Market Driven Automotive Recycling in North America

2004 International Car Recycling Workshop May 19, 2004

Dr. Claudia Duranceau – USCAR
Dr. Joseph Carpenter – U.S. Department of Energy
Dr. Michael Fisher – American Plastics Council

Dr. Claudia Duranceau

Vehicle Recycling Partnership U.S. Council for Automotive Research

Collaboration is Key

Precompetitive, legal partnership for research to enhance an already successful, market-driven vehicle recycling infrastructure

DAIMLER CHRYSLER

- Leveraged Resources
 - -American Plastics Council
 - -Argonne National Laboratories
 - -U.S. Department of Energy
 - -Vehicle Recycling Partnership

Vehicle Recycling Partnership

- VRP formed (1991); charter member of USCAR's umbrella organization (1992)
- Formal collaboration agreements organized with:
 - -Aluminum Association
 - -American Plastics Council
 - -Automobile Recyclers Association
 - -Institute for Scrap Recycling Industries

VRP Accomplishments

- Published recycling preferred practices
- Established efficient fluid removal process
- Licensed Vehicle Recycling Development Center facility - dismantled ≈ 1000 vehicles over 6 years of operation
- Researched separation technologies for commingled material streams
- Established USCAR Substances of Concern task forces - conducted supplier-based seminars
- Supported life cycle tools for quantifying resource use over the manufacturing, operation and end-of-useful-life phases.

Vehicle Recycling Infrastructure in North America: Color Key

ITEMS CURRENTLY CONSIDERED 'REMANUFACTURABLE' BY THE FEDERAL TRADE COMISSION

- Air Conditioning Compressors and Clutches
- Alternators
- Automatic Transmissions
- Brake Boosters
- Carburetors
- Clutches
- Crankshafts
- Cylinder Heads
- Disk Brake Calipers and Pads
- Distributors
- Drum Brake Shoes
- Engines
- Fuel Pumps
- Integral Power Steering Pumps
- Master Cylinders
- Oil Pumps
- Power Steering Pumps
- Rack and Pinion Assemblies
- Standard Transmissions
- Starters
- Torque Converters
- Water Pumps
- Window Lift Motors

CRADA VRPIANLIAPC

- Shredder Residue
- Recycling Hybrid Vehicles
- Recycling Fuel-Cell Vehicles
- Substances of Concern
- Lifecycle Approach to Recycled/Recovered Material Streams

DEPOLLUTION ACTIVITIES

- Fluids Reclamation
- Battery Reclamation
- Mercury Switch Removal
- Tires Reclamation
- Oil Filter Removal
- Air Bag Deployment
- CFC/HFC Reclamation
- Seat Belt Pretensioner Deployment

'RECYCLABLE' ITEMS, PER FEDERAL TRADE COMISSION GUIDELINES

- All Metals
- Engine Oil
- Refrigerant
- Coolant
- Windshield Washer Fluid
- Catalytic Converters
- Lead Acid Batteries

Dr. Joseph Carpenter

U.S. Department of Energy

U.S. Energy Dependence is Driven By Transportation

U.S. Oil Use for Transportation

Source: <u>Transportation Energy Data Book: Edition 22</u>, September 2002, and <u>EIA Annual Energy Outlook 2003</u>, January 2003

- Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day.
- The U.S. imports 59% of its oil, expected to grow to 68% by 2025 under the status quo
- Nearly all of our cars and trucks currently run on either gasoline or diesel fuel.

Material Use in Some PNGV Concept Vehicles

Table 3. Material Use in PNGV Vehicles (lbs.)				
M aterial	1994 Base Vehicle	P 2 0 0 0	E S X 2	
Plastics	223	270	485	
Aluminum	206	733	450	
M agnesiu m	6	86	122	
T itaniu m	0	11	40	
Ferrous	2168	490	528	
Rubber	138.5	123	148	
Glass	96.5	36	70	
Lexan	0	3 0	20	
Glass fiber	19	0	60	
Carbon Fiber	0	8	24	
Lithium	0	3 0	30	
Other	391	193	273	
Total Weight	3 2 4 8	2010	2250	

Source: Ducker 1998

Objectives of the DOE Automotive Recycle R&D Plan

- To maximize the cost-effective recycling of current and advanced automotive materials
- To ensure that materials are not de-selected for the lack of recyclability
- To obtain stakeholder input concerning program development

"Recycle Roadmap"

- Objective of the "Roadmap": to provide overall direction to the DOE recycle program
- Workshop held in Sep 2000; workshop facilitated by Energetics
- Roadmap completed in May 2001 (http://pe.es.anl.gov)

The Roadmap for Recycling ELV's of the Future Prepared in May 2001

Key Barriers

- Information
- Technology
- Markets

Dr. Michael FisherAmerican Plastics Council

Roadmap 2001 CRADA 2003

Roadmap Recommendations

- The recyclability of ELVs is presently limited and several technical and economic barriers need to be overcome to increase recovery and recycling
 - Lack of commercially proven technical capabilities to costeffectively separate, identify and sort materials
 - Lack of profitable post-use markets
- Development of technology to recycle today's materials will provide the basis for recycling of future materials
- Focus should be on post-shred technology demonstration
- Industry-wide collaboration is needed
- Worldwide technology needs to be tracked and information disseminated to users

Resources Recoverable from Shredder Residue

Basis: 75,000,000 pounds of ASR

Five-year R&D Program Plan Developed

Approach: Research, development, and validation of market acceptable ELV options compatible with the North American infrastructure

Strategy: Cooperative Research and Development Agreement (CRADA) involving government and industry

Goal: Maximize Sustainable Recovery and Recycling of Current and Future Automotive Materials

Five-Year R&D Program Plan Developed

Elements of the Plan

- Life-cycle approach supported by LCA
- Sustainable transportation objectives
- Baseline technology assessment
- Material, fuel, and energy recovery technology development and demonstration
- Advocacy and communications support
- Synergy with EU, Japan, others

Funding

~ \$3 Million per year, 50% govt./50%industry

Research Agreement

- Argonne National Laboratory/U.S. Department of Energy
- USCAR Vehicle Recycling Partnership (VRP)
- American Plastics Council (APC)

Conclusions I

- A joint U.S. government-industry CRADA was established in 2003 to lead the development of improved recovery and recycling methods for future ELVs
- The vision leading to this effort is one of sustainability and reduced environmental impact over the lifecycle of the automobile

Conclusions II

- The changing automotive material mix over the past fifteen years and evolutionary technology trends relative to automobile architecture for improved safety and environmental performance increase the recycling technical challenge
- Ultimately, any new technology developed in response to these changes must have minimal risk--
 - Proven cost-effective at full-scale
 - Proven markets for products
 - Regulatory barriers removed/transactions costs minimized

Conclusions III

Research, development, and validation under the CRADA will embrace the following elements:

- Focus on innovation, not reinvention--communicate, collaborate, build
- Seek sustainability as the overarching goal
- Establish a sound business case
- Advance solutions that are both regionally and globally relevant

Summary

- The North American Vehicle Recycling Infrastructure is a successful market driven approach to vehicle recycling
- Collaboration is key to continued success
- The CRADA is a powerful mechanism to leverage the vast technical resources of the US government and industry

Thank You

Back Up Slides

Can We Sustain Increasing Consumption?

Annual World Oil
Production
(Billions of Barrels)

Projected Growth in Light-Duty Vehicle Registrations

Estimates of Remaining Oil Reserves

Our Oil Situation

Weight Savings and Costs for Automotive Lightweighting Materials

Lightweight Material	Material Replaced	Mass Reduction (%)	Relative Cost (per part)*
High Strength Steel	Mild Steel	10	1
Aluminum (AI)	Steel, Cast Iron	40 - 60	1.3 - 2
Magnesium	Steel or Cast	60 - 75	1.5 - 2.5
Magnesium	Aluminum	25 - 35	1 - 1.5
Glass FRP Composites	Steel	25 - 35	1 - 1.5
Graphite FRP	Steel	50 - 60	2 - 10+
Composites Al matrix Composites	Steel or Cast	50 - 65	1.5 - 3+
Titanium	Alloy Steel	40 - 55	1.5 - 10+
Stainless Steel	Carbon Steel	20 - 45	1.2 - 1.7

^{*} Includes both materials and manufacturing.

<u>Ref:</u> William F. Powers, <u>Advanced Materials and Processes</u>, May 2000, pages 38 – 41.

