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Abstract

Multiphysics and multiscale simulation systems share a common software requirement—infrastructure

to implement data exchanges between their constituent parts—often called the coupling problem. On

distributed-memory parallel platforms, the coupling problem is complicated by the need to describe,

transfer, and transform distributed data—known as the parallel coupling problem. Parallel coupling is

emerging as a new grand challenge in computational science as scientists attempt to build multiscale and

multiphysics systems on parallel platforms. An additional coupling problem in these systems is language

interoperability between their constituent codes. We have created a multilingual parallel coupling pro-

gramming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit

(MCT). This programming model’s capabilities reach beyond MCT’s native Fortran implementation to

include bindings for the C++ and Python programming languages. We describe the method used to

generate the interlanguage bindings. This approach enables an object-based programming model for

implementing parallel couplings in non-Fortran coupled systems and in systems with language hetero-

geneity. We describe the C++ and Python versions of the MCT programming model and provide short

examples. We report preliminary performance results for the MCT interpolation benchmark. We de-

scribe a major Python application that uses the MCT Python bindings, a Python implementation of

the control and coupling infrastructure for the Community Climate System Model. We conclude with a

discussion of the significance of this work to productivity computing in multidisciplinary computational

science.
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1 Introduction

Computational scientists are positioned to embrace the complexity of the systems they model. Multiphysics

and multiscale models are emerging or are in active use in many fields, including meteorology and climate,

space weather, combustion and reactive flow, fluid-structure interactions, material science, and hydrology ([1]

and references therein). Multiphysics models simulate complexity due to mutual interactions among a sys-

tem’s many constituent subsystems. Multiscale models depict complex phenomena arising from interactions

between a system’s multiple prevalent spatiotemporal scales. In both multiphysics and multiscale models,

these interactions are couplings, and thus these models can be more generally called coupled models.

Coupled systems are often computationally intensive and as such are natural high-performance com-

puting (HPC) applications. Most HPC platforms today are distributed-memory multiprocessor clusters

programmed with a message-passing programming (MPP) model using the Message Passing Interface (MPI)

standard. This approach engenders a resultant problem—the parallel coupling problem (PCP)[1]. Specif-

ically, implementing couplings between message-passing models that solve their equations of evolution on

distributed domains entails the description, transfer, and transformation of distributed data. Thus, by as-

sociation, the PCP is an important emerging problem in computational science, as it affects the ability to

construct complex multiphysics and multiscale models [2].

Typical coupled models have purpose-built ad hoc solutions to the PCP. For example, numerous multi-

physics coupling packages exist in the climate area alone, including the Ocean-Atmosphere-Sea Ice-Surface

coupler (OASIS; [3]), Projet d’Assimilation par Logiciel Multi-methodes (PALM;[4, 5]), the Flexible Mod-

eling System (FMS; [6]), and the Earth System Modeling Framework (ESMF; [7, 8]). Multiscale coupling is

a common problem in numerical weather prediction (NWP). Many forecast models refine their spatial grids

using embedded nests [9, 10] to achieve higher resolution over areas of interest, and these nests may be in

mutual interaction. NWP models incorporating nesting in a distributed-memory parallel environment in-

clude the Penn State/NCAR MM5 model [11, 12] and the Weather Research and Forecasting model (WRF;

[13, 14]). Each of these climate and NWP examples has its own custom (and slightly different) solution

to the same underlying problem (the PCP) but implemented with numerous domain-specific assumptions

(e.g., mesh descriptions based on Arakawa grids from geophysical fluid dynamics). The PCP is sufficiently

widespread across many distinct scientific fields that an application-neutral software solution is desirable.

We define such tools broadly as parallel coupling infrastructure (PCI).

Generic infrastructure for partial solutions to the coupling and parallel coupling includes mesh manage-

ment and intermesh interpolation packages [15, 16, 17] and packages for parallel data transfer (a.k.a. the
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M×N problem; [18] and references therein). A number of commercial packages provide coupling infrastruc-

ture for multiphysics simulation in single-processor environments [19, 20]. Two packages exist that combine

these capabilities to provide comprehensive toolsets for the PCP—the Mesh-based Parallel Coupling Code

Interface (MPCCI; [21]) and the Model Coupling Toolkit (MCT; [1, 22, 23]).

MCT is an application-neutral, open-source package that supports rapid development of parallel coupling

interfaces between MPI-based parallel codes. MCT is in active use as coupling middleware in numerous ap-

plications, including the Community Climate System Model version 3.0 (CCSM; [24]), the Regional Ocean

Modeling System version 3.0 (ROMS; [25]), and the Weather Research and Forecasting Model [26]. MCT is

distributed with the CCSM 3.0 and ROMS 3.0 source and exists as a stand-alone parallel I/O coupling pack-

age for WRF [27]. MCT is highly scalable and performance portable, supporting both vector and commodity

microprocessor architectures. Its Fortran-based API is naturally compatible with scientific applications, as

Fortran remains—due to its large legacy code base—the dominant programming language for science. MCT’s

programming model is minimally invasive, and scientific-programmer-friendly.

Here we report results of our work to broaden the applicability of the MCT programming model from

its native Fortran API. Our motivations for extending MCT to other languages are to 1) broaden MCT’s

applicability from that of a Fortran-based toolkit to a callable framework that allows one to compose parallel

coupling mechanisms in multiple programming languages, 2) allow coupling of separately developed codes

implemented in different languages, and 3) leverage MCT’s robust and efficient Fortran compute kernels and

build coupling mechanisms in languages better suited to object-oriented programming (OOP). The strategy

we have chosen is to create a set of multilingual bindings that can be installed on top of the MCT code

base, rather than making them an inextricable part of MCT. This separation of concerns is compatible with

the MCT philosophy of offering a minimally invasive programming model for coupling. We believe that

the impact of the work reported here is allowing computational scientists to create coupled systems with

greater language heterogeneity and increasing the pace of development for these systems by opening access

to Python for the implementation of system integration codes such as couplers and drivers. We hope that

our work will inspire teams of prospective coupled modelers to develop new multiscale and multiphysics

simulation codes.

3



2 Coupled Systems

A complete discussion of the PCP is beyond the scope of this paper. Here we define the concepts that are

relevant to the current discussion. Further details can be found in reference [28].

2.1 The Coupling Problem

Abstractly, one can define a single stand-alone model as a system having a set of state variables, and these

state variables are the solution of a set of equations of evolution on a spatiotemporal domain. The equations

of evolution are solved for the state by using the present state, and possibly a set of input variables that are

at a minimum defined on the domain’s boundary. For example, in an atmosphere model, the state might

comprise the velocity components u, v, ω, temperature T , and specific humidity q, and the inputs might

comprise surface boundary conditions and forcing data such as black-body surface temperature. Additionally,

a system might coumpute output variables on its domain’s boundary. For example, in an atmosphere model

the output variables might include precipitation and wind stress exerted on the Earth’s surface.

Numerical solution of a model’s state is typically performed on a discretized version of the domain, which

is often called the model’s mesh or grid. The grid is a Cartesian product of a spatial mesh and a time

discretization. Thus, solutions for the state, input, and output variables exist only at points on the mesh

within the spatiotemporal domain.

A coupled system comprises two or more mutually interacting subsystem models called constituents.

Each constituent solves its equations of evolution for its state, using a set of input variables, and producing a

set of output variables; as before, the state is computed on the disretized spatiotemporal domain, and inputs

and outputs exist on the domain boundary. The input and output variables for a constituent constitute the

data that is exchanged with other constituents in coupling.

Two constituents are coupled if the following conditions hold: they coincide in time; their computational

domains overlap; and outputs from one constituent serve as inputs to the other, or one constituent’s inputs

are computed the other constituent’s outputs through some scientifically relevant variable transformation

(e.g., computation of a radiative flux from a black-body temperature using the Stefan-Boltzmann law).

As a coupled system evolves in time, coupling events occur in which constituents exchange data necessary

to the coupling process. These events either can occur predictably in time, following a schedule, or are not

predictible but rather threshhold-triggered, based on some condition satisfied by the constituents’ states. In

some cases, the set of coupling events falls into a repeatable periodic schedule called a coupling cycle.
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Coupling between two constituents may be classified as explicit or implicit. Implicit coupling between

constituents occurs if their spatiotemporal domains overlap and they share common state variables, thus

requiring a simultaneous, self-consistent solution to their equations of evolution. Explicit coupling between

constituents occurs if there is no such direct connection between their respective states. Core-edge coupling

in fusion simulation is an example of implicit coupling [29], because both the core and edge codes solve

Maxwell’s equations for electromagnetic fields. An example of explicit coupling is the set of interactions

present in a coupled climate system model. Implict coupling’s requirement for a simultaneous self-consistent

solution begs the question of whether such systems should even be implemented by composing individual

model codes as this strategy can deleteriously affect performance. Explicit coupling is a natural application

for code composition and tools such as MCT, and for this reason we will focus on it exclusively for the

remainder of this article.

For explicit coupling between two constituents, the outputs from the source constituent may mapped

to the inputs of the target constituent through a coupling transformation. The coupling transformation is

a composition of a mesh transformation and a field variable transformation. Intergrid interpolation, often

cast as a linear transformation, is a simple example of mesh transformation, but it can be in principle any

mapping between two spatiotemporal discretizations and might be factored further into purely space and time

components. Temporal mesh transformations in some cases may involve time averages of states and integrals

of fluxes that are applied incrementally—through scaling by timestep size—in a target component. This

strategy is employed by some climate models [30, 31]. The field variable transformation is application-specific,

defined by the natural law relationships between a source constituent’s outputs and a target constituent

inputs. In general, the mesh and field variable transformations do not commute, creating source of coupling

uncertainty.

In some cases, a constituent may receive the same field input from outputs of two other constituents,

which will require merging this input data. Merging will have to be performed if three or more constituents

coincide in time, their domains mutually intersect, and shared variables exist among the fields delivered

from the source constituents to a target constituent, the simplest case being a two-way merge in which two

constituents’ outputs coincide to produce input for a third constituent. In a system with N constituents, up

to an N − 1-way merge is possible.
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2.2 The Parallel Coupling Problem

The set of definitions and concepts presented in the previous section apply equally well to single processor

and shared-memory parallel (SMP) or MPP multiprocessor systems. Distributed-memory parallelism creates

additional challenges, and the definitions of Section 2.1 must be extended to accommodate the PCP that

arises on MPP platforms. These additional challenges within the PCP can be summarized as coupled model

architecture and parallel data processing. Coupled model architectural issues are primarily those of model

mapping to processor sets (a.k.a. layout) and constituent execution scheduling. Parallel data processing

comprises the set of operations necessary to accomplish interconstituent data interplay.

On distributed-memory platforms, the coupled-model developer faces a strategic decision regarding the

mapping of the constituents to processors and the scheduling of their execution. Two main strategies exist—

serial and parallel composition [32]. In a serial composition, all of the processors available are kept in a

single pool, and the system’s constituents each execute in turn using all of the processors available. In

a parallel composition the set of available processors is divided into N disjoint groups called cohorts, and

the constituents execute simultaneously, each on its own cohort. Serial composition has a simple conceptual

design but can be a poor choice if the constituents do not have roughly the same parallel scalability; moreover,

it restricts the model implementation to a single executable. Parallel composition offers the developer the

option of sizing the cohorts based on their respective constituents’ scalability; moreover, it enables the coupled

model to be implemented as multiple executables. The chief disadvantage of parallel composition is that the

concurrently executing constituents may be forced to wait for input data, causing cascading, hard-to-predict,

and hard-to-control execution delays, which can complicate the coupled model’s load balance. Such problems

have been observed in the Community Climate System Model (CCSM) [33]. A third strategy, called hybrid

composition, involves nesting one within the other to one or more levels (e.g., serial within parallel or vice

versa). A fourth strategy, called overlapping composition, involves dividing the processor pool such that

the constituents share some—but not all—of the processors in their respective cohorts; this approach may

be useful in implementing implicit coupling, with the simultaneous self-consistent state solutions computed

across the overlapping (shared) processors [29].

In a single global address space, description and transfer of coupling data are straightforward, and

exchanges can be as simple as the use of global variables or the passing of arguments through function

interfaces. In this situation, standards for describing field data and meshes for domain boundaries are

sufficient. Distributed memory parallelism additionally requires domain decomposition descriptors for domain

boundaries and their associated field data.
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On MPP systems, the coupling transformation can have higher complexity than its SMP or single-

processor counterpart. The mesh transformation can in principle require message-passing parallelism, and

while this can in priniciple be true for the field variable transformation, it often is embarrassingly parallel. A

further operation is often required—data transfer—either in the form of a parallel redistribution for a serial

composition or as a parallel data transfer in the case of a parallel composition. The model developer decides

where this additional factor in the composition of the coupling transformation is inserted in the coupling

transformation, and again the order of operations will affect the result; it will have less of an impact on

coupling uncertainties in the ordering of field variable and mesh transformations, its main effect appearing in

roundoff-level differences caused by the reordering of arithmetic operations if computation is interleaved with

the execution of the transfer. Additionally, the model developer has a choice in the placement of operations,

that is, on which constituent’s cohort the variable and mesh transformations should be performed—the

source constituent, the destination constituent, on a subset of the union of their cohorts, or someplace else

(i.e., delegated to another constituent—called a coupler [34]—with a separate set of processes).

3 The Model Coupling Toolkit

MCT [1, 22] is a software package that simplifies the programming of parallel coupling mechanisms in MPI-

based applications. MCT provides a set of Fortran modules designed to emulate object-oriented classes

and methods, and includes a library of routines that perform parallel data transfer and transformation.

The choice of Fortran as MCT’s implementation language was driven by Fortran’s continuing dominance

as the language of choice in scientific programming. The developers of MCT implemented OOP features

manually in Fortran, and in this section the use of the terms class and method follow Decyk et al. [35].

These classes and methods amount to programming shortcuts that are used à la carte to create custom

parallel couplings. This approach allows significant architectural flexibility in coupled model design and

implementation. For example, MCT supports parallel coupling for both serial and parallel compositions—

and combinations thereof—and also supports single and multiple executables.

MCT has nine classes for use as parallel coupling building blocks (Table 1). Three datatypes constitute

the MCT data model, encapsulating storage of multifield integer- and real-valued data (AttrVect), the grids

or spatial discretizations on which the data reside (GeneralGrid), and their associated domain decomposi-

tions (GlobalSegMap). MCT’s data transfer facility’s fundamental class is a lightweight component registry

(MCTWorld) containing a directory of all components to be coupled and a process rank translation table
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Table 1: Functional Summary of MCT Classes
Functionality MCT Class
Mesh Description GeneralGrid

Field Data AttrVect

Domain Decomposition GlobalSegMap

Constituent PE Layouts MCTWorld

One-Way Parallel Data Transfer Scheduling Router

Two-Way Parallel Data Transpose Scheduling Rearranger

Linear Transformation SparseMatrix

Parallel Linear Transformation SparseMatrixPlus

Time Integration Registers Accumulator

supporting intercomponent messaging. One-way parallel data transfer message scheduling is encapsulated

in the Router class, and this function for parallel data redistribution is embodied in the Rearranger. Data

transformations supported directly by MCT are handled by three additional classes. The Accumulator is

a set of time-integration registers for state and flux data. MCT supports regridding of data in terms of

sparse linear transformations, with user-supplied transform coefficients stored in coordinate (COO) format

by the SparseMatrix class. The SparseMatrixPlus class encapsulates matrix element storage and the necessary

communications scheduling for parallel matrix-vector multiplication.

MCT has a library of routines that manipulate MCT datatypes to perform parallel coupling, supporting

both blocking and nonblocking parallel data transfer and redistribution. MCT’s transformation library

routines support parallel linear transforms used for intergrid interpolation, time accumulation of flux and

state data, computation of spatial integrals required for flux conservation diagnoses, and merging of outputs

from multiple models for input to another model.

MCT is invoked through the use statement of Fortran90/95. One uses MCT modules to gain access

to MCT datatype definitions and library interfaces, one declares variables of MCT datatypes to express

distributed data to be exchanged and transformed, and one invokes MCT library routines to perform parallel

data transfer and transformation. This is analogous to importing a class, instantiating an object that is a

member of that class, and invoking the class methods associated with the object. A simple example of how

MCT is used to construct a GlobalSegMap domain decomposition descriptor is shown in the code fragment

below. More detailed examples MCT usage can be found in [1, 22] and in the example codes bundled in the

MCT source distribution, which can be downloaded from the MCT Web site [23].

use m_GlobalSegMap, only : GlobalSegMap, GlobalSegMap_Init => init

implicit none

type(GlobalSegMap) :: AtmGSMap

integer, dimension(:) :: starts, lengths
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integer :: myRoot, myComm, myCompID ! MPI communicator, root process

integer :: myCompID ! MCT component ID

! initialize segment start and length arrays starts(:) and lengths(:)...

:

! Create and initialize MCT GlobalSegMap

call GlobalSegMap_init(AtmGSMap, starts, lengths, myRoot, myComm, &

myCompID)

4 Method

The MCT API is expressed by using Fortran derived types and pointers, complicating considerably the chal-

lenge of interfacing MCT to other programming languages. This is due to the lack of a specific standard for

array descriptors in Fortran90/95, which thwarts the use of packages used for f77/Python interoperability

such as PyFort or f2py. The BINDC specification in Fortran2003 [36] is a possible solution to this problem,

but this standard is only now beginning to be implemented by compiler vendors [37], and a further solution

would be necessary to bridge between C and other programming languages. Thus, interfacing available

contemporary Fortran to other languages remains notoriously difficult. One solution is to hard-code wrap-

pers, which can be cumbersome, time-consuming, hard to maintain, and error-prone. The only available,

widely portable, and automatic solution known to the authors is a vendor-by-vendor implementation of array

descriptors such as CHASM [38].

Our multilingual interfaces are defined using the Scientific Interface Definition Language (SIDL). These

interfaces are processed by a language interoperability tool called Babel[39], which leverages the vendor-

specific array descriptors provided by CHASM. Babel currently supports interoperability between C, f77,

Fortran90/95, C++, Java, and Python. Babel is used to generate glue code from an iterface description,

thus avoiding modification of the original source code. This has the important advantage of separation of

concerns; that is, we view language interoperability as a distinct problem from the algorithmics of parallel

coupling. Thus MCT’s scientist-friendly Fortran-based programming model is untouched, while langauage

interoperability is available to those who need it. Our use of Babel enables us to create multilingual MCT

bindings and distribute them as a separate package that references MCT. We find this approach superior

to and more capable than ESMF, whose fundamental types (e.g., ESMF Array) are implemented in C for

interfacing ESMF with possible future C applications, while important coupling functions (such as Regrid)

are implemented in Fortran. Language interoperability is thus an internal requirement to the ESMF software,
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and not necessarily a user feature.

As mentioned earlier, the SIDL interfaces and classes for MCT are processed by Babel to generate

interlanguage “glue” code to bridge the caller/callee language gap. This glue code comprises skeletons in

the callee’s programming language (Fortran in the case of MCT); the internal object representation (IOR),

which is implemented in C; and stubs that are generated in the caller’s programming language (e.g., C++

and Python). We have inserted calls to the MCT library in the Babel-generated implementation files that

initially contain the empty function definitions from the SIDL interfaces (we will refer to them as .IMPL

files). The IOR and stubs that provide the interlanguage glue are generated by Babel automatically and

require no modifications by the user. Working MCT bindings and example codes for both C++ and Python

can be downloaded from the MCT Web site. Included with the bindings are the Babel base classes and other

core pieces of glue code that must be compiled against a pre-installed MCT, eliminating the need to install

Babel.

Figure 1 shows an example SIDL code block for the MCT AttrVect class and excerpt of the associated

.IMPL file for the skeleton code. The directed dotted grey arrows on the figure show the calling path by

which an application written in some non-Fortran language accesses MCT by first calling a stub in the

application’s implementation language, which in turn calls the C IOR, which then calls the Fortran skeleton,

and via it MCT.

Our multilingual MCT bindings correspond to a subset of the MCT API because at this time Babel does

not support the use of optional arguments, a Fortran feature that is widely used in MCT. For routines with

only one or two optional arguments, we have created static SIDL interfaces for each possible combination

of optional arguments. For some of MCT’s spatial integration and merging routines, which have in some

cases four or more optional arguments, we decided to support only a subset of the possibilities, which will

be expanded as needed.

5 The MCT Multilingual Programming Model

MCT’s native Fortran programming model described in Section 3 consists of module usage, declaration of

derived types, and invocation of library routines. The C++ and Python MCT programming models are

analogous, but within each language’s context. Below we show code excerpts from the MCT multilingual

example applications corresponding to the original Fortran example in Section 3. The full example code

demonstrates the kind of coupling found in climate models such as CCSM, with focus on atmosphere-ocean
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interactions via a third component called a coupler. The atmosphere, ocean, and coupler each execute on

their own respective pool of MPI processes, making this example a parallel composition. The code fragments

in this section are from the “coupler” parts of the respective example codes and are for the initialization of

an MCT GlobalSegMap domain decomposition descriptor.

5.1 C++

In C++, MCT exists as a namespace, named MCT, and a collection of header files containing class dec-

larations, in one-to-one correspondence with the set of Fortran modules in the original MCT source. The

C++ MCT programming model differs from Fortran as follows: module use is replaced with inclusion of

a Babel-generated header file; declaration is replaced with invocation of a no-argument constructor; and

library routines are invoked through calls to Babel-generated C++ stubs that reference MCT functions.

The code block below illustrates creation of an MCT GlobalSegMap in C++. The most subtle usage point

is the use of SIDL arrays required by the MCT C++ interfaces.

#include "MCT_GlobalSegMap.hh"

...

// Create SIDL arrays indexed (note starting index is 1 or

// compatibility with Fortran

int32_t dim1 = 1;

int32_t lower1[1] = {1};

sidl::array<int32_t> start =

sidl::array<int32_t>::createRow(dim1, lower1, lower1);

start.set(1, (myrank * localsize) + 1);

...

// Create an MCT GlobalSegMap domain decomposition descriptor

MCT::GlobalSegMap AtmGSMap = MCT::GlobalSegMap::_create();

AtmGSMap.initd0(start, length, 0, comm, compid);

5.2 Python

In Python, MCT exists as a package named MCT. The Python MCT programming model differs from MCT’s

native Fortran as follows: module use is replaced with Python package import; declaration is replaced with

invocation of a constructor; and library routines are invoked through calls to Babel-generated Python stubs.

The code block below illustrates creation of an MCT GlobalSegMap in Python. Babel’s support of SIDL
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Table 2: Timings (in seconds) of the MCT A2O Benchmark
Number of Processors 8 16 32
Native Fortran 1985.6 1084.6 556.9
C++ via Babel 2016.5 1085.1 559.6

arrays in Python is handled by the Numeric package, thus the creation of the arrays start and length as

Numeric arrays.

import Numeric

from MCT import GlobalSegMap

...

# Create start and length arrays--only the ’start’ array shown here

start = Numeric.zeros(2,Numeric.Int32)

start[1] = (myrank*localsize)+1

...

# Describe decomposition with MCT Global Seg Map

AtmGSMap = GlobalSegMap.GlobalSegMap()

AtmGSMap.initd0(start,length, 0,comm, compid)

6 Performance

Babel has been used successfully in various projects to generate interlanguage bindings with low performance

overheads (e.g., see [40]). We evaluated the performance of the MCT C++ API for MCT’s atmosphere-ocean

parallel interpolation benchmark. The atmosphere-to-ocean grid operations are 720 interpolation calls to

regrid a bundle of two fields and two sets of 720 interpolastion calls to regrid six fields. The atmospheric

grid is the CCSM 3.0 T340 grid (512 latitudes by 1024 longitudes), and the ocean grid is the POP 0.1◦ grid

(3600×2400 grid points). We ran the experiments on the Jazz cluster in the Laboratory Computing Resource

Center at Argonne National Laboratory. Jazz is a 350-node cluster of 2.4 GHz Pentium Xeon processors

connected by a Myrinet 2000 switch. The compilers used in this study were Absoft 9.0 Fortan and gcc

3.2.3. Timings (in seconds) for this benchamark for both MCT’s native Fortran and for the Babel-generated

C++ API are summarized in Table 2. The overhead decreases from 1.6% for small numbers of processors

to less than 1% for larger numbers of processors, where the amount of work performed by MCT is enough

to amortize the cost of executing the interlanguage glue code for each call to MCT.
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7 Case Study: PyCPL

The history of computing in the private sector shows a tendency to ever higher levels of abstraction. A

significant recent advance has been the emergence of powerful, very high level languages, notably Python

and Ruby. While emerging from the tradition of system administration scripting languages, these languages

have advanced quite a distance from their roots. Their communities exhibit considerable sophistication and

their libraries great breadth. Use of these languages has been shown to dramatically improve programmer

productivity and code reuse [41].

Importing this strategy, and the so-called agile methodologies that have emerged along with it, into

scientific programming promises the potential to offer large advantages and only modest disadvantages.

While the primary disadvantage of very high level languages as opposed to conventional compiled lan-

guages is performance, a large proportion of science codes as measured by line count is not in performance-

critical code segments, being called once, or once per I/O operation, or once per time step. By leaving

critical per spatial element computations in a compiled language, it is possible to replace much scientific

code with a script without dramatically compromising performance [42].

This strategy applies directly to the sorts of model coupling supported by MCT. The most complex

model based on MCT is CCSM [43]. We therefore put the Python MCT bindings to the test by rewriting

the coupler layer for CCSM in Python. Here we provide a brief description of this work, but further details

are available in reference [44].

CCSM is a coupled model that employs parallel computing. It is a multiple-load-image program because

CCSM comprises five distinct components—atmosphere, ocean, sea-ice, land-surface, and coupler—each of

which has a distinct executable image. Based on our definitions in Section 2 and CCSM’s simultaneously

executing constituents, the coupled model is a parallel composition.

In CCSM, all intercomponent data traffic is routed through the coupler. This hub-and-spokes architec-

ture has been a part of CCSM since its initial version. The coupler in the current version of CCSM, called

CPL6 [30], is the first version of the CCSM coupler to employ message-passing parallelism, allowing dedica-

tion of multiple processors to the coupling problem, in turn allowing CCSM to escape a coupling bottleneck

as resources scale up. Such scalability was the foremost requirement for the design of CPL6.

The CPL6 hub application and high-level interfaces, together with CCSM’s other components satisfy the

definition of an application framework, according to Fayad et al. [45]. This fact has been leveraged in several

interoperability experiments in which the IBIS [46] land-surface model has replaced CLM [47] and POP 2.0

with biogeochemistry has replaced CCSM’s default ocean POP 1.4 [48], as have the HYCOM and MICOM
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ocean models [49].

CPL6 has thus expanded substantially the scientific horizons of CCSM. Its existence has accelerated the

inclusion of a biogeochemical cycle in CCSM. Adding biogeochemistry requires the ability to easily change

the number of fields transferred between the models to allow for different groups of chemicals and to query

the coupled system to determine which fields are active. This is made possible by the flexible data structures

and methods provided by MCT and CPL6.

In spite of the flexibility of the current Fortran-based CPL6, at least four classes of investigation could

benefit from an even more flexible coupling infrastructure within the CCSM. First, CCSM developers are

prototyping a serial composition implementation of the system, a move motivated in part by a port of

the model to the IBM BlueGene platform, but also to address observed delays caused by intercomponent

data dependencies (see Section 2). Second, a range of coupling strategies is used to accelerate model con-

vergence for studying very long paleoclimate phenomena, for instance, running for a century in a coupled

atmosphere/ocean mode and then running a crude ocean for a millennium. Third, looser coupling may be

enabled by a predictor-corrector strategy, as opposed to the current explicit/synchronous approach used in

CCSM. Fourth, new physics—for example, a land ice sheet model—may need inclusion.

In each of these cases, the modifications in coupler logic are simple in principle but difficult and time

consuming in practice. The bulk of the work done by the coupler logic, however, occurs at initialization

time. Thus, only certain portions of the coupling code are performance-critical code when the simulation is

ongoing, and these compute-intensive portions remain in Fortran but are accessed via Python.

One way to address such efforts is to view the CPL6 main program as a disposable entity, and its relatively

small code base means one could in principle recode in Fortran a replacement to CPL6 that serves a specific

scientific objective—an approach envisioned by MCT’s creators. Alternatively, we can seek to generalize,

orthogonalize, and encapsulate CPL6 methods in a more object-oriented strategy, facilitating their reuse

in alternative modeling scenarios. This latter approach that drives our efforts toward higher-level coupler

abstractions.

In exchange for this modest performance cost, scientists seeking to modify the code are presented with

a far more readable and writable specification of the model’s behavior. A significant fraction of advances

in model-driven science emerges from modification of the models. By presenting a control layer capable of

abstracting away the fussy details presented by compiled codes, we both demonstrate the possibility of a

new approach to model construction and provide a platform for experimentation with alternative coupling

schemes.
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The version of the Python coupler we currently have implements some mathematics in a Python loop,

which is causing some degradation in performance that may be optimized out in future. Still, we have a

case directly comparable to a conventional CCSM run on 55 processors, where the performance is 65.4% of

that of the pure Fortran CCSM. While we believe that performance can be improved substantially, this may

be sufficient for many prototyping purposes. This performance impost is probably too high for production

purposes, and optimization may be necessary by identifying and recoding compute-intensive portions of a

prototype system in languages such as C or Fortran.

8 Conclusions

We have created a set of multilingual bindings for the Model Coupling Toolkit. These bindings were created

by using the Babel language interoperability tool from a SIDL description of the MCT API. The resultant

glue code is sufficiently robust to support proof-of-concept example applications and impose relatively little

performance overhead. The Babel-generated glue code and C++ and Python coupling example codes are

now publicly available for download at the MCT Web site. The MCT programming model has been expanded

beyond its native Fortran, making this robust and well-tested parallel coupling package available for use in

coupling MPI-based parallel applications implemented in other languages. This is a first step toward our long-

term goal of enabling fast prototyping of large, multilingual parallel coupled systems. The multilingual MCT

bindings are also capable of supporting coupling of parallel applications implemeted in multiple programming

language. We have employed them in an object-oriented Python reimplementation of the CCSM coupler

(pyCPL), resulting in a Pythonic CCSM that supports Fortran models interacting via a Python coupler.

This large proof-of-concept application leads us to believe that low-level, elemental coupling tools deployable

from a high-productivity programming language are a compelling alternative to other productivity computing

approaches such as calling frameworks employing components (e.g., ESMF).
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Figures

Figure 1: Schematic for SIDL/Babel-based generation of MCT’s multilingual interfaces and calling path
from applications in other languages back to MCT.
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