dimensions, making them 8 times larger, or 5.2 and 11.2 billion data elements, respectively. File sizes of 

the two actual datasets and two simulated datasets are 2.6, 5.6, 20.8, and 44.8 GB per time-step, 

respectively. 

 

Table 1: Previously published large volume rendering results 

Dataset 
Billion 

Elements 
Mesh Type 

Image 
Size 

Time 
(s) 

I/O Reference 

Molecular 
dynamics 

0.14 unstructured 1K x 1K 30 no [8] 

Blast 
wave 

27 unstructured 1K x 1K 35 no [8] 

Taylor-
Raleigh 

1 structured 1K x 1K 0.2 yes [11] 

Fire 14 unstructured 800x800 16 no [20] 

 



3.2 Architecture 

Argonne National Laboratory is installing a 557 teraflop (TF) BG/P supercomputer, designated by the 

U.S. Department of Energy as one of two leadership computing facilities in the nation. The Argonne 

Leadership Computing Facility (ALCF) [1] currently has a single-rack testing and development machine 

and an eight-rack 100 teraflop machine. Both are functional and available for early adopters and INCITE 

users now,  subsets of the 557 TF BG/P.  

Four PowerPC450 cores that share 2 GB of RAM constitute one BG/P node. Peak performance of one 

core is 3.4 gigaflops (GF), or 13.6 GF per node. One rack contains 1K nodes or 4K cores, has 2 TB 

memory, and is capable of 13.9 TF peak performance. Eight racks equate to 16 TB RAM and 108 TF. The 

final system is projected to have 40 racks (40K nodes, 160K cores) 80 TB RAM, and peak performance of 

557 TF. These relationships are diagrammed in Figure 3. IBM provides extensive online documentation of 

the BG/P architecture, compilers, and users and programmers’ guides [2]. 

 

 
 
Figure 3: Argonne’s BG/P architecture 



3.3 Program Parameters 

Several controls for testing performance under a number of conditions have been designed into the 

volume rendering application. For example, the image mode is variable: not just the size of the finished 

image but whether it is saved to a file or streamed on the network. The number of time steps run in 

succession, including looping indefinitely over a finite time series, can be set. Lighting can be enabled or 

disabled; we enable lighting in order to demonstrate performance for high-quality rendering. The density of 

point sampling along each ray can be controlled with a parameter as well. We always set this to full 

density; as with lighting, we do not trade quality for speed. Unlike [8], the sample spacing along a ray is a 

factor of the data spacing, not a fixed value. Hence, the final resulting sample spacing along a ray depends 

on the data size and  the image detail faithfully reproduces the data. 

A few more controls concern the multiple-pipeline architecture for processing several time-steps 

simultaneously. The number of pipelines is variable up to the limit of the total number of cores available. 

For example, 8K cores can be configured in a single pipeline, two pipes of 4K cores each, etc. Additionally, 

the amount of overlap between pipeline execution is adjustable by permitting the I/O and compositing 

phases of the pipes to occur simultaneously or in alternating order. The purpose of this parameter is to 

gauge the amount of contention between the pipes for storage and communication bandwidth. We call the 

two pipeline modes staged and unstaged. 

 

3.4 Performance Data Collection 

Performance data are collected by using timing measurements as outlined in [22], including the total 

frame time as well as its constituents: I/O time, render time, and composite time. When streaming to a 

remote display, the final net frame rate at the display device is also measured. This is the frame rate that the 

scientist would see when viewing the data. Since the dataset is time-varying, the end user is seeing the end-

to-end time, including file I/O, in the final frame rate at the display. 



Profiling tools assist in gathering high-frequency performance data, in understanding subtle relationships 

such as percentage of execution time spent in various program functions or the time distribution across all 

cores of a particular section of the algorithm, and in querying all of the hardware counters that BG/P makes 

available. Our favorite tool is TAU (Tuning and Analysis Utilities) [5] from the University of Oregon. 

Figure 4 shows several of the outputs from TAU. The upper half of the figure shows a call-graph 

representation: the size of the function blocks represents the fraction of execution time spent in each. 

Comparing call-graphs between 

runs illuminates how the balance 

of time spent in different parts of 

the code changes with scale. The 

lower half of Figure 4 shows a 

time distribution of the rendering 

phase in a single run across 256 

cores. Load imbalances are 

quickly evident from the uneven 

distribution. Statistics such as 

mean and standard deviation are 

also accessible. 

 

 

4. Results 

This section quantifies gains from the three main improvements to the volume rendering algorithm: load 

balancing, lighting, and parallel pipelines. Tests on large data and high numbers of cores validate the 

results. 

 

4.1 Load Balancing 

Load balancing is a difficult problem when it is in the context of large problem sizes, large numbers of 

cores, and time-varying data. Clearly a uniform load balance is crucial to good scalability and efficiency, 

 

 
Figure 4: Profiling tools assist in comparing performance 
between program modules (top) and between cores 
executing the same module (bottom). 



and much research has been published in this area of parallel computing. However, it is not clear whether 

any of the published methods are lightweight enough, particularly their communication costs, at thousands 

of cores under the performance constraints of time-dependant data. Marchesin et al. [17] provide a dynamic 

load balancing method that requires data to be replicated on all cores; data replication is unacceptable for 

our problem scale. Childs et al. [8] describe a two-phase rendering algorithm that balances work load by 

dividing a portion of the workload within object space and the rest in image space, but the cost of an 

additional many-to-many communication between the two stages may be prohibitive for our purposes. Ma 

et al. [14] show good scalability and parallel efficiency through a round-robin static distribution method. 

We take a low-cost but effective strategy that improves efficiency in some cases by a factor of 2 

compared to a uniform data distribution. Round-robin data partitioning is inexpensive because it is still a 

static balancing scheme but it has a better probability of achieving a roughly uniform load balance. The 

dataset is divided into many more blocks than processors and the blocks are assigned to processors in a 

round-robin fashion. The number of blocks per processor is called the blocking factor; we have found 16 to 

be sufficient for most cases. 

The round-robin load distribution is surprisingly effective for increasing rendering efficiency, given its 

low cost. Occasionally we need to “hand-tune” the blocking factor to increase efficiency further. For 

example, in our tests we found 32 

blocks per process to be better at 

128 and 256 cores, but we can now 

smooth out previous bumps in 

efficiency curves easily through 

appropriate choice of blocking 

factor. Figure 5 compares rendering 

efficiency with and without round-

robin balancing. The default case 

represents the uniform data division 

into the same number of blocks as 

processors, while the round-robin 

 
Figure 5: Efficiency of the rendering phase can be 
improved by distributing data blocks in a more 
equitable manner. Round-robin balancing assigns 
many blocks to each core, distributed in a round-
robin fashion. Compare with the default distribution 
of one block per core. 



case represents the improved load balance scheme.  

It is easy to see the difference between the behavior of the two curves in Figure 5. The efficiency is based 

on rendering time only, which requires no communication. Figure 5 shows that the round robin distribution 

is not perfect. For example, there are instances such as 512 and 4K cores where the default distribution is 

coincidentally very good, reaching over 90%. On average, however, the round-robin distribution is more 

predictable and in most cases better than the default, ranging between 70 and 90% over several thousand 

cores. 

The raw rendering time shows this improvement as well, completing faster than before in most cases. 

There is an I/O cost, however, in reading 16 or 32 nonadjacent blocks sequentially within each process, 

instead of just one or two. See Figure 6, which measures the I/O portion of time only. In all but two cases, 

however, the increase in I/O time was offset by a reduction in rendering time. 

In those cases where the increased I/O cost remains, we will show later that I/O can be hidden effectively 

through multiple pipeline parallelism. Another potential optimization is to write a more intelligent I/O read 

function that batches the sequential reads that a process makes into a higher-level “collective” read that can 

occur simultaneously. MPI-IO dictates that any collective file I/O operations occur in monotonically 

nondecreasing byte order at the file level. Hence, blocks in the subvolume would need to be decomposed 

into strings of contiguous bytes, and these strings sorted with respect to file byte order. Then a  processes 

can read all of its blocks collectively, 

followed by reassembly into 

subvolume blocks once in memory. 

This has not been implemented yet. 

 

4.2 Lighting Large Data 

Lighting and shading add a high 

degree of information content and 

realism to volume rendering. For 

example, compare the two images of 

supernova angular momentum with 

 
Figure 6: There is additional I/O cost associated with 
round robin, since each process must read many 
more non-contiguous blocks. However, this cost is 
offset by increases in rendering efficiency. 



and without lighting in Figure 7. The illuminated model, complete with specular highlights, closely 

resembles the appearance of isosurface rendering. This quality comes at a steep price, however, which is 

why most parallel volume renderers cannot afford to use it.  

By estimating gradient direction from differences of neighboring vertex values, a normal direction is 

calculated for each data point. A standard lighting model, including ambient, diffuse, and specular 

components, is computed [18]. Although straightforward to compute, lighting is often omitted from other 

volume renderers in order to boost performance. For example, the 864
3
 dataset in Figure 7, rendered to a 

1024
2
 image requires approximately seven times longer to compute the effects of lighting. With the 

extended potential for scaling that leadership-class machines offer, however, we can now compute lighting 

within volume rendering as a matter of course.  

The next largest dataset that we have available is 1120
3
, or 1.4 billion, vertices. Currently we have one 

time-step of each of five variables: density, pressure, and x,y,z components of velocity (approximately 5.3 

GB per variable). Once again this is part of a time-varying dataset and we will eventually transfer more 

time-steps to Argonne’s BG/P.  This performance test visualizes the pressure variable to a 1024
2
 image 

size, with lighting. The resulting image appears in Figure 1. For this test, the number of cores scales from 

32 to 8K by factors of 2. 

 
Figure 7: Unlit (left) rendering vs. lit (right) rendering. Image quality that resembles 
triangle mesh isosurfacing can be produced with direct volume rendering. 



 Figure 8 shows total frame rate 

(including I/O),  as a function of the 

number of cores. The total frame time 

at 8K cores is 7.9 s. Round-robin data 

distribution is used, with blocking 

factors that range from 16 at lower 

numbers of cores to 4 at the upper end. 

The slope of the curve gradually 

decreases because compositing 

overhead assumes a more prominent 

role with increased numbers of cores. 

This underlines the need to rewrite the compositing algorithm before scaling much further. Figure 9 

shows the distribution of time spent in I/O, rendering, and compositing for this same dataset. Clearly, the 

I/O dominates over the vast majority of the plot, and at 8K cores compositing is nearly as expensive as 

rendering. Beyond approximately 10K cores, rendering will be the least expensive of the three stages.  

As a temporary measure until larger data are available, we have taken each of the 864
3
 and 1120

3
 datasets 

and doubled the volume in each of the three dimensions, extending total size by a factor of eight. The 

performance on these simulated 

datasets are in Table 2 and constitute 

our largest scale to date: 16K cores. 

These values include lighting. At this 

scale, rendering is the fastest of the 

three stages; compositing consumes 

nearly 30% of the total frame time. 

The right-most column includes 

rendering and compositing time, but 

excludes I/O. As we shall see in the 

next section, it is possible to mitigate 

 
Figure 8: The total frame rate with lighting is plotted 
for the 1120

3
 dataset. 

 
Figure 9: At large data sizes and many cores, the 
relative contributions of the three stages of the 
algorithm are dominated by I/O. Compositing cost 
also grows. 



the cost of I/O time through the use of multiple parallel pipelines. 

 

4.3 Multiple Parallel Pipelines 

The previous section demonstrates extreme levels of scalability, but it also points out two problems. One 

is the diminishing return from higher and higher amounts of cores in Figure 8, and the other is the widening 

gap between visualization-only time and end-to-end time in Table 2. We conclude that rendering time is not 

the bottleneck at this problem scale: I/O dominates the frame time and further progress depends on hiding 

this I/O cost. In a time-varying dataset, we cannot choose to simply ignore I/O time when measuring the 

frame rate because each time-step or image frame requires a new file to be read. The I/O cost, however,  

can be mitigated and even completely hidden if sufficient I/O bandwidth, rendering resources, and 

communication bandwidth exist to process multiple time-steps simultaneously.  

The solution is two levels of parallelism: inter-time-step and intra-time-step parallelism using multiple 

parallel pipelines. In fact, even some of the rendering costs can be absorbed if the pipelines have sufficient 

overlap. As long as final frames are sent out in order, the receiving-end display software can buffer frames 

to smooth out any discrepancies in interframe latency and present final frames at a consistent frame rate. 

Table 2: Simulated very large data sizes 

Original 
Size 

Concatenated 
Size 

Elements 
(billion) 

File 
Size 
(GB) 

Image 
Size 

(pixels) 

End-End 
Time (s) 

Vis-
Only 

Time (s) 

864
3 

1728
3 

5.2 20 1K x 1K 15.6 5.2 

1120
3 

2240
3 

11.2 42 1K x 1K 16.4 5.2 

 



In Figure 2, collections of cores are shown grouped into parallel pipelines [13]. Within any pipeline, 

many cores operate in parallel. Figure 10 shows a simplified diagram of a multipipe architecture for this 

application with four pipelines. Each pipeline is actually a collection of many cores operating in parallel on 

the same time-step. The boxes are labeled I/O for file reading, R for rendering, and C/S for compositing and 

sending. All four pipelines begin at the same time because there is no need to synchronize them until the 

final stage in order that sending occurs in order.  

When I/O or compositing are regulated so that one pipeline at a time has control of the storage or 

communication network, we call this a staged pipeline. It imposes a higher degree of serialization in 

exchange for less contention. An unstaged pipeline allows the maximum parallelism without concern for 

contention, ordering only the final sending of the resulting images. In our tests, staging of I/O or 

compositing did not significantly affect the frame time, so we assume that storage and network bandwidths 

are not saturated at scales up to 8K cores. We are currently examining peak aggregate I/O rates for the 

parallel file system and studying the communication patterns of the BG/P torus to verify this assumption. 

We have retained the staging feature in the code and will retest whether this has an effect at still larger 

scales. 

Some idle time may occur within each pipe between the completion of rendering (R) and the start of 

either compositing or sending (C/S). This depends on the exact sum of the component times with respect to 

the number of pipelines. The total number of processes must be divisible by the number of pipes, and 

usually these are both powers of two. Therefore,  the number of pipes will usually result in imperfect 

 
Figure 10: Example of how four parallel pipelines can reduce frame time and hide I/O cost. I/O 
= file read, R = render, C/S = composite and send. 



utilization and some dwell time. In the limit, however, multiple pipelines can reduce the frame time from 

the sum of I/O + R, + C/S to just the C/S time, a significant savings.  

Figure 11 shows the results of our experiments with 1, 2, 4, 8, and 16 pipelines arranged as follows: 

• 1 pipe of 8 K cores 

• 1 and 2 pipes of 4 K cores 

• 1, 2,  and 4 pipes of 2 K cores 

• 1, 2, 4, and 8 pipes of 1 K cores 

• 1, 2, 4, 8, and 16 pipes of 512 cores 

The frame rate in Figure 11 is measured at the receiving display device; images are streamed to it as they 

are completed. An average frame rate is computed over all of the time steps received, so this is an end-to-

end value that includes the entire system including I/O, rendering, compositing, and streaming. No 

compression is used for streaming or elsewhere in these tests. 

In all cases, performance improves with each doubling of the number of pipes. In fact, with 512 cores per 

pipe, the frame time (reciprocal of the frame rate) improved from nearly eighteen seconds for a single pipe 

to just over one second for sixteen pipes. At this point all of the I/O time is hidden along with a portion of 

the original single-pipe visualization time. 

One might argue that performance improves because so many more total cores are being used. However, 

Figure 11 shows that the difference 

in frame rate is significant even for 

the same total number of cores, 

depending on how many pipes the 

cores constitute. For example, 8K 

total cores arranged as 16 pipes of 

512 cores produces a frame rate that 

is six times faster than 8K cores in a 

single pipe. Similar but less 

dramatic improvements appear in 

Figure 11 for the other combinations 

 
Figure 11: Multiple pipelines can provide several times 
faster performance, even if the same total number of 
cores is distributed into several pipes instead of a 
single pipe. 



of the same total number of cores arranged in different ways. The overlap of operations in Figure 10 

contributes more than simple scaling of the number of cores because the total end-to-end time is I/O bound 

and does not scale linearly. Hiding the I/O time via multiple pipelines is an effective tool to counterbalance 

I/O cost. 

 

5. Discussion 

By improving load balancing, adding lighting, and employing multiple pipelines, we have extended the 

scale of high-quality time-varying volume rendering to over 10 billion data elements per time-step. By 

scaling up to the order of  10,000 cores, we can generate results at frame times on the order of several 

seconds, including I/O and lighting. 

A simple round-robin load distribution scheme achieves two times better balance than does naïve single-

block allocation. With extreme numbers of cores, maybe this is the best that can be achieved without the 

cost of load balancing outweighing its benefit.  More complex redistribution of data at these scales, within 

performance constraints, has yet to be achieved. Even round-robin distribution carries increased I/O costs, 

but these can be offset through improved rendering efficiency and multipipe parallelism. 

Lighting adds a new degree of visual fidelity to volume rendering but the computational expense has 

limited its use to small data until now. While the expense is the same, software volume rendering on 

leadership architectures such as BG/P provides new opportunities for scalability, far beyond sizes of 

graphics clusters. Moreover, lighting calculations do not fit graphics clusters’ texture-based hardware 

accelerations very well. Storing of normal vectors as textures can require more video memory than the 

original data, and computing them per pixel is expensive because it requires normalization. 

The multiple pipeline organization effectively hides I/O costs in time-varying datasets by processing 

multiple time-steps simultaneously. Even if multiple pipelines of the original number of cores cannot be 

formed, for example if the cores are not available, it is still more efficient to allocate existing cores into 

more than one pipeline of fewer cores each than to group all of the cores into a single pipeline. 

We have shown that it is technically feasible to apply leadership-class machines at large scales to 

visualization and analysis problems and we have explained how to do so. The remaining question is, “Why 

should others consider doing this?” There are several reasons why this use of valuable resources is 



desirable, justifiable, and surprisingly economical. Foremost, we are creating the foundation for in situ 

visualization. Not only does this offer significant savings in terms of time and data movement, but the 

availability of all of the simulation data in situ affords new capabilities, such as simultaneous analysis of 

multiple variables. Interacting with the simulation, not just the visualization, is another advantage. 

Numerous other possibilities exist in this exciting new research area. 

In order to faithfully resolve detail in large datasets, large display devices such as tiled walls and 

accompanying large image sizes (tens and hundreds of megapixels) are required. Otherwise, the display 

size and resolution effectively down-sample the dataset to a much coarser level of detail. Data is discarded 

just as if the dataset had originally been much smaller, except that detail is lost at the end of the 

visualization workflow, a waste of all of the previous computational resources. Larger display and image 

sizes require orders of magnitude larger visualization systems than are currently available in the graphics 

cluster class of architectures. Leadership-class machines are currently the only choice when considering not 

only large data size, but also high image resolution. 

In terms of scheduling and machine utilization, in our experience visualization jobs can be interleaved 

easily within other computational runs. Our runs are typically short, lasting 10-30 minutes. Over the course 

of a week, these short runs accrue no more than a few hours of total time. Even if 16K cores are required 

for a total of 10 hours per week (much more than we have used to date), this is still only a fraction of one 

percent of the utilization of a 500TF machine. Since visualization runs are much shorter than simulations, 

the scheduler can easily back-fill unused cycles between scheduled computational runs with analysis and 

visualization tasks. These cycles would be wasted otherwise, so the visualization is essentially free. 

 

6. Future Work 

We continue to scale up to larger data and more cores. In so doing, new bottlenecks appear. The next 

hurdle to overcome requires rewriting the compositing part of the algorithm to employ tree-based binary 

swap [15]. This code is being written but is not ready for testing yet. Although aware of the issue for some 

time, we have successfully avoided this problem up until now–but no longer. Efficient compositing is one 

of the priorities for successful operation at tens of thousands of cores. 



Improving I/O performance is another focus area. Motivated by round-robin data distribution, we are 

writing a collective I/O routine that enables each process to read multiple blocks in a single operation. The 

ALCF researchers continue to improve aggregate I/O bandwidth and I/O scalability; these improvements 

are welcome because they directly affect the performance of this application. 

We will also be exploring other programming models to leverage the memory that is shared by the four 

cores of single BG/P node. This technique should combine MPI with OpenMP or other thread-level 

parallelism methods and may result in a hybrid message passing / shared memory model of parallel 

visualization and analysis. 
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