
Assessing and Improving Large-Scale Parallel Volume Rendering on the

IBM Blue Gene/P

Tom Peterka
1
, Robert Ross

1
, Hongfeng Yu

2
, Kwan-Liu Ma

2

1
Argonne National Laboratory,

2
University of California, Davis

Direct correspondence to tpeterka@mcs.anl.gov

Abstract

As computational science progresses toward petascale, innovations in analysis and visualization of the

resulting datasets are necessary. Rather than evaluating visualization performance by rendering speed only,

we take a systemwide view and evaluate where bottlenecks actually are when scaling parallel software

volume rendering on the IBM Blue Gene/P (BG/P) to over 10,000 cores. We first examine the relative costs

of I/O, rendering, and compositing for a variety of dataset sizes, and we show the benefit of an alternative

rendering distribution scheme that improves load balance. Next we examine the cost of adding high-quality

lighting in the rendering phase. We also investigate the use of multiple parallel pipelines to partially hide

the I/O cost when rendering many time-steps. We conclude that BG/P is an effective platform for volume

rendering of large-scale datasets and that the rendering capabilities of BG/P cores are not the limiting factor

in performance.

Classification, Keywords

I3.1 [Hardware Architecture]: Parallel processing, I3.2 [Graphics Systems]: Distributed / network graphics,

I3.7 [Three-Dimensional Graphics and Realism]: Raytracing, I3.8 [Applications]

1. Introduction

In the face of the petascale era, innovative visualization technologies will be required to keep pace with

dramatically increasing datasets. One idea is not an innovation at all: supercomputer software rendering is a

throwback to the past, before the proliferation of hardware-accelerated graphics. Figure 1 shows an

example of modern software volume rendering applied to astrophysics data. This research through the U.S.

Department of Energy’s SciDAC Institute for Ultra-Scale Visualization [4] applies software volume

rendering to a very new supercomputer, the IBM Blue Gene/P (BG/P) at Argonne National Laboratory.

While parallel volume rendering algorithms are well known, unprecedented scales are tested here: over

10,000 cores are employed to target ever-increasing data sizes. Our testing at these scales has produced

several new optimizations to the method and uncovered the need for others. The new contributions of this

paper are threefold: a significant increase in efficiency due to improved load balancing, use of high-quality

lighting and shading to add visual realism and visual content, and multiple levels of parallelism to hide I/O

cost. We demonstrate the implementation of these contributions at scales of up to 16K cores.

Much of the visualization research in recent years has focused

on the exploitation of GPU hardware to increase performance by

representing volumetric data as 3D textures. Software rendering

rates are several orders of magnitude slower than graphics

hardware and clearly software volume rendering cannot compete

with GPU methods in the same space of problems. However,

GPU methods, while highly parallel at the hardware level, are

limited by video memory size and degrade in performance the

farther the data are removed from the rendering hardware: across

the CPU-GPU bus, on another physical node, or in storage.

When raw rendering time is not the bottleneck in end-to-end performance, a modern supercomputer such

as the BG/P becomes a viable alternative to a graphics cluster. With its tightly coupled interconnection

backbone, parallel file system, and massive amounts of cores, such an architecture scales more predictably

once the problem size grows to billions and tens of billions of data elements, where factors such as I/O and

communication bandwidth - not rendering speed - dominate the overall performance.

The opportunity for in situ visualization is another advantage associated with enabling visualization on

the same architecture as the simulation. Because postprocessing and transporting data can take as long as its

computation, moving the analysis and visualization closer to the data is usually less expensive than the

other way around. In situ visualization [16], [24], [30], or overlapping visualization with an executing

Figure 1: Software volume
rendering of the early stages of
supernova core collapse

simulation, is a largely uncharted area ripe for discoveries; we hope that the results presented here will

contribute to the advancement of in situ visualization and data analysis.

In situ techniques grow in importance as simulations grow in size. For example, Yeung et al. already

routinely compute flow simulations at 2048
3
 data elements [28], and their next target is 4096

3
 using the

IBM Blue Gene architecture. This equates to approximately 270 GB per time-step per variable. At these

scales, every extra iteration through the dataset is extremely costly in terms of both time and storage space;

hence, overlapping computation with analysis into a single step is the only practical way to extract

information from the simulation results. Similar dataset sizes are currently being produced by Woodward et

al. [26], again in the area of fluid dynamics, and by Chen et al. [7] in earthquake simulation. Both of these

groups are working within the context of shared-memory architectures. Chen et al., for example, perform

both simulation and visualization using the NEC Earth Simulator.

Concepts implemented in this paper such as round-robin load distribution or multiple parallel pipelines

have been published earlier. Our contribution is to evaluate these concepts in the context of massive

parallelism, improve them as necessary to operate in this environment, and note additional areas needing

improvement. In so doing, we address common challenges that appear across architectures and problem

domains in parallel computing: parallel I/O, load balancing, and compositing of partial results to a final

solution. These parallelization problems are stress-tested in this work and the lessons learned may be

broadly applied to other computing, analysis, and visualization algorithms such as unstructured meshes or

adaptive mesh refinement (AMR) [12], [25]. Other supercomputer architectures and large graphics clusters

face similar parallelization problems as they scale up, and perhaps so will future architectures of massively

parallel collections of GPUs or cell processors.

2. Background

Sort-last parallel rendering methods [19] accommodate large data by dividing the dataset among nodes

[27]. This approach can cause load imbalance in the rendering phase because of variations in scene

complexity. Although it might seem that empty blocks should be fastest, the opposite is true in this

algorithm. Early ray termination causes the volume rendering integral computation along a ray to terminate

once a maximum opacity is reached, but empty regions never reach this maximum opacity and are

evaluated fully. Load imbalances occur only in the rendering phase; the compositing phase is inherently

load balanced by dividing the resulting image into uniform regions such as scan lines [23]. Approaches to

load balancing in the rendering phase can be either dynamic [17] or static [14], and distribution can occur

in data space, image space, or both [10].

Figure 2 shows that the algorithm consists of three main stages: I/O, rendering, and compositing. Each

core executes I/O, rendering, and compositing serially, and this set of three operations is replicated in

parallel over many cores. In the I/O stage, data is simultaneously read by all cores of a pipeline. The middle

section, rendering, occurs in parallel without any intercore communication. The third stage, compositing,

requires many-many communication using the direct-send method [21]. Finally, a completed image from a

pipeline is either saved to disk or streamed over a network.

Times are compiled for each of the three stages and add up to a total frame time, or the latency between

viewing one time-step to the next. (Frame rate is the reciprocal of frame time.) The relative costs of the

three phases shift as the number of cores increases, but ultimately the algorithm is I/O bound [29].

Rendering performance scales linearly assuming perfect load balance because it requires no interprocess

Figure 2: Functional diagram of the parallel volume rendering algorithm

communication. Cost of the direct-send compositing portion of the algorithm is dominated by many-to-

many communication and becomes a significant factor beyond 4K cores and eclipses rendering time

beyond 8K cores. Both strong scaling and weak scaling are tested: performance for the same dataset is

tabulated across both increasing numbers of cores and increasing data sizes.

We do not use compression or multiple levels of detail, which can impose extreme load imbalance and

degrade visual quality. We do not preprocess the data to detect empty blocks, nor do we hierarchically

structure the data as in [9] because the preprocessing costs are incompatible with our time-varying data

context.

A single-pipeline version of the structure in Figure 2, tested by Peterka et al. [22], resulted in the

following conclusions:

1. Leadership-class supercomputers are viable volume rendering platforms for data > 1 billion elements.

2. I/O cost dominates performance and must be mitigated.

3. Rendering inefficiency is caused by load imbalance.

4. With enough cores, the performance budget allows higher-quality illumination models to be used.

5. Many-many compositing strategies such as direct-send will not scale effectively beyond 8K cores.

This paper presents solutions to items 2, 3, and 4, further reinforcing the claim made in item 1. Work is

ongoing for item 5.

As a benchmark for our results, we review the landscape of comparable large dataset visualization results

in the literature. Table 1 lists some of those results. From a survey of current performance we conclude that

it is possible to visualize structured meshes of 1 billion elements at interactive rates of several frames per

second, including I/O time for time-varying data. Unstructured meshes can be visualized in tens of seconds,

excluding I/O and preprocessing time. Large structured meshes of tens of billions of elements fall in

between, requiring several seconds excluding I/O time. Lighting is typically not possible at these

performance levels, and image sizes are usually limited to 1 megapixel.

3. Method

In this section we elaborate on details of the implementation. We begin by describing the nature of the

dataset and of the BG/P architecture. We then discuss the program parameters that vary in order to generate

results, and discuss how performance data are collected and analyzed.

3.1 Dataset

Our datasets originate from Anthony Mezzacappa of Oak Ridge National Laboratory and John Blondin

of North Carolina State University and represent physical quantities during the early stages of supernovae

core collapse [6]. Variables such as entropy, angular momentum, density, pressure, and velocity are stored

in netCDF [3] file format. Data elements are stored in structured grids, although we expect the majority of

our research to be applicable to unstructured grid and AMR data in the future as well.

In order to visualize the data, each time-step is preprocessed to extract a single variable from the netCDF

file and to write it in 32-bit floating-point format into a separate file. Currently we have two sizes of actual

data, 864
3
 and 1120

3
 data elements, or 0.65 and 1.4 billion elements per time-step, respectively.

Additionally, we created two simulated larger datasets by doubling each of the actual datasets in three

dimensions, making them 8 times larger, or 5.2 and 11.2 billion data elements, respectively. File sizes of

the two actual datasets and two simulated datasets are 2.6, 5.6, 20.8, and 44.8 GB per time-step,

respectively.

Table 1: Previously published large volume rendering results

Dataset
Billion

Elements
Mesh Type

Image
Size

Time
(s)

I/O Reference

Molecular
dynamics

0.14 unstructured 1K x 1K 30 no [8]

Blast
wave

27 unstructured 1K x 1K 35 no [8]

Taylor-
Raleigh

1 structured 1K x 1K 0.2 yes [11]

Fire 14 unstructured 800x800 16 no [20]

3.2 Architecture

Argonne National Laboratory is installing a 557 teraflop (TF) BG/P supercomputer, designated by the

U.S. Department of Energy as one of two leadership computing facilities in the nation. The Argonne

Leadership Computing Facility (ALCF) [1] currently has a single-rack testing and development machine

and an eight-rack 100 teraflop machine. Both are functional and available for early adopters and INCITE

users now, subsets of the 557 TF BG/P.

Four PowerPC450 cores that share 2 GB of RAM constitute one BG/P node. Peak performance of one

core is 3.4 gigaflops (GF), or 13.6 GF per node. One rack contains 1K nodes or 4K cores, has 2 TB

memory, and is capable of 13.9 TF peak performance. Eight racks equate to 16 TB RAM and 108 TF. The

final system is projected to have 40 racks (40K nodes, 160K cores) 80 TB RAM, and peak performance of

557 TF. These relationships are diagrammed in Figure 3. IBM provides extensive online documentation of

the BG/P architecture, compilers, and users and programmers’ guides [2].

Figure 3: Argonne’s BG/P architecture

3.3 Program Parameters

Several controls for testing performance under a number of conditions have been designed into the

volume rendering application. For example, the image mode is variable: not just the size of the finished

image but whether it is saved to a file or streamed on the network. The number of time steps run in

succession, including looping indefinitely over a finite time series, can be set. Lighting can be enabled or

disabled; we enable lighting in order to demonstrate performance for high-quality rendering. The density of

point sampling along each ray can be controlled with a parameter as well. We always set this to full

density; as with lighting, we do not trade quality for speed. Unlike [8], the sample spacing along a ray is a

factor of the data spacing, not a fixed value. Hence, the final resulting sample spacing along a ray depends

on the data size and the image detail faithfully reproduces the data.

A few more controls concern the multiple-pipeline architecture for processing several time-steps

simultaneously. The number of pipelines is variable up to the limit of the total number of cores available.

For example, 8K cores can be configured in a single pipeline, two pipes of 4K cores each, etc. Additionally,

the amount of overlap between pipeline execution is adjustable by permitting the I/O and compositing

phases of the pipes to occur simultaneously or in alternating order. The purpose of this parameter is to

gauge the amount of contention between the pipes for storage and communication bandwidth. We call the

two pipeline modes staged and unstaged.

3.4 Performance Data Collection

Performance data are collected by using timing measurements as outlined in [22], including the total

frame time as well as its constituents: I/O time, render time, and composite time. When streaming to a

remote display, the final net frame rate at the display device is also measured. This is the frame rate that the

scientist would see when viewing the data. Since the dataset is time-varying, the end user is seeing the end-

to-end time, including file I/O, in the final frame rate at the display.

Profiling tools assist in gathering high-frequency performance data, in understanding subtle relationships

such as percentage of execution time spent in various program functions or the time distribution across all

cores of a particular section of the algorithm, and in querying all of the hardware counters that BG/P makes

available. Our favorite tool is TAU (Tuning and Analysis Utilities) [5] from the University of Oregon.

Figure 4 shows several of the outputs from TAU. The upper half of the figure shows a call-graph

representation: the size of the function blocks represents the fraction of execution time spent in each.

Comparing call-graphs between

runs illuminates how the balance

of time spent in different parts of

the code changes with scale. The

lower half of Figure 4 shows a

time distribution of the rendering

phase in a single run across 256

cores. Load imbalances are

quickly evident from the uneven

distribution. Statistics such as

mean and standard deviation are

also accessible.

4. Results

This section quantifies gains from the three main improvements to the volume rendering algorithm: load

balancing, lighting, and parallel pipelines. Tests on large data and high numbers of cores validate the

results.

4.1 Load Balancing

Load balancing is a difficult problem when it is in the context of large problem sizes, large numbers of

cores, and time-varying data. Clearly a uniform load balance is crucial to good scalability and efficiency,

Figure 4: Profiling tools assist in comparing performance
between program modules (top) and between cores
executing the same module (bottom).

and much research has been published in this area of parallel computing. However, it is not clear whether

any of the published methods are lightweight enough, particularly their communication costs, at thousands

of cores under the performance constraints of time-dependant data. Marchesin et al. [17] provide a dynamic

load balancing method that requires data to be replicated on all cores; data replication is unacceptable for

our problem scale. Childs et al. [8] describe a two-phase rendering algorithm that balances work load by

dividing a portion of the workload within object space and the rest in image space, but the cost of an

additional many-to-many communication between the two stages may be prohibitive for our purposes. Ma

et al. [14] show good scalability and parallel efficiency through a round-robin static distribution method.

We take a low-cost but effective strategy that improves efficiency in some cases by a factor of 2

compared to a uniform data distribution. Round-robin data partitioning is inexpensive because it is still a

static balancing scheme but it has a better probability of achieving a roughly uniform load balance. The

dataset is divided into many more blocks than processors and the blocks are assigned to processors in a

round-robin fashion. The number of blocks per processor is called the blocking factor; we have found 16 to

be sufficient for most cases.

The round-robin load distribution is surprisingly effective for increasing rendering efficiency, given its

low cost. Occasionally we need to “hand-tune” the blocking factor to increase efficiency further. For

example, in our tests we found 32

blocks per process to be better at

128 and 256 cores, but we can now

smooth out previous bumps in

efficiency curves easily through

appropriate choice of blocking

factor. Figure 5 compares rendering

efficiency with and without round-

robin balancing. The default case

represents the uniform data division

into the same number of blocks as

processors, while the round-robin

Figure 5: Efficiency of the rendering phase can be
improved by distributing data blocks in a more
equitable manner. Round-robin balancing assigns
many blocks to each core, distributed in a round-
robin fashion. Compare with the default distribution
of one block per core.

case represents the improved load balance scheme.

It is easy to see the difference between the behavior of the two curves in Figure 5. The efficiency is based

on rendering time only, which requires no communication. Figure 5 shows that the round robin distribution

is not perfect. For example, there are instances such as 512 and 4K cores where the default distribution is

coincidentally very good, reaching over 90%. On average, however, the round-robin distribution is more

predictable and in most cases better than the default, ranging between 70 and 90% over several thousand

cores.

The raw rendering time shows this improvement as well, completing faster than before in most cases.

There is an I/O cost, however, in reading 16 or 32 nonadjacent blocks sequentially within each process,

instead of just one or two. See Figure 6, which measures the I/O portion of time only. In all but two cases,

however, the increase in I/O time was offset by a reduction in rendering time.

In those cases where the increased I/O cost remains, we will show later that I/O can be hidden effectively

through multiple pipeline parallelism. Another potential optimization is to write a more intelligent I/O read

function that batches the sequential reads that a process makes into a higher-level “collective” read that can

occur simultaneously. MPI-IO dictates that any collective file I/O operations occur in monotonically

nondecreasing byte order at the file level. Hence, blocks in the subvolume would need to be decomposed

into strings of contiguous bytes, and these strings sorted with respect to file byte order. Then a processes

can read all of its blocks collectively,

followed by reassembly into

subvolume blocks once in memory.

This has not been implemented yet.

4.2 Lighting Large Data

Lighting and shading add a high

degree of information content and

realism to volume rendering. For

example, compare the two images of

supernova angular momentum with

Figure 6: There is additional I/O cost associated with
round robin, since each process must read many
more non-contiguous blocks. However, this cost is
offset by increases in rendering efficiency.

and without lighting in Figure 7. The illuminated model, complete with specular highlights, closely

resembles the appearance of isosurface rendering. This quality comes at a steep price, however, which is

why most parallel volume renderers cannot afford to use it.

By estimating gradient direction from differences of neighboring vertex values, a normal direction is

calculated for each data point. A standard lighting model, including ambient, diffuse, and specular

components, is computed [18]. Although straightforward to compute, lighting is often omitted from other

volume renderers in order to boost performance. For example, the 864
3
 dataset in Figure 7, rendered to a

1024
2
 image requires approximately seven times longer to compute the effects of lighting. With the

extended potential for scaling that leadership-class machines offer, however, we can now compute lighting

within volume rendering as a matter of course.

The next largest dataset that we have available is 1120
3
, or 1.4 billion, vertices. Currently we have one

time-step of each of five variables: density, pressure, and x,y,z components of velocity (approximately 5.3

GB per variable). Once again this is part of a time-varying dataset and we will eventually transfer more

time-steps to Argonne’s BG/P. This performance test visualizes the pressure variable to a 1024
2
 image

size, with lighting. The resulting image appears in Figure 1. For this test, the number of cores scales from

32 to 8K by factors of 2.

Figure 7: Unlit (left) rendering vs. lit (right) rendering. Image quality that resembles
triangle mesh isosurfacing can be produced with direct volume rendering.

 Figure 8 shows total frame rate

(including I/O), as a function of the

number of cores. The total frame time

at 8K cores is 7.9 s. Round-robin data

distribution is used, with blocking

factors that range from 16 at lower

numbers of cores to 4 at the upper end.

The slope of the curve gradually

decreases because compositing

overhead assumes a more prominent

role with increased numbers of cores.

This underlines the need to rewrite the compositing algorithm before scaling much further. Figure 9

shows the distribution of time spent in I/O, rendering, and compositing for this same dataset. Clearly, the

I/O dominates over the vast majority of the plot, and at 8K cores compositing is nearly as expensive as

rendering. Beyond approximately 10K cores, rendering will be the least expensive of the three stages.

As a temporary measure until larger data are available, we have taken each of the 864
3
 and 1120

3
 datasets

and doubled the volume in each of the three dimensions, extending total size by a factor of eight. The

performance on these simulated

datasets are in Table 2 and constitute

our largest scale to date: 16K cores.

These values include lighting. At this

scale, rendering is the fastest of the

three stages; compositing consumes

nearly 30% of the total frame time.

The right-most column includes

rendering and compositing time, but

excludes I/O. As we shall see in the

next section, it is possible to mitigate

Figure 8: The total frame rate with lighting is plotted
for the 1120

3
 dataset.

Figure 9: At large data sizes and many cores, the
relative contributions of the three stages of the
algorithm are dominated by I/O. Compositing cost
also grows.

the cost of I/O time through the use of multiple parallel pipelines.

4.3 Multiple Parallel Pipelines

The previous section demonstrates extreme levels of scalability, but it also points out two problems. One

is the diminishing return from higher and higher amounts of cores in Figure 8, and the other is the widening

gap between visualization-only time and end-to-end time in Table 2. We conclude that rendering time is not

the bottleneck at this problem scale: I/O dominates the frame time and further progress depends on hiding

this I/O cost. In a time-varying dataset, we cannot choose to simply ignore I/O time when measuring the

frame rate because each time-step or image frame requires a new file to be read. The I/O cost, however,

can be mitigated and even completely hidden if sufficient I/O bandwidth, rendering resources, and

communication bandwidth exist to process multiple time-steps simultaneously.

The solution is two levels of parallelism: inter-time-step and intra-time-step parallelism using multiple

parallel pipelines. In fact, even some of the rendering costs can be absorbed if the pipelines have sufficient

overlap. As long as final frames are sent out in order, the receiving-end display software can buffer frames

to smooth out any discrepancies in interframe latency and present final frames at a consistent frame rate.

Table 2: Simulated very large data sizes

Original
Size

Concatenated
Size

Elements
(billion)

File
Size
(GB)

Image
Size

(pixels)

End-End
Time (s)

Vis-
Only

Time (s)

864
3

1728
3

5.2 20 1K x 1K 15.6 5.2

1120
3

2240
3

11.2 42 1K x 1K 16.4 5.2

In Figure 2, collections of cores are shown grouped into parallel pipelines [13]. Within any pipeline,

many cores operate in parallel. Figure 10 shows a simplified diagram of a multipipe architecture for this

application with four pipelines. Each pipeline is actually a collection of many cores operating in parallel on

the same time-step. The boxes are labeled I/O for file reading, R for rendering, and C/S for compositing and

sending. All four pipelines begin at the same time because there is no need to synchronize them until the

final stage in order that sending occurs in order.

When I/O or compositing are regulated so that one pipeline at a time has control of the storage or

communication network, we call this a staged pipeline. It imposes a higher degree of serialization in

exchange for less contention. An unstaged pipeline allows the maximum parallelism without concern for

contention, ordering only the final sending of the resulting images. In our tests, staging of I/O or

compositing did not significantly affect the frame time, so we assume that storage and network bandwidths

are not saturated at scales up to 8K cores. We are currently examining peak aggregate I/O rates for the

parallel file system and studying the communication patterns of the BG/P torus to verify this assumption.

We have retained the staging feature in the code and will retest whether this has an effect at still larger

scales.

Some idle time may occur within each pipe between the completion of rendering (R) and the start of

either compositing or sending (C/S). This depends on the exact sum of the component times with respect to

the number of pipelines. The total number of processes must be divisible by the number of pipes, and

usually these are both powers of two. Therefore, the number of pipes will usually result in imperfect

Figure 10: Example of how four parallel pipelines can reduce frame time and hide I/O cost. I/O
= file read, R = render, C/S = composite and send.

utilization and some dwell time. In the limit, however, multiple pipelines can reduce the frame time from

the sum of I/O + R, + C/S to just the C/S time, a significant savings.

Figure 11 shows the results of our experiments with 1, 2, 4, 8, and 16 pipelines arranged as follows:

• 1 pipe of 8 K cores

• 1 and 2 pipes of 4 K cores

• 1, 2, and 4 pipes of 2 K cores

• 1, 2, 4, and 8 pipes of 1 K cores

• 1, 2, 4, 8, and 16 pipes of 512 cores

The frame rate in Figure 11 is measured at the receiving display device; images are streamed to it as they

are completed. An average frame rate is computed over all of the time steps received, so this is an end-to-

end value that includes the entire system including I/O, rendering, compositing, and streaming. No

compression is used for streaming or elsewhere in these tests.

In all cases, performance improves with each doubling of the number of pipes. In fact, with 512 cores per

pipe, the frame time (reciprocal of the frame rate) improved from nearly eighteen seconds for a single pipe

to just over one second for sixteen pipes. At this point all of the I/O time is hidden along with a portion of

the original single-pipe visualization time.

One might argue that performance improves because so many more total cores are being used. However,

Figure 11 shows that the difference

in frame rate is significant even for

the same total number of cores,

depending on how many pipes the

cores constitute. For example, 8K

total cores arranged as 16 pipes of

512 cores produces a frame rate that

is six times faster than 8K cores in a

single pipe. Similar but less

dramatic improvements appear in

Figure 11 for the other combinations

Figure 11: Multiple pipelines can provide several times
faster performance, even if the same total number of
cores is distributed into several pipes instead of a
single pipe.

of the same total number of cores arranged in different ways. The overlap of operations in Figure 10

contributes more than simple scaling of the number of cores because the total end-to-end time is I/O bound

and does not scale linearly. Hiding the I/O time via multiple pipelines is an effective tool to counterbalance

I/O cost.

5. Discussion

By improving load balancing, adding lighting, and employing multiple pipelines, we have extended the

scale of high-quality time-varying volume rendering to over 10 billion data elements per time-step. By

scaling up to the order of 10,000 cores, we can generate results at frame times on the order of several

seconds, including I/O and lighting.

A simple round-robin load distribution scheme achieves two times better balance than does naïve single-

block allocation. With extreme numbers of cores, maybe this is the best that can be achieved without the

cost of load balancing outweighing its benefit. More complex redistribution of data at these scales, within

performance constraints, has yet to be achieved. Even round-robin distribution carries increased I/O costs,

but these can be offset through improved rendering efficiency and multipipe parallelism.

Lighting adds a new degree of visual fidelity to volume rendering but the computational expense has

limited its use to small data until now. While the expense is the same, software volume rendering on

leadership architectures such as BG/P provides new opportunities for scalability, far beyond sizes of

graphics clusters. Moreover, lighting calculations do not fit graphics clusters’ texture-based hardware

accelerations very well. Storing of normal vectors as textures can require more video memory than the

original data, and computing them per pixel is expensive because it requires normalization.

The multiple pipeline organization effectively hides I/O costs in time-varying datasets by processing

multiple time-steps simultaneously. Even if multiple pipelines of the original number of cores cannot be

formed, for example if the cores are not available, it is still more efficient to allocate existing cores into

more than one pipeline of fewer cores each than to group all of the cores into a single pipeline.

We have shown that it is technically feasible to apply leadership-class machines at large scales to

visualization and analysis problems and we have explained how to do so. The remaining question is, “Why

should others consider doing this?” There are several reasons why this use of valuable resources is

desirable, justifiable, and surprisingly economical. Foremost, we are creating the foundation for in situ

visualization. Not only does this offer significant savings in terms of time and data movement, but the

availability of all of the simulation data in situ affords new capabilities, such as simultaneous analysis of

multiple variables. Interacting with the simulation, not just the visualization, is another advantage.

Numerous other possibilities exist in this exciting new research area.

In order to faithfully resolve detail in large datasets, large display devices such as tiled walls and

accompanying large image sizes (tens and hundreds of megapixels) are required. Otherwise, the display

size and resolution effectively down-sample the dataset to a much coarser level of detail. Data is discarded

just as if the dataset had originally been much smaller, except that detail is lost at the end of the

visualization workflow, a waste of all of the previous computational resources. Larger display and image

sizes require orders of magnitude larger visualization systems than are currently available in the graphics

cluster class of architectures. Leadership-class machines are currently the only choice when considering not

only large data size, but also high image resolution.

In terms of scheduling and machine utilization, in our experience visualization jobs can be interleaved

easily within other computational runs. Our runs are typically short, lasting 10-30 minutes. Over the course

of a week, these short runs accrue no more than a few hours of total time. Even if 16K cores are required

for a total of 10 hours per week (much more than we have used to date), this is still only a fraction of one

percent of the utilization of a 500TF machine. Since visualization runs are much shorter than simulations,

the scheduler can easily back-fill unused cycles between scheduled computational runs with analysis and

visualization tasks. These cycles would be wasted otherwise, so the visualization is essentially free.

6. Future Work

We continue to scale up to larger data and more cores. In so doing, new bottlenecks appear. The next

hurdle to overcome requires rewriting the compositing part of the algorithm to employ tree-based binary

swap [15]. This code is being written but is not ready for testing yet. Although aware of the issue for some

time, we have successfully avoided this problem up until now–but no longer. Efficient compositing is one

of the priorities for successful operation at tens of thousands of cores.

Improving I/O performance is another focus area. Motivated by round-robin data distribution, we are

writing a collective I/O routine that enables each process to read multiple blocks in a single operation. The

ALCF researchers continue to improve aggregate I/O bandwidth and I/O scalability; these improvements

are welcome because they directly affect the performance of this application.

We will also be exploring other programming models to leverage the memory that is shared by the four

cores of single BG/P node. This technique should combine MPI with OpenMP or other thread-level

parallelism methods and may result in a hybrid message passing / shared memory model of parallel

visualization and analysis.

Acknowledgments

We thank John Blondin and Anthony Mezzacappa for making their dataset available for this research.

This work was supported in part by the Mathematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department

of Energy, under Contract DE-AC02-06CH11357. Work is also supported in part by NSF through grants

CNS-0551727, CCF-0325934, and by DOE with agreement No. DE-FC02-06ER25777.

References

[1] Argonne Leadership Computing Facility. http://www.alcf.anl.gov/ 2008.

[2] IBM Redbooks. http://www.redbooks.ibm.com/redpieces/abstracts/sg247287.html?Open 2007.

[3] NetCDF. http://www.unidata.ucar.edu/software/netcdf/ 2008.

[4] SciDAC Institute for Ultra-Scale Visualization. http://ultravis.ucdavis.edu/ 2007.

[5] Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/tau/home.php 2008.

[6] BLONDIN, J. M., MEZZACAPPA, A. DEMARINO, C.: Stability of Standing Accretion Shocks, with an Eye

Toward Core Collapse Supernovae. The Astrophysics Journal, 584, 2, (2003), 971.

[7] CHEN, L., FUJISHIRO, I. NAKAJIMA, K.: Optimizing Parallel Performance of Unstructured Volume

Rendering for the Earth Simulator. Parallel Computing, 29, 3, (March 2003), 355-371.

[8] CHILDS, H., DUCHAINEAU, M. MA, K.-L.: A Scalable, Hybrid Scheme for Volume Rendering Massive

Data Sets. Proceedings of Eurographics Symposium on Parallel Graphics and Visualization 2006, Braga,

Portugal, (May 2006), 153-162.

[9] GAO, J., WANG, C., LI, L. SHEN, H.-W.: A Parallel Multiresolution Volume Rendering Algorithm for

Large Data Visualization. Parallel Computing, 31, 2, (February 205), 185-204.

[10] GARCIA, A. SHEN, H.-W.: An Interleaved Parallel Volume Renderer with PC-clusters. Proceedings of

Eurographics Workshop on Parallel Graphics and Visualization 2002, Blaubeuren, Germany, (2002), 51-

59.

[11] KNISS, J., MCCORMICK, P., MCPHERSON, A., AHRENS, J., PAINTER, J. S., KEAHEY, A. HANSEN, C. D.:

Interactive Texture-Based Volume Rendering for Large Data Sets. IEEE Computer Graphics and

Applications, 21, 4, (July/August 2001), 52-61.

[12] MA, K.-L.: Parallel Rendering of 3D AMR Data on the SGI/Cray T3E. Proceedings of 7th Annual

Symposium on the Frontiers of Massively Parallel Computation 1999, Annapolis MD, (February 1999),

138-145.

[13] MA, K.-L. CAMP, D. M.: High Performance Visualization of Time-Varying Volume Data over a

Wide-Area Network. Proceedings of Supercomputing 2000, Dallas, TX, (November, 2000), 29.

[14] MA, K.-L. CROCKETT, T. W.: A Scalable Parallel Cell-Projection Volume Rendering Algorithm for

Three-Dimensional Unstructured Data. Proceedings of Parallel Rendering Symposium 1997, (1997), 95.

[15] MA, K.-L., PAINTER, J. S., HANSEN, C. D. KROGH, M. F.: Parallel Volume Rendering Using Binary-

Swap Compositing. IEEE Computer Graphics and Applications, 14, 4, (July 1994), 59-68.

[16] MA, K.-L., WANG, C., YU, H. TIKHONOVA, A.: In-Situ Processing and Visualization for Ultrscale

Simulations. Journal of Physics, 78, (June 2007).

[17] MARCHESIN, S., MONGENET, C. DISCHLER, J.-M.: Dynamic Load Balancing for Parallel Volume

Rendering. Proceedings of Eurographics Symposium of Parallel Graphics and Visualization 2006, Braga,

Portugal, (May 2006).

[18] MAX, N. L.: Optical Models for Direct Volume Rendering. IEEE Transactions on Visualization and

Computer Graphics, 1, 2, (June 1995), 99-108.

[19] MOLNAR, S., COX, M., ELLSWORTH, D. FUCHS, H.: A Sorting Classification of Parallel Rendering.

IEEE Computer Graphics and Applications, 14, 4, (July 1994), 23-32.

[20] MORELAND, K., AVILA, L. FISK, L. A.: Parallel Unstructured Volume Rendering in ParaView.

Proceedings of IS&T SPIE Visualization and Data Analysis 2007, San Jose, (January 2007).

[21] NEUMANN, U.: Communication Costs for Parallel Volume-Rendering Algorithms. IEEE Computer

Graphics and Applications, 14, 4, (July 1994), 49-58.

[22] PETERKA, T., YU, H., ROSS, R. MA, K.-L.: Parallel Volume Rendering on the IBM Blue Gene/P.

Proceedings of Eurographics Parallel Graphics and Visualization Symposium 2008, Crete, Greece, (April

2008).

[23] STOMPEL, A., MA, K.-L., LUM, E. B., AHRENS, J. PATCHETT, J.: SLIC: Scheduled Linear Image

Compositing for Parallel Volume Rendering. Proceedings of IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, Seattle, WA, (October 2003), 33-40.

[24] TU, T., YU, H., RAMIREZ-GUZMAN, L., BIELAK, J., GHATTAS, O., MA, K.-L. O'HALLARON, D. R.:

From Mesh Generation to Scientific Visualization: An End-to-end Approach to Parallel Supercomputing.

Proceedings of Supercomputing 2006, Tampa, FL, (November 2006).

[25] WEBER, G. H., HAGEN, H., HAMANN, B., JOY, K. I., LIGOCKI, T. J., MA, K.-L. SHALF, J. M.:

Visualization of Adaptive Mesh Refinement Data. Proceedings of IS&T/SPIE Visual Data Exploration and

Analysis VIII, San Jose, CA, (2001), 121-132.

[26] Laboratory for Computational Science and Engineering. http://www.lcse.umn.edu/index.php?c=home

2008.

[27] WYLIE, B., PAVLAKOS, C., LEWIS, V. MORELAND, K.: Scalable Rendering on PC Clusters. IEEE

Computer Graphics and Applications, 21, 4, (July/August 2001), 62-69.

[28] YEUNG, P. K., DONZIS, D. A. SREENIVASAN, K. R.: High-Reynolds-Number Simulation of Turbulent

Mixing. Physics of Fluids, 17, 081703, (August 205).

[29] YU, H. MA, K.-L.: A Study of I/O Methods for Parallel Visualization of Large-Scale Data. Parallel

Computing, 31, 2, (February 2005), 167-183.

[30] YU, H., MA, K.-L. WELLING, J.: A Parallel Visualization Pipeline for Terascale Earthquake

Simulations. Proceedings of Supercomputing 2004, (November 2004), 49.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National

Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated

under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its

behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare

derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf

of the Government.

