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FRACTURE ANALYSIS AND
CORROSION FATIGUE IN PIPELINES

 PREFACE

This report presents the theoretical and experimental results of a two
year study on the analysis of cracks and inclusions simulating various types
of weld and other defects in pipelines and on some fundamental aspects of
corrosion fatigue process in pipeline steels. The research program was sup-
ported by the U.S. Department of Interior Minerals Management Service and
by the U.S. Department of Transportation, Office of University Research,

The primary objectives of the program have been (a) classification and
assessment of the relative importance of various types of weld defects,

(b) development of analytical models to simulate part-through cracks and
inclusions. in plate and shell structures, (c) an in-depth study of the prob-
Tem of interaction between two flaws or between flaws and free surfaces,

(d) the effect of crack orientation on the fracture strength of pipes with
possible applications to 45 degree seam-welded pipes and to pipes under
nonsymmetric loading such as torsion, (e} the study aimed at a quantitative
understanding of the early stage of chemical reactions in relation to the
corrosion fatigue crack initiation and propagation, {f) elucidating the
mechanisms for corrosion fatigue crack initiation and propagation, including
the influence of chemical, mechanical and metallurgical variables in pipe-
Tine steels, and (g) the formulation and evaluation of models for predicting
cracking response and service performance by using a combined fracture
mechanics, surface chemistry and materials science approach.

In Part' I of the report first a general review of the common types of
flaws that may be found in pipelines and other welded structures is given
and some relevant results for various flaw~inclusion-free surface interaction
problems are presented. Then the basic models simulating part-through cracks
and flat inclusions are developed and some sample results are given. The
results of the experimental studies on the corrosion fatigue of the pipeline
steels are presented in Part II. The Appendices include extensive results
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obtained from individual studies on the variety of the crack and inclusion
problems which may have relevance to the fracture problems in pipelines.
The research program led to following publications:

+ "A Cylindrical Shell with an Arbitrarily Oriented Crack" (0.S. Yahsi
and F, Erdogan) Int. J. Solids Structures, Vol. 19, pp. 955-972, 1983.

- "Surface Cracks in a Plate of Finite Width under Extension and Bend-
ing" (F. Erdogan and H. Boduroglu), J. Theoretical and Applied Fracture
Mechanics, Vol. 2, pp. 197-216, 1984,

» "The Crack-Inclusion Interaction Problem" (X-H. Liu and F. Erdogan)
J. Engng, Fracture Mechanics, 1986 (to appear),

- "The Line Spring Model" (F. Erdogan) Computational Methods in Frac-
ture Mechanics, North Holland, 1986 (to appear)

and the thesis
“Interaction of Part-Through Cracks in a Flat Plate" (B. Aksel)
Lehigh University, 1985,

The experimental part of the research program was carried out by
Professor R.P. Wei who was assisted by Mr. Chiou Song. Mr. B. Aksel, Dr. X-H.
Liu, Br. H. Boduroglu and Dr. 0.S. Yahsi who made major contributions %o
the theoretical part of the program. Dr. Liu was a visiting scholar from
the People's Republic of China and Drs. Boduroglu and Yahsi were partially
sdpported by grants from NSF and NASA,

The Project Monitor was Mr. Doughlas B. Chisholm from the Department
of Transportation Research and Special Programs Administration, Office of
Pipeline Safety Regulation., Dr. Charles E. Smith, Research Program Manager,
Technology Assessment and Research Branch, Minerals Management Service was
the Department of Interior technical representative,

F. Erdogan

Professor of Mechanics
ME-Mech. Dept,

Lehigh University
Bethlehem, PA 18015
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FRACTURE ANALYSIS AND CORROSION
FATIGUE IN PIPELINES

PART I
ANALYSIS OF CRACK AND INCLUSION PROBLEMS

This report consists of two parts. Part I and the appendices deal with
the theoretical studies of crack and inclusion problems simulating various
kinds of weld defects and other flaws in pipes. Particular emphasis in the
study is placed on the question of interaction between flaws and free :sur-
faces. After an introductory review of the background material, first a
broad classification of possible defects is made. One of the primary objec-
tives of this study is to prepare the necessary engineering science basis
and to develop the necessary tools that may be used in fitness for purpose
type investigations in pipelines, Therefore in classifying the defects as
well as in the subsequent investigations the emphases have been on the frac-
ture mechanics aspects of the problem. In Section 3 of Part I the problem
of interaction between cracks and elastic solid inclusions or pores is con-
sidered and relevant results are presented. Section 4 deals with exact
solutions of the corresponding plane strain approximations of multiple crack
problems. This includes muttiple surface or internal cracks perpendicular
or parallel to the plate surface,

The general problem of planar cracks of finite dimensions is discussed
in Section 5. In this section the treatment of the related three-dimensional
crack problem is based on the "line spring model", The underlying principle
of the model and the general method of its solution are described and some
comparisons of the result with the available finite element solutions are
given to establish its va1idity. Also included are some examples from plates
and shells to show the range of application of the technique. Section 6
deals with the general interaction problem for cracks and flat inclusions
of finite thickness.

The detailed results of the individual problems studied are given in
‘the appendices. Appendices A and B deal with the application of the line
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spring model to plates contajning multiple surface, corner or internal
cracks. The problem of interaction between flat elastic inclusions and
cracks is described in Appendix C. The Timiting case in which the inclusion
and the crack intersect is studied in Appendix D. Appendix E gives the
solution ahd some extensive results for an arbitrarily oriented crack in a
cylinder,

The results of the experimental investigation of the corrosion fatigue
process in line pipe steels are presented in Part II.

1. INTRODUCTION

The standards of acceptability of welds in pipelines are generally
based on certain empirical criteria in which primary importance is placed
on flaw length, Specifically for girth welds such standards are described
in API STANDARD 1104 prepared by the "American Petroleum Institute -
American Gas Association Joint Committee on 011 and Gas Pipeline Field
Welding Practices". However, the API Standard also recognizes fitness
for purpose criteria based on fracture mechanics methodology as an alter-
native technique for flaw evaluation. The advantage of the fracture
mechanics approach is that since it takes into account all factors which
may be relevant to the failure of the pipe such as the type and the rela-
tive size, shape, orientation and location of the flaw, the effect of
multiple flaws, the nature of the applied stresses, and the environmental
conditions, it could be somewhat more precise than the empirical rules
which are largely based on the flaw length,

In fracture mechanics approach to flaw evaluation it is fmplicitly
assumed that the material contains some macroscopic flaws which may form
the nucleus of fracture initiation. Generally, these flaws may be mapped
by using an appropriate nondestructive flaw detection technique, Aside
from the weld defects the pipe may also have flaws which may be external



in origin. Generally the initial phase of the failure in a pipe is the
rupture of the net ligament adjacent to the critical flaw in the pipe

wall. In most cases the resulting through crack is arrested and the

pipe is repaired before further damage. However, in some cases the
resulting through crack, after some stable growth, may become unstable
Teading to circumferential pipe break or dynamic propagation of an axial
crack. The initial rupture of the net Tigament in the pipe wall is usually
preceded by some subcritical c¢rack growth due to fatigue, corrosion
fatigue, or stress corrosion cracking and the actual net ligament rup-

ture is generally a ductile fracture process. |

Therefore, it is seen that in order to apply fracture mechanics analy-
sis to welded pipes, first one needs to characterize the material itself
(the base metal, the weld material and the material in the heat affected
zone) with regard to fatigue and corrosion fatigue crack propagation,
stress corrosion cracking, fracture toughness and ductile fracture. Next,
for a given flaw geometry and loading conditions one has to solve the
related mechanics problem to calculate the appropriate fracture mechanics
parameter such as the stress intensity factor, the crack tip opening
displacement, or the J-integral. The third step in the process would
be the selection or development of a proper failure theory and the appli-
cation of the related quantitative failure criterion. The type of
analysis and the experimental work to be performed and the particular
criterion to be used are clearly dependent on the expected or the most
likely mode of failure.

Even though the primary applied load in the pipelines is the internal
pressure which is largely time-independent, there may be some small vari-
ations in pressure and some vibrations particularly near the pumping
stations which may add a fluctuating component to the static stresses
Just high enough to cause concern. There are also secondary stresses
which are mainly time-varying in nature and therefore would enhance the
subcritical crack propagation. Some of the sources of these secondary
stresses are misalignment and fit-up, daily, seasonal and other thermal
fluctuations, ground settlement and possible earthquakes, axial constraint,

-3-



and gross bending in offshore piping due to buoyancy and other hydro-
elastic effects. It should be added that the "stress transients" may
also play a major role in the subcritical crack propagation and particu-
larly in the final phase of the fracture process, if one takes place.
These stresses are generally caused by the pressure waves resulting from
changes in flow rate due to partia11y or fully closing of the valves.

In the case of pipes carrying liquids such as petroleum pipelines -this
is known as the "water hammer" effect due to which the peak pressure

may be as high as multiples of the then operating pressure in the pipe.
In the natural gas pipelines, this increase in the peak pressure may

be somewhat more moderate. Nevertheless, in either case, such sudden
surges of pressure are probably responsible in most cases for the final
stage of the net ligament failure in the pipe wall resulting in Teaks or
in a catastrophic failure,

A detailed description and classification of weld discontinuities
(including "flaws" which are considered to be undesirable) and a critical
review of the literature as well as very extensive references on the sub-
ject up to 1976 may be found in [1]. The problem of interaction between
two (planar) cracks and some empirical rules to define a single equiva-
tent crack are discussed in [2]. The procedures dealing with the sub-
critical crack propagation by using the tools of linear elastic fracture
mechanics (LEFM) is highly standardized and may be found, for example,
in [3] or [4]. Similarly, the process of brittle or quasi-brittle frac-
ture is relatively we11~understood and is easily dealt with techniques
based on LEFM and the concept of fracture toughness. The process which
is not well-understood and not standardized, however, is the ductile
fracture. The Appendix in the API Standard 1104 concerning the fracture
mechanics applications is based on the critical crack tip opening dis-
placement concept, whereas the J-integral seems to be more widely used
in pressure vessel technology. The description, some applications of
and extensive references on the crack opening displacement approach to
- fracture may be found in [5]-[7]. Application of a general fracture
instability concept based on the crack opening displacement to shells and
plates with a part-through crack is described in [8].

-4-



In this report the emphasis is on the flaw evaluation based on
fracture mechanics techniques. In particular this part of the study
is concerned with the effect flaw-flaw and flaw-boundary interaction on
the fracture mechanics parameters. After classifying possibie flaws
which may be found in welds from a viewpoint of their importance in
fracture mechanics applications, some of the more important flaw inter-
action problems have been identified, their method of solution is
briefly discussed and some typical and useful results are given.

2. TYPES OF FLAWS

In this report our primary interest in flaws is from a viewpoint
of their influence on enhancing or inhibiting fracture initiation and
propagation in the pipe. Generally a flaw may be defined as a discon-
tinuity in material constants or geometry. Variety of inclusions come
under first and notches, pores and cracks come under the second group
of flaws. A common feature of all flaws is that they disturb or perturb
the stress field around them. Generally this perturbation gives rise
to a stress concentration around the flaw. However, for certain types
of flaws there may also be a reduction in key components of the stresses.
With their importance in the application of fracture mechanics analysis
in mind, in this study we will, therefore, introduce a somewhat unconven-
tional classification of flaws.

2.1 Pores and Solid Inclusions

Pores are the holes or voids in the material having entirely smooth
surfaces (Fig. l.al). If % refers to the magnitude of the uniform
stress field outside the perturbation region of the pore, then the pore
leads to a stress concentration which is of the form

(o3 =KU F K="""" [y (1)

where K is the "stress concentration factor", A is a (finite) constant
which depends on the geometry of the medium and p is radius of curvature
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of the pore. Generally K is greater than one. We note that surface
notches with finite radius of curvature p would also come under this
category.

Solid inclusions are the second phase materials in the medium also
having entirely smooth surfaces. The modulus Ei of the inclusion may
be greater or less than the modulus E of the matrix or the base material,
the two limiting cases being the rigid inclusion (Ei=m) and the hole
(E1=0). If E;<E, qualitatively the perturbed stress field of the inclu-
sion is similar to that of a pore, meaning that there would be a stress
concentration around the inclusion. On the other hand, if E;>E there
would be a reduction in the net section stress. However, in this case
there would also be a stress concentration in other planes perpendicular
to the applied stress. For example, Fig. 2 shows the stress distribution
in a medium containing a circular inclusion under plane strain or plane
stress conditions. Note that for ¢>R around the inclusion there is
indeed some stress concentration. In this figure, u is the shear modu-
Tus, ¥ = 3-4v for plane strain, and « = (3-v)/(1+v) for plane stress,
v being the Poisson's ratio.

2.2 Pores, Notches and SoTid Inclusions with Sharp Corners

From Eq. (1) and Fig. 2 it may be seen that from a viewpoint of
failure analysis a distinguishing feature of the pores, notches and
solid inclusions with smooth surfaces is that the stress state around
such flaws is always bounded. Eq. (1) also indicates that as the root
radius p of the notch tends to zero, the stress state around notch tip
would tend to infinity. Particularly in problems concerning brittle
fracture and fatigue crack initiation such flaws may have to be treated
differently. In these nonplanar flaw problems it is said that the
inclusion or the notch tip is a point of stress singu1érity around which
the stress state would have the following behavior:

G 0 < Re(nr) <1/2 , (2)

_—_L
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Figure 2, The stress distribution in a plate with a circular
elastic inclusion (u2=23u-[, k1 =1.6, Ko =1.8).



where k and A are constants representing the strength and the power of
the stress singularity and r is a (small) distance from the notch tip.
Generally, Eq. (2) is valid for values of the material angle ¢ > r
(Fig. 1 b1, b2, b3). Even though the term "stress intensity factor" is
commonly used in relation with crack problems for which i = 0.5, in

the more general problem leading to an expression such as (2) k is also
called the "stress intensity factor".

In the case of notches with a material angle T < 8 < 21 the power
of singularity x is dependent on ¢ only and may be obtained from (see,
for example, [9] where the general problem of bimaterial wedge under
variety of boundary conditions are discussed)

cosf2(x-1)8] - 1 + (A-1)2(1-cos28) = Q0 . (3)

Fig. 3 shows the solution of (3) in the relevant range.

2.3 Cracks and Flat Inclusions

These are simply the planar flaws in which the material angle o
(theoretically) is 2n (Fig. 1 ¢, c2). Again, the inclusion may be
elastic or rigid, the crack being a limiting case with zero modulus.

In all planar inclusion as well as crack problems eq. (2) is valid with
A = 0.5.

The bulk of the material in this report is devoted to the problem
of interaction between two flaws or a flaw and a boundary. Since the
initial phase of the fracture problem is invariably a subcritical crack
growth and since the stress intensity factor is the primary fracture
mechanics parameter used in analyzing the subcritical crack growth pro-
cess, the quantitative results in the interaction problems considered are
mostly the stress intensity factors.
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3. INTERACTION BETWEEN A CRACK AND A SOLID INCLUSION
OR A PORE

In this section we will consider the problem of the interaction
between a solid elastic inclusion and a line crack. It will be assumed
that the inclusion and the crack are sufficiently close to each other
so that their perturbed stress fields interact with each other. It will
also be assumed that the crack-inclusion region is sufficiently far away
- from the boundaries so that their combined perturbed stress field does
not interact with the boundaries, Consequently, for the purpose of
calculating the perturbed stress state and the stress intensity factors
it may be assumed that the domain is infinite.

3.1 Plane Strain Problem for a Circular Inclusion or Pore

Consider the general crack-inclusion problem described in Fig. 4.
Assume that the composite medium is under plane strain or generalized
plane stress conditions, with u; and Kis (1=1,2) referring to the elastic
constants (u the shear modulus, ki = 3 4v for plane strain, and Ky =
(3- - Vs )/(1+u ) for plane stress, v; being the Poisson's ratio). Let u, and
U, be the d1sp1acement components in t and w directions shown in Fig.
4(b). By defining

91(8) = 3 (U{-0) & gy(t) = & (uhu) (4)

and by referring to [10] for details, the problem may be formulated in
terms of a pair of singular integral equations of the following form:

t

1 Kk, (t.t )g.(t)dt ] (t) , (i=1,2) (5)
t
2

where the kernels kij are known functions and have a Cauchy type singu-
larity. The known input functions Py and P, are given by
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P-!(t) = *wa(t,C) 3 pz(t) = "'O'Wt(tsc) 2 (t2<t<t-[) ’ (6)

S and Ot being the stress components at the point (t,c) in the plane
with inclusion but without a crack. For example, for a plane under
uniform tension o, away from the inclusion these stresses are given by
Fig. 2. The solution of (5) is of the following form

gj(t) = Gj(t)//(t"tz)(t]‘t) s (j=1,2) {7)

where G1 and G2 are unknown bounded functions. After solving the inte-
gral equations the Modes I and II stress intensity factors at the crack
tips t1 and t2 may be defined by and obtained from the following expres-
sions:

I

2u .
o v STEELY 1 Tim A=)

‘1:~1-t1
. 2
ky(ty) = Tim V?(t~t1) o, (tsC) = - T 1im V?it1~t5 g;(t) »
t+t1 1 t+t1
. 21-1
k(tp) = Tim V2TE-E) o, (t.c) = T%Tim v2(E-1,) g,(t) .
2u1
ko(t,) = lim vV2(T,=t) o, (t.,c) = =—— 1im +2(E-L.) g.{(t).
2' 72 2 wt T+ 27
t+t2 1 t—>t2

(8a-d)

In the absence of a crack the stress components on a line perpendicu-
lar to the loading direction are shown in Fig. 2 for an elastic inclusion.
Similar results for a circular hole (i.e., for u2=0) are shown in Fig. 5.

The stress intensity factors calculated at the crack tips t1 and t2
are shown in Figures 6-13. The results shown in the figures are normal-
ized with respect to covﬁ'where % is the tensile stress acting on the
plane away from and perpendicular to the crack and a is the half crack

length. Thus, the normalized stress intensity factors kij shown in the

-13-
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b/a.

Figure 6. The stress intensity factors for a symmetrically
located radial crack (R/a=2, c=0). '
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1.0 : - : :

c/a

Figure 7. The stress intensity factors for a symmetrically

1ocat§d "tangential crack" perpendicular to the load (b=0,
R=2a}.

-16-



Figure 8. Stress intensity factors for a crack perpendicular
to the external load (R =2a, b=3a).
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{.0

Figure 9. Stress intensity factors for a crack perpendicular
to the external load (R=2a, c=a).

-18-



R/a

Figure 10. Stress intensity factors for a crack in the matrix
containing a circular hole‘(u2= 0, c=R, b-a=0.2R, a=constant).
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R/a

Figurell. Stress intensity factors for a crack in the matrix
containing an elastic inclusion (u2==23u1, ¢=R, b-a=0.2R,
a = constant). " ,
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b/a

Figure 12. Stress intensity factors for a crack in the matrix
containing a circular hole (u2=0, c=2.2a, R=2a)
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Figure‘]3. Stress intensity factors for a crack in the matrix
containing an elastic inclusion (u2==23u], c=2.2a, R=2a).
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figures are defined by -

k. (t.)
k,, = ——_ (i,§ = 1,2) (9)

’
HJ 0,2

where ki(tj) are given in (8). Figures show the results for only two
cases, namely a circular hole (i.e., u2=0) and a stiffer elastic incly-
sion with elastic constants

(],.12/1.1-!) = 23 » K'-I = ]-6 » KZ = 1.8 . (]O)

Fig. 6 shows the results for a symmetrically located radial crack.
Note that as the (inner) crack tip t, approaches the boundary (i.e., for
b-+R+a) the stress intensity factor k1(t2) tends to infinity for the case
of hole and to zero for the case of inclusion. Qualitatively the results
given'in this figure are very general, that is if the perturbed stress
fields of a crack and a hole (or a pore) interact, then the stress inten-
sity factors at the crack tips would be greater than those which would
be obtained for the cracked medium without the hole. For example, note
that in Fig. 6 the stress intensity factors for u2=0 are greater than
cOVE] the value for the cracked plane. without a hole, and approach this
value as the crack moves away from the hole (i.e., as bs). Similar
trend would be observed for an inclusion the stiffness of which is less
than that of the crécked medium (i.e., for u2<u]). On the other hand,
if the plane contains a stiffer inclusion (i.e., for u2>u1), then the
stress intensity factors are smaller than cowﬁi

The results shown in Figures 7-13 are self-explanatory. Depending
on the location of the crack, one may observe some trends in these
results which are opposite to that observed for the symmetric radial
crack shown in Fig. 6. These trends, however, may easily be explained
by examining the stress fields perturbed by an inclusion or a hole which
are shown in figures 2 and 5. By examining the signs of the Modes I and
Il stress intensity factors, from the results given in these figures ane
may easily conclude that generally for the crack tip near the matrix-
inclusion boundary the crack would propagaté towards thé boundary if
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u2=U Or Up<yys and away from the boundary if Ho>lye This conclusion is
based on the analysis giving the plane of the maximum cleavage stress

at the crack tip. The details of the analysis and its experimental
verification may be found in [12],

| In another class of crack-inclusion interaction problems both the
inclusion and the matrix material may contain a crack. For symmetrically
Tocated radial cracks the general problem is described by Fig. 14. The
details of the analysis of this problem may be found in [11]. Figures
15-21 show some calculated results. In this problem the formulation
given in [11] and Fig. 14 allow the consideration of the special cases
of a crack terminating at the interface (i.e., b=R+a, uz#o in Fig. 6

or a2=b2, ay=a in Fig. 14), and the crack going through the interface
(i.e., b2=a=a1 in Fig. 14). In these special cases it is shown that
[11] the point (x=a, y=0) (Fig. 14) is a point of stress singularity and
the stress state in a close neighborhood of it has the following form:

035(rs8) = f%-gij(e) s (237x,y) > (0<pel) (11)

where r and ¢ are the polar coordinates centered at the singular point,
gij is a bounded function and the stress intensity factor k is a con-

stant. The stress intensity factors k = k(a) given in this section are
defined in terms of the related cleavage stresses as follows (Fig. 14):

(i) crack in the matrix (-a<a2<b2<a = a1<b1):

k(a) = lim f?‘(a-x)sc

Tin 24y (50 (12)

{ii) crack in the inclusion (-~a<a2<b2 = a<a1<b1):

k(a) = 1im vZ (x-a)® ,0
(a) xlg (x-a) o1yy(x ) (13)
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Figure T4. Inclusion-crack geometry.



(ii11) crack crossing the boundary (-a<a2<b2 =a=n13a <b1):

1

In this case for simplicity we define the following normal and
shear cleavage stress intensity factors

kxx(a) = 1im y" O1yxi@s¥) » (normal cleavage) , (14)
y-0
= l Y
kxy(a) ;lg y Glxy(a’y) ,» (shear cleavage) . (15)

The first special problem (i) with a,=b, corresponds to the limit-
ing case of the problem considered in Fig. 6. In the problem of a crack
terminating at the bimaterial interface such as the cases (i) and (i7)
mentioned above, the power of the stress singularity (a« or g) is
highly dependent on the stiffness ratio pz/u1 and is relatively insensi-
tive to the Poisson's ratios (or K1 and KZ). For the crack geometry
a2=b2, 2,73, b1>a, Fig. 14, Table 1 shows the effect of “2/“1 on B.

It may be seen that for (uz/u])<1 the power g is greater than 0.5, mean-
ing that if the stiffness of the inclusion is Jess than that of the
matrix, then the stress singularity is stronger than the corresponding
homogeneous case. Similarily, if N>l then g<0.5. This is the reason
for the asymptotic trends observed in Fig. 6 for the stress intensity
factor k(a) as b»R+a. Table 1 also gives the corresponding stress inten-
sity factors calculated from (12).

For this problem, to give some idea about the nature and the rela-
tive magnitude of the crack surface displacement, Fig. 15 shows some
calculated results. Here v(x,0) is the crack surface displacement ‘in
y direction.

Figures 16 and 17 show the stress intensity factors for a crack
tocated in the inclusion. The Timiting values of the stress intensity
factors shown in these figures for the crack length 2c2 approaching zero
are obtained from uniformly loaded "infinite" plane solution with the
applied stress state away from the crack region given by the uncracked
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Table 1.

The effect of modulus ratio on the
stress intensity factors for a crack
terminating at the interface (a;=a,
b]/a= 2, Ky = Ky =1.8, <, =(b]~a)/2).

u k{b;)
0 2.808
0.05 0.81730 1.615 1.053
1/3 0.62049 1.22% 0.5836
1.0 0.5 1.000 1.000
3.0 0.40074 0.8610 1.299
10.0 0.33277 0.7969 1.389
23.0 0.30959 0.7796 1.375
100 0.29387 0.7691 1.345
300 0.28883 0.7667 1.348

-27-



=0.05

“

Figure 15.

15 x/ a

Crack surface displacement for a crack

in the matrix with one tip on the interface
(IC]=IC2'-"|.8, b-l/a=2, v =(1+'<-|)300/U1)-

0
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-}

1.275

10 r |

Figurel6. Stress intensity factor for a symmetrically
located crack in the inclusion '(nc.I =|<2=1.8).
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1.0

-09 -075 0 b,/a 10

Figure 17. Stress ‘intensity factors for a crack located
in the inclusion (rc] =|<2=1.8, one tip fixed at

a, =-0.92 or a,=-0.75a, b, variable, c2=(b2-a2)/2).
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inclusion solution [13], namely

O S L 11 1.1
o2y (X:0) = o, S L 2Thy 1+K1u2/u1) > Ixla, (16)
a _ a2 Hz(K]‘])'ul(K2'1) ak 3(U2‘U])
o1y (%:0) = 0,[1 - 57 2uy + uglep=T) 7 x* 2(uyrequy 1 Ix]>a s
(17)
o3 (0} =0 , o2 (x,0)=0 (18)
Ixy*™? Y P2xyr e *

By using (16) it may be shown that for the crack in the inclusion the
stress intensity factor has the following Timit:

K _ alegtl) H My .

Tim

+ ) (19)
c0 o0 /S, 2w Zug*tuglea=T) 7 b

Fig. 16 shows the results for a symmetrically located crack. The results
for an eccentric crack are shown in Fig. 17 (see Fig. 14 for notation).

Some typical results for the case in which both the inclusion and
the matrix or base material contain a crack are shown in Fig. 18.

The stress intensity factor for a completely cracked inclusion
(i.e., for a,7-a, b2=a, a1=b1) is given in Table 2. The stress inten-~
sity factor k{a) given in this table is defined by (13) where « is the
power of stress singularity.

The stress intensity factors for a crack crossing the interface are
given by figures 19 and 20. In these figures x=a, and x=b] are conven-
tional crack tips for which the stress state has square-root singularity
(i.e., o'=8"'=0.5). For the point of the intersection of the crack with
the boundary (x=a)} the normal and shear cleavage components of the stress
intensity factor kxx and kxy are defined by (14} and (15). The asymptotic
trends of the stress intensity factors observed in these figures as a
crack tip approaches the boundary x=a are again due to the change in the
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Table

2.

Stress intensity factor for

a completely cracked inclusion.

K]=].8,

K2=2.2

Ky =K, =2.2

| _k(a)

o

coa

0.2

0.6

1.0

2.0

5.0

0.36621

0.45025

0.57451

0.67885

0.7890

1.014

1.0

0.8843

0.6555

0.38087

0.47028

0.51991

0.59188

0.69124

0.32027

0.42123

0.47724

0.55687

0.66330

1.046

1.174

1.107

0.9465

0.6940

0

0

.33845

0.44466

.57624

.67733

1.010

1.068

1.0

0.8613

0.6500
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power of stress singularity. For example, in Fig. 19 for b1>a the stress
components around the singular point (x=a, y=0) are (see (14) and {15)}

. ko (a) k()
oxelasy) F2— o, (a,y) FH—, v = 0.27326. (20)
y y

On the other hand, for b1=a (i.e., the case of a crack in the inclusion
terminating at the boundary) the stress state around (x=a, y=0) is
given by (see eq. (13))

or. = K2l £ (5 | 4= 0.82580 , (21)
ij me 1l

where r and 6 are the polar coordinates centered at the point {x=a, y=0)
(i.e., r=y for e = n/2). Thus, as b1+a from (20) and (21) it
follows that

o (asy) = kx;ia) > *;é?; £ (5 (22)
or |

o (asy) » ;‘; [ /—;L;L; £ (n/2)] (23)
and

k() -"/;_—(;O%fxx(wm) . | (24)

Since k(a) and fxx are bounded and a>y, for y=0 (at which, by (14),

kXx must be calculated) kxx(a) would become unbounded. Similarly, it is
seen that for b1+a, kxy tends to (negative) infinity. Also, since o
(for the terminating crack tip) is greater than 0.5 (at b1 for the
embedded crack tip), by following a similar arqument it may be shown

that as b1+a, k(bj) becomes unbounded.
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Figure 18. Stress intensity factors for a crack in the
matrix (epoxy) and a crack in the inclusion (aluminum)
(K] =1-6, Kz'—‘}-s’ uz/u1=239077; a2=0-3a9 b2=0.83,

2cy =(b;-ay) =a fixed, d-= (b]+a1)/2 variable).
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Figure 19, Stress intensity factors for a crack going
through the matrix-inclusion interface (K]= 1.6,

k,=1.8, wup/uy =23.077, o =g =-0.5,7%a =8 =
¢ =(b1-a2)/2, =0 fixed, bT variable).
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Q5 1.0 d/a 15

Figure 20. Stress intensity factors for a crack
going through the interface (K13 1.6, ko= 1.8,

Mp/uy =23.077,%%a =8 = .0.27326, 2c=(by-3,)=a
fixed, d='(b1+a2)/2 variable).
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The asymptotic trends in Fig. 20 can be explained by observing that
v=a=0.27326 for the crack crossing the boundary (a2<b2=a=a1<b1), a=0.5
for the crack tip embedded in the matrix, 3=0.33811 for the crack in the
matrix terminating at the boundary (a1=a, d/a=1.5) and ¢=0.82580 for
the crack in the inclusion terminating at the boundary (b2=a, d/a = 0.5).

Figure 21 shows some sample results for the crack surface displace-
ments of a crack crossing the boundary.

For a crack terminating at the boundary to study the further crack
propagation the details of the angular variation of the stresses,
that is the functions fij(g) in (21) may be needed. Sample results
giving the distribution of these functions are shown in Figures 22-24.
From the definitions (12), (13) and (21) we note that fee(o) = 1. The
functions Gij shown in Figures 22-24 are obtained from

o AL
O'.ij(rse) = ,/fra 2 ('I,J—Y‘,B), ("ﬂ'<9<'ﬂ')- (25)
Thus, Gee(O) = k(a) and fij(e) is given by
Gi.(e) ‘
fij(e) = 'G;:Jﬁ)- s (1:3=r,8) ", (-m<o<n) . (26)

The analytical details of a crack terminating at and crossing the
boundary in a two-phase nonhomogeneous elastic medium may be found in
[14] and [15].

3.2 Anti-Plane Shear Problem for a Crack Interacting with
a Circular Inclusion '

The simpler problem for a medium containing a crack and a circular
elastic inclusion or a hole shown in Fig. 4 and subjected to a uniform
anti-plane shear loading

cryz(x, F o) = Po (27)

can also be treated in a manner similar to the plane strain problem

-38-



06

m» 3846
o4

Ggg (8}

02

Fig. 22. Angular variation of Ogp &8rTound a crack tip touching the
interface,.
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Fig. 23. Angular variation of g around a crack tip touching the
interface.

Gw (B

/4 w/2 3wsa

Fig. 24. Angular variation of 0. 8round a crack tip touching the
interface. :
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discussed in the previous section. In this case the crack surface
tractions for the perturbation problem are obtained by solving the
probTem of inclusion or hole without a crack. Some sample results
giving the stress distribution cyz(x,y) (for various fixed values of y)
are shown in Figures 25 and 26. Again note that qualitatively these
results are very similar to the plane strain results shown in figures
2 and 5. For this problem some sample results giving the Mode III
stress intensity factors k3 at the crack tips x = + a are defined by

k(a)p0%5'= k3(a) = 1i§ v2{x-a) c1yz(x,c) , (28)
k(—a)p0¢5'= k3(«a) = lim vZ(x+a) c1y2(x,c) . (29)

Xor=g

Figure 27 shows the results for the radial crack in a medium con-
taining an inclusion or a hole. Similar results for an arbitrarily
lTocated crack are shown in Figures 28 and 29. Figure 30 gives some com-
parative results showing the influence of the crack length-to-radius
ratio on the stress intensity factors where m is the modulus ratio
m= “2/“] and k(+a) = k3($a)/p0¢ﬁl For m = 1 we have a homogeneous
plane with a crack of length 2a for which k3(3a) = po/EZ Consequently

kg(+a) . Po"@

k(¥a) = va/R (30)

p,"R p "R

giving the straight 1ine shown in the figure. For m=0, m=1 and m=23.3
the slopes of k(+a) vs. va/R curves as (a/R)+0 are 1.47, 1 and 0.57,
respectively. The results for m=0 and m>0 are obtained from the solution
of an "infinite" plane with a central crack subjected to the crack sur-
face tractions oyz(x,o) which are equal and opposite to the corresponding
stresses given in figures 25 and 26 at x=b=1.5R.

The singular behavior of the stresses terminating at and crossing
the boundary is discussed in [16] and [17].

-47-



2.0
y/R=0
0.5
< 0 .o
B> 1.5
1.0 ——— - .
Y )
- ® @i ® ©
I
_ N L,
} R
® ® ® ®
o] 1 I X t 1 l . !
0 | 2 3 4 5

x/R

Fig. 25. The shear stress Tyz in @ matrix with a
circular hole. :

x/R

Fig. 26. The shear stress t,. in a matrix with a
circular inclusion (u2 = 23.3 u])-
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Fig. 27. Stress intensity factors for the antiplane
shear problem (k = k3/p0¢5] R = a).
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Fig. 28. Stress intensity factors for the
antig]ane shear problem (k=k3/p0%5, R=a, b=
1.5R). .

b/a
Fig. 29. Stress intensity factors for the

antipl?ne'shear problem (k=k3/poﬂ5, R=a,
c=1.5R).
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Fig. 30. Stress intensity factors for the
. antip1§ne shear problem (k=k3/p0¢§; c=0,
b=1.5R}.
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4. INTERACTION BETWEEN CRACKS

In this section the problem of interaction between cracks on the
surface and inside a plate with finite thickness is considered.

4.1 Interaction Between Parallel Internal Cracks

The basic geometry of the problem is shown in Fig. 31. 1In this
section we will consider various special cases relating two or three
cracks on the surface of a plate under uniform tension.

For two symmetrically located parallel cracks the stress intensity
factors are given in Table 3. Referring to Fig. 31, for this problem
we have a=b (i.e., no crack on x axis) ¢ = H-d, P = 0 (no concentrated
force) 2B is the distance between the cracks, 2£ is the crack length and

=g, for y > ¥=. In this section too the Modes I and II stress

%y = %
intensity factors k1 and k2 are defined by

ky = 1im v2r o (r,0) , k, = 1im ¥Zr o (r,0) , (31)
1 r-=0 Yy 2 r-{0 XY

where r,¢ are the polar coordinates at the crack tip, the crack being
along ¢ = w. Note that as the distance 2B between the cracks decreases
k1 also decreases and k2 becomes more significant. The angle s shown
in this table is an (approximate) direction of a probable crack growth
which is obtained from a simple assumption that along this radial line
at the crack tip the cleavage stress cee(r,e) is maximum [12], where
r<<H-d. Here 98>0 indicates that the cracks would grow away from each
other.

4.2 Interaction Between Parallel Surface Cracks

The stress intensity factors and the angle of probable crack growth
direction in a plate containing two parallel and equal surface cracks
under uniform tension or pure bending are shown in Figures 32-35. 1In this
problem we have a=b, c=0 and d<H. The figures also show the Mode I
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Figure 31,  The basic crack geometry.
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Table 3.

Stress intensity factors in a strip containing

two symmetric internal cracks, £=(d-c)/2.

2/H B/L kl/ooxz ka/o VT 8(°)
0.5 0.7797 ~0.1175 16.430
1.0 0.8512 -0.0616 8.194
1.5 0.9052 -0.0308 3.887
0.05 2.0 0.9395 -0.0163 1.992
5.0 0.9953 -0.0001 0.157
10.0 1.0053 -0.00001 0.014
20.0 1.0060 0.0000 0.000
0.5 0.7992 ~0.1199 16.363
1.0 0.8749 -0.0624 8.076
1.5 0.9310 -0.0307 3.774
0.1 2.0 0.9660 -0.0162 1.920
5.0 1.0219 -0.0001 0.106
10.0 1.0247 -0.00007 0.003
20.0 1.0248 - 0.0000 0.000
0.5 0.8846 -0.2570 15.578
1.0 0.9749 -0.0656 7.634
1.5 1.0437 -0.0330 3.648
0.2 2.0 1.0839 -0.0155 1.647
5.0 1.1096 -0.0001 0.019
10.0 1.1097 0.0000 0.000
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Figufelsz. Stress inténsity factors and probable crack propégation

angle in an infinite strip containing two edge cracks under
uniform tension, d=0.2H.
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Figure 33. Same as Figure 2, d=0.5H.
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Figdre 34. Stréééwfntéhéfty factors and probable crack propagation
angle in an infinite strip with two edge cracks under
bending, d=0.2H.
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Figure' 35. Same as Figure 4, d=0.5H.
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stress intensity factor k1 for a single surface crack for comparison
(the dashed line). For the single crack k2 is 0. Again note that

k1 is smaller than the corresponding single crack value, k2 becomes more
significant as B decreases, and cracks would tend to propagate away
from each other. For the bending problem shown in Figures 34 and 35
the normalizing stress 9 is given by

_ &M
m  HZ (32)

[
where M is the moment for unit thickness.

Figures 36-41 show the results for a plate containing three parallel
surface cracks under uniform tension or bending.' In this case, too,
k2<0, meaning that the outside cracks would grow away from the middle
crack. Comparison of the two and three crack results shows that the
introduction of the middle crack "relaxes" the stress ihtensity factors
in the outer cracks. Fig. 40 shows that for short cracks the interaction
and for longer cracks the back surface effect would dominate. Figure
41 shows the results for three point bending. In this problem, too, O
s the surface stress in the plate under bending, namely

[=a]

M _ 24P

mTH T H

(33)
The stress intensity factor k(d) for the outer cracks approaches zero
as B + 4H (for which the moment is zero).

4.3 Cracks Parallel to the Boundary

The basic geometry for the plate containing a crack parallel to
the boundary is shown by the insert in Fig. 42. The problem considered
in this section also takes into account the material orthotropy. Thus,
the material constants shown in Fig. 42 are related to the elastic
constants of an orthotropic plate as follows:

-53-



1.6
1368l = = = = = = = - - - - - - — o - —
(.2
k,(d)/ou/d
0.8_ b
-k (BY/Go/B | B
B d
B8
0.4 ]
b=d=0.2H
| REIRREES
O I e —
" /(kaa/ o-on_
. | | | | | l | | |
0'40 0.2 04 0.6 - 0.8 1.0

B/H

Figure 36. Stress intensity factors in an infinite strip containing '
three edge cracks under uniform tension, d=b=0.ZH.
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Figure 37. Same as Figure 6, d=b=0.5H.
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Figure 38. Stress intensity factors in an infinite strip containing
three edge cracks under bending, d=b=0.2H, 0, =EM/H2.
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Figure 40. The effect of the crack depth on the stress intensity
factors in an infinite strip under tension, B=0.Z2H.
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Figure 41. Stress intensity factors in an infinite strip containing
edge cracks and subjected to three point bending, oy =
6M/HS = 24P/H.



611- = E /E = -..._EHE.Q - (34)
11522 > ¥ 261, Y12Ve1 -

The engineering material constants which appear in (34) are defined
by the following stress-strain relations

1

2= (g

11 7 E 12922 e08) o

(35)
=1
G

(8] 3 e
12 12

2512
In Fig. 42 and the subsequent figures the coordinate axes 1 and 2 are
respectively parallel and are perpendicular to the crack. The main
result of Fig. 42 is that as the crack approaches the boundary the stress
intensity factors become unbounded. Also, the analysis of the mixed
mode stress state at the crack tip would indicate that the direction
along which the cleavage stress is maximum is inclined toward the
nearest boundary, meaning that any further propagation of the crack would
be toward the nearest boundary. The corresponding results for a crack
Toaded under pure shear are shown in Fig. 43. The peculiarity of these
results is that the Mode II stress intensity factor is relatively insen-
sitive to the location of the crack, in fact it somewhat decreases as
the crack approaches the boundary before becoming unbounded.

Figures 44 and 45 show the effect of the relative crack length for
a symmetrically located crack under Modes I and II loading conditions.

The results for two collinear cracks loaded under Mode I conditions
are shown in Fig. 46. The figure also shows the stress intensity fac-
tors for an infinite plate (H=«} which are given by

(0 = prEaI7Z (2200 - Ry (36)
ky(a) = o/BA7Z (5 "I - (@711 (37)
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Figure 42. The effect of the crack location on the stress inten-

sity factors for uniform surface pressure. H = 0.75a,
§ =1 = ¢ for the isotropic materials and § = 1.1175,

x = 1.2895 for the orthotropic material (yellow birch).
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Figure 43. Same as figure 2 for uniform shear applied to the

crack surface.
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where K(k) and E(k) are complete elliptic integrals of respectively
first and second kind, and the modulus k is defined by

k = Vi-a</b% . (37)

For convenience a table giving the elliptic integrals (Table 4) is

included in this report where the angle a is related to k by sina=k.
Further results for collinear cracks under Mode II loading condition

are given in Table 5. In these results the half crack length (b-a)/2

is used in normalizing stress intensity factor. (a/b) = 0 and

(a/b) = 1 correspond to the two limiting cases of a single crack of

length 2b and b-a, respectively. As expected kq(a) becomes unbounded

for a-0 and both kl(a) and k1(b) approach the corresponding single

crack value for (a/b}»1 (i.e., for a»=). An interesting result observed

in Fig. 46 and Table 5, however, is that generally for smaller plate

thicknesses as a approaches zero the stress intensity factor k](a)

goes through a minimum before becoming unbounded. This reduction is

apparently due to the interaction of the stress fields of the two cracks

as the distance 2a decreases. For example, from Fig. 47 it may clearly

be seen that even though the cleavage stress 522(x1,0) perpendicular

to and on the line of the crack is tensile near the crack and becomes

unbounded at the crack tip, it becomes compressive in a certain interval

away from the crack. This is Tardely due to the "bending" effect of

the two halves of the plate. Thus after the interaction of stress fields

of the two cracks it is seen that the inner crack tips would be in

compressive region and consequently there would be some decrease in

the stress intensity factor.

4.4 Collinear Cracks Perpendicular to the Boundary

From a viewpoint of interaction between two cracks or between
cracks and free boundaries another geometry of great deal of practical
interest is that of collinear cracks perpendicular to the plate boundary
described in Fig. 48. A special case of this problem is the two surface
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4. Tables of Complete Elliptic Integrals
K(k) and E{k), k = sing.

¥. Vollstindige elliptische Integrale.
V. Compiete elliptic integrals,

® | 1,5708 1,935 | 1,3055 o 1,0278

° 11,6708 | 1,5707 51° | 1,9539
® 11,6713 | 1,5703 62° | 1.9729 ! 1,2870 | 82°24°, 3, 1,0258
° | 1,6719 | 1.5697 63° | 1,927 { 1,2776 | 82°36' ! 3,4460 | 1.0245
° | 1,6727 | 1,5689 54° | 2,0133 { 1.2682 | 82°48° | 3,4728 | 1,0234
° 11,5738 | 1,5678 56° | 2,0347 | 1,2587 {'83°0° | 3.5004 | 1.0223
® | 1,6761 | 1.,5665 §° ‘| 2,0571 | 1,2492 | 83° 12’ 3,5288 | 1,0213
t ° | 1,6767 | 1,5850 | 57° | 2,0804 | 1,2397 | 83°24’ | 3,5581 | 1.0202
8° | 1,6785 ; 15632 2,1047 | 1,2301 | 83°36°} 3,5884 | 1,01%2
8° | 1,6806 { 1,5611 69° | 2,1300 | 1,2206 | 83°48° | 3,6196 | 1.0182
10° | 1,5828 | 1,5589 60° | 2,1565 | 1,2111 | 840’ | 3,6519 | 1,0172
11° | 1,6854 | 1,5564 61° | 2,1842 | 1,2015 | 84°12° 1,0163
12° | 1,5882 | 1,5537 2.2132 | 1,1921 | 84°24" 3,7198 | 1,0153
13* | 1,8813 | 1,5507 63° | 2,2435 | 1,1826 | 84° 3,7657 | 1.0144
14° | 1,5946 | 1,5476 64° | 2,2754 | 1,1732 | 84°48°; 3,7930 | 1,0135
15° | 1,6981 | 1,5442 65° | 2,3 1,1638 | 85°0* : 3,8317 | 1.0127

f| 16° | 18020 | 1,6405 | 66° | 2.3439 | 11546 | 86°12} 3,8721 | 1,0118
| 17 | 16061 | 1,537 | 67 | 23803 | 11454 | 85°24’} 39142 | 1,0010
| 18 | 1.6105 | 1.532%6 2,4198 | 1.1362 | 85°36’| 39583 | 1,0102
| 18° | 1.8151 | 15283 | 69° | 2.4610 | 1,273 | 85° 48°| 4.0044 | 1:0034
| 20° | 16200 | 1,5238 | 70°0' | 2.5046 | 11384 | 86° 0’ | 4.0528 | 1,0087
| 21° | 1.6252 | 1,5191 | 70°30° { 2,5273 | 11140 | 86°12’ | 4,1037 | 1.0079
i 22° | 16307 | 1.5142 | M°0° | 2, 1,106 | 86°24’ | 4,1574 | 1.0072
! 16365 | 1,509 | 71°3p' | 29,5749 | 1,1053 | 867 36" | 4.2142 | 1,

24° | 16426 | 15037 | 72°0° | 2.5998 ! 1,1011 | 86° 48| 4,2746 | 1.0059
95° | 1,6490 | 14981 | 72°30° | 26256 | 1,0968 | 87°0° | 4:3387 | 1:003
26° | 1.6557 | 14924 | 73°0° | 26521 | 1.0927 | 87°12' | 4,4073 | 1.0047
27 | 1,6827 | 1.4864 | 73°30° | 26796 | 1,0885 | 87°24 | 4,4812 | 1,004
28° | 1.6701 | 14803 | 74°0° | 2.7081 | 1,0844 | 87°36 | 4.5609 | 1,0036
29° | L6777 | 14740 | 74°30' | 2,7375 | 1,0804 | 87°48' | 4.6477 | 1.0031
30° | 1.8858 | 14675 [ 75°0° | 2.7681 | 1,074 | B&°0° | 47427 | 1,0026
31° | 1,6941 | 1.4608 | 75°30" | 2,7998 | 1,0725 | 88°12 | 4,8479 | 1.0022
| 3z | 17028 | 1,4539 | 76°0° | 2.8327 | 1,0686 | 88°24’ | 4,9654 | 1,0017
{ 33 | L7119 | l.4469 | 76°30° | 2.8669 | 1,0648 | 88°36' | 5,0988 | 1,0004
" 340 | 1724 | 1,397 | 77°0° | 29026 | 1,0611 | 88° 48" | 52527 | 1.0010
35° | 17313 | 14323 | 77°30° | 2,9397 | 1.0574 | 89°07 | 5,4349 ; 1.0008
36° | 17415 1 1.4248 | 78°0° | 29786 | 1.0538 | 89°6" | 55402 | 1,0006
37 | 17502 | 14171 | 7€°30° | 3.0092 | 1,0602 | 89° 12’ | 56579 | 1.0005
. 38 | 17633 | 1.4082 {79°0° | 3.0617 | 1,0468 | 89°18' | 57914 | 1,0005
3 | 17768 | 14013 | 75°30°) 32068 | 10434 | 89°24"} 9455 | 10003 |
i .
. 40° | 1,7868 | 1.3931 | 80° 0’ | 31534 | 1,0401 | 89°30° | 61278 | 1.0002
. 41° | 17992 | 1.3849 | 80° 12’ | 31729 | 1,0388 | 89° 36’ | 6.3504 | 1,000]
{ - 42° 1 18122 | 1,3765 | 80°24' | 31928 | 1,0375 | 89°42 | 6.6385 | 1,000
© 43 | 1,825 | 1,380 | 80° 36’ | 3,2132 | 1.0363 | 89° 48" | 7,0440 | 1.0000
44 | 18396 | 1,3594 | 80° 48" | 3:2340 | 1,0350 | 89°54"| 7,7371 | 1.0000
: 45° | 1.8541 | 1.3506 | 81°0 | 3.2353 | 1.0338 | s0° ‘s | 1,0000
| 46° | 18692 | 1,318 | 81°12' | 22771 | 1,03%6
| 47 | 1,8848.| 1.3329 | 81°24'| 3,2995 | 1,0313
| 48 | lson’| 133 | 8136 ) 33723 | 103
43° | 159180 | 1.3147 | 81° 48° | 3.3458 | 1,0290

Jahnke & Emde, "Tables of Functions"

=56~



Table 5.

Stress intensity factors in an orthotropic
strip containing two identical collinear cracks
loaded by uniform crack surface pressure p
or shear gq; Hy=Ho=H, «=1, Hs/(b-a)/2 = 0.4.

950 (%150)=-p o12{%7.0)=-q

28 ky(b) ky (a) ky(b) ky(a)
S Y P % o | ol
0 9.376 - 2.629 @
.01 3.693 6.996 2.106 5.837
. 3.788 2.837 1.952 2.300
.2 3.962 3.113 1.935 1.989
.3 4.074 3.642 1.933 1.939
.4 4.124 3.971 1.933 1.933
.5 4.138 4.103 1.933 1.932
.6 4.141 4.138 1.933 1.933
.7 4.140 4.143 1.933 1.933
.8 4.140 4.142 1.933 1.933
.9 4.139 4.140 1.933 11.933
1 4.139 4.140 1.933 1.933
2 4.142 4,142 1.933 1.933
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cracks simulating weld defects on both surfaces.

Some sample results for the stress intensity factors k(a) and
k(b) for two symmetrically located collinear cracks are given in
Table 6. Fig. 49 shows the results for two (collinear) surface cracks.
For very shallow surface cracks (i.e., for a~h), as seen from the
figure k(a) approaches the stress intensity factor in a semi-infinite
plane containing an edge crack of depth 2a0, namely

k](a) + 1.586 ooﬁig . (38)
In the other limiting case for which a»0, k(a) approaches the stress

intensity factor in a symmetrically loaded infinite plane containing

Table 6. Stress intensity factors for collinear internal
cracks im a strip (Figure 1, a0='(b-a)/2).

ash | b/n | K@) | _k(b)
9573, 95v8,
0 0.4 (+ =) 1.5690
0.1 | 0.5 1.1746 | 1.1169
0.2 | 0.6 1.1102 | 1.0961
0.4 | 0.8 1.0984 | 1.1250
0.5 | 0.9 1.1290 | 1.2278
0.6 | 1.0 1.6080 | (+ o)
0 0.8 (+ =) 2.5680
0.1 | 0.9 1.6730 | 1.7451
0.2 | 1.0 2.1769 | (+ =)
0.5 | 0.95 | 1.1960 | 1.4711
0.5 | 0.98 | 1.2713 | 1.9008
0.5 | 1.0 1.6228 | (+ )
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k, (b)/p /(b-a) /2
ky/(a)/ps~/(b-a)/2

SH/(b-a)/2=04

sz

1 | | l ) | L

Figure 46.

Q.1 0.2 0.3 0.4
a/b

Stress intensity factors for two collinear cracks in an
orthotropic strip.
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Figure 47. The effect of material orthctropy on the normal stress
022(x1,0) in a strip containing a pressurized crack (s=
k=1 isotropic strip).
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Figure 48. Infinite strip with two internal cracks.
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Figure 49. The stress intensity factor for the edge cracks in an
infinite strip (o; = goh/a ).
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two edge cracks. In this case, if the resultant force perpendicular to
the cracks is P, and the length of the net ligament is 2a, it can be
shown that the stress state in the net ligament is given by

P

o, {x,0}) = ——— , o5 (x,0) =0 , : (39)

Yy AVac=X Xy ’
Thus, by observing that

p = Zhdb = 2a01 (40)
and

k{x) = Tim /2(a-x) oy (x 0) , (41)

_).a
we obtain
_2
k{a) = = 04 Ya . (42)

These two Tlimiting results are also shown in Fig. 49,

5. PLANAR CRACKS OF FINITE SIZE -~ THE LINE SPRING MODEL

Figure 50 which is reproduced from API Standard 1104 describes a set
of empirical rules for the interaction of coplanar cracks of finite size.
Quite clearly the actual problem is a very highly complicated three-dimensional
multiple crack problem which does not lend itself to any kind of rigorous
analytical treatment. On the other hand the problem is a very practical one
and, therefore, requires a somewhat more quantitative and reliable solu-
tion. Such a solution may of course be obtained by using a finite element
technique. However, highly reliable analytical solutions may also be
obtained by using the so-called Tine-spring model in conjunction with a
transverse shear theory of plates or shells. In this section the general
theory of the model is redeveloped by generalizing it to embedded cracks
of arbitrary location. Some comparisons of the results with the existing
finite element solutions are made to show the validity and various examples
~are given to demonstrate the range of applicability of the technique. Exten-
sive results for the mu]tTp]e internal and surface cracks are given in
Appendices A and B.



5.1 Introduction

From the viewpoint of practical appiications the analysis of a part-
through crack in a structural component which may locally be represented
by a "plate" or a "shell" is certainly one of the most important problems
in fracture mechanics. In its general form the problem is a three-
dimensional crack probiem in a bounded geometry where the stress field per-
turbed by the crack interacts very strongly with the surfaces of the
solid. At present even for the linearly elastic solids a neat analytical
treatment of the problem appears to be intractable. Consequently, as
indicated in reference [18], the available solutions of the problem very
heavily rely on some kind of numerical technique, most notably on the
finite element method. The renewed interest in recent years in the so-
called "line-spring model" first described in [19] has been due partly
to the desire of providing simpler and less expensive solutions to the
part-through crack problem and partly to the fact that for certain impor-
tant crack geometries the model seems to give results that have an accep-
table degree of accuracy.

In a plate or a shell containing a part-through crack and subjected
to membrane and bending loads, the net 1igament(s) around the crack would
generally have a constraining effect on the crack surface displacements.
The basic idea underlying the "line-spring model" consists of approximat-
ing the three-dimensional crack problem by a two-dimensional coupled
bending-membrane problem through ‘the reduction of the net ligament stresses
to the neutral surface of the plate or shell as a membrane load N
and a bending moment M. In the resulting two-dimensional
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EXISTS IF: EFFECTIVE FLAW SIZE IS:
28 = 83
s<cy +cy
CASE 1 2, = 2cy + 5+ 2¢,
sy < gy +Cy 23, = 2a; + 55 + 2a,
and
CASE 2 —
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and
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52<a1+—2-2- 2c, =20y +59 * 2¢y
a3, =d+2a
CASE 4 d<a
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Fig. B50. RULESFOREVALUATION OF FLAW INTERACTION
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problem the crack surface displacements are represented by a crack opening dis-
placement § and a crack surface rotation 6, referred to, again, the neutral
surface. The quantities N, M, § and & are assumed to be functions of a single
variable, namely the coordinate X1 along the crack in the neutral surface (Fig.
51). The pair of functions (s,9) or (N,M) are determined from the corresponding
mixed boundary value problem for the "plate" or the "shell" having a through
crack in which N and M are treated as unknown crack surface Toads. Once N and
M are determined the stress intensity factors are evaluated from the two-
dimensional elasticity solution of a strip under the membrane force N and the
bending moment M (Fig, 51b).

The model introduced in [19] is based on the classical plate bending theory.
There is no need here to go into a detailed discussion on the necessity of using
a higher order plate (or shell) theory in studying the crack problems (see,
for example, [20]-[22]). It is, however, sufficient to point out that the
asymptotic stress field around the crack tip given by the classical plate bend-
ing theory is not consistent with the elasticity solutions, whereas a transverse
shear theory (such as that of Reissner's [23], [24]) which can accommodate all
stress and moment resultants on the crack surface separately (i.e., three boun-
dary conditions in plates, five in shells) give results which are identical to
the asymptotic solutions obtained from the plane strain and anti-plane shear
crack problems [25], [26]. The line spring model was later used in [27] and
[28] to treat the longitudinal part-through crack problem in a cylinder by
using, again, the classical shell theory. The solution obtained by using a-
transverse shear theory in plates and shells may be found in [297 and [30]

(see also [31] for more extensive results in line pipes). Rather extensive
results for corner cracks and for collinear surface cracks in a plate having a
finite width are given in [32].

The concept of "line spring” may be used to treat also the problem of
plastic deformations in the net ligament [33], [27], [28]. For méteria]s
without any strain hardening a simpler fully-plastic version of the model .
was used in [34] and [35] to calculate the crack opening displacement (see
also [311 for the application to pipes containing a circumferential part-
through crack).
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Fig.51 Notation for the part-through crack problem.
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5.2 Description of the Model

The problem under consideration is a surface or an internal crack problem
for a relatively thin-walled structural component which is solved basically as
a plate or shell problem. In the usual notation it will therefore be assumed
that referred to the local coordinate system shown in Fig.51; Ugs Ug, Ug are
the components of the displacement vector, By and 8, are the angles of rotation
of the normal to the neutral surface in XyX3 and XoX3 planes, respectively, and
Nij’ Mij and Vi, (i,j=1,2) are respectively the membrane, moment and transverse
shear resultants. It will further be assumed that the through crack problem
for the plate or the shell has already been formulated and has been reduced to
a system of integral equations. In the solutions given in [29]-[32] the deriva-
tives of the crack surface displacement and the crack surface rotation on the
neutral surface are assumed to be the unknown functions in the integral equations.
This comes quite naturally out of the formulation of the related mixed boundary
value problem for the plate or the shell. For a symmetric problem of a through
crack (located in one of the principal planes of curvature) along -a<xq<a in a
plate or shell under Mode I loading conditions, invariably the integral equa-
tions are of the following form:

aélazi) Jl [?i: tlx + kyp(x,t)1gy(t)dt + Ji kyp(x,t)g,(t)dt
-1 -
SRRyt PR (43)
o 9p(t) '
2| Tt | T (at)e (1) + kpp(xst)ey(t) Tt
-1 -1 '
__3E°i+0EX . ~lex<l (44 )

where the unknown functions are defined by

u
91(x) = & 8, (,40) + gy(x) = 2 v(x,20) , B8, » v = £ (45)
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The external loads
=N = EM. /h2
o N22/h s My 6M22/h (46)

represent uniform membrane and bending resultant applied to the plate or the
shell away from the crack region (Fig.51a) and o and m which are defined by

a(x) = N(x],O)/h , m(x) = 6M(x1,0)/h2 , (~1<x<1, x = x1/a) (47)

are the membrane and bending loads applied to the crack surfaces (Fig.51d),

2a is the length and L(x1) the depth of the part-through crack(*). The thick-
ness h and the principal radii of curvature R1 and R2 are the other length par-
ameters of the structure. The formulation is given in terms of the dimension-
less quantities defined in Table 7. E and v are the elastic constants of
the material. The integral equations are obtained from the following mixed
boundary conditions in Xy = 0 plane {Fig.51d):

N22(x1,0) = 'NZZ + N(x1) > =A<Xq<d (48a)
uz(x],O) = 0, [x1|> a, (48b)
Mzz(x],o) = -M;Z + M(x1) » -a<Xy<a, @9a)
Bo(%150) = 0 , |x;[>a , G9b )

where the general principle of superposition is used to account for the loading
sz and M;z applied to the structure away from the crack region. From v = u2/a,
By = By and the definitions{45) it follows that the unknown functions gy and

95 must satisfy the single-valuedness conditions given by

1 1

[ gew=0, [ gtie-0 . (50)
=1 _1

(*) Clearly any additional known external Joads may be accommodated by using
the notion of superposition and thereby adding appropriate functions to
the right hand sides of (43) and (44).
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Table 7. The dimensionless quantities used in plate and shell problems.

=
1}

x1/a, y = xz/a, z = x3/a R

u = u1/a, v = uz/a, W = u3/a .

By = By By = By

AF = 12(1-02) FZ%’Z , Ay = 12(1-v2) F%,

1 1 2
2 2

At = 12(1-v2) %7: y K = gﬁ%ﬁf

R1 ,RZ: principal radii of curvature
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In all Mode I plate and shell problems the dominant part of the kernels
in (43)and (44)namely, the terms having the Cauchy singularity 1/{t-x) are
the same. The Fredholm kernels kij’ (1,3=1,2) represent the details of the
plate or shell geometry. For the through crack problem in pTates the integral
equations (43)and {44)are uncoupled, i.e., k12=0, k2]=0. Thus, the through
crack problem for the plate under membrane and bending loads can be solved
separately. As will be shown below, in the case of a part-through crack the
equations are coupled through the loading terms o(x) and m{x) (which are also
unknown). For example, for an infinite plate (43) (44)may be expressed as
[20-221, [29]

1
a{1-v2) f [3+v 1 &{1-v) 1

2rha™ T+v t-X T+v {(t-x)°
-1
4 1 o "% m(x) ‘

* 7o x ReloltxDIay(0)de = - g + L ek (s1)
1 %, olx)
'Z?J‘ X gz(t)dt =-gt GEX s —l<x<1 (52)

i1

a = |:2/i<('|-\)):|7/2 . (53)

where K2 is the modified Bessel function of the second kind and the constants
A and < are defined in Table Z. In shells the kernels kij’ (1,j=1,2) are always
nonzero.

Let us now assume that the local plate or shell geometry is represented
by Fig. 51 and for simplicity we also assume that the structure contains only
a single surface crack as shown in Fig.5lc. Let N(xl) and M(x1) be the membrane
and bending resultants acting on the neutral surface which are statically equiv-
alent to the net 1igament stress czz(x],ﬁ,xa), (-a<x1<a,-h/2<x3<h/2-L(x1))
(Fig. 51¢. The first approximating assumption made in introducing the Tine
spring model is that the crack may now be assumed as being a through crack of
Tength 2a (Fig,.57d} and the constraint caused by the net ligament stress
022(x1,0,x3) (tending to prevent the crack faces from opening and rotating)
may be accounted for by applying the membr;ne and bending resultants N(x1)
and M(x]) on the crack surfaces. Note that N and M tend to close the crack
surfaces whereas the external Toads sz and M;z tend to open them.
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The second major assumption made in developing the model is that the
stress intensity factor at a Tocation X along the crack front may be approxi-
mated by the corresponding plane strain value obtained from a plate which con-
tains an edge crack of (uniform) depth L(xT) and which is subjected to uniform
bending moment M(x1) and uniform tension N(x]) away from the crack region (Fig.
51c¢). This assumption makes it possible to express N(xT) and M(x1) in terms of
the unknown functions gq and g, in (43)and (44) which may then be solved in a
straightforward manner. It should again be emphasized that it is because of
these two rather gross approximating assumptions that a basically intractable
three-dimensional problem is reduced to a relatively straightforward plate or
shell probiem.

In order to obtain N and M in terms of 9 and 9, the energy available
for fracture along the crack front is expressed in two different ways, namely
as the crack closure energy and as the product of load-load point displacement.
In a plate with an edge crack subjected to a uniform tension N and uniform
bending moment M(Fig.52a), if Ky is the stress intensity factor given by the
plane strain solution, from the crack closure energy the energy (per unit width)
available for fracture may be obtained as

G = 2 (U-V) = ’E” Ky (54)

where U is the work done by the external loads and V is the strain energy.

Now, 1et & and ¢ be the Toad Tine "displacements” corresponding to N
and M as shown in Fig.52a. Let ds and de be the changes in ¢ and s as the
crack length goes from L to L+dlL under "fixed load" conditions. Then referring
to Fig.52b the changes in U and V may be expressed as

du

Nds + Mds , (55)

dV = o [N(s+ds)+M(e+de)] - 5 (No+Me) = & (Nds+ids) . (56)

Equations (52) and (53) give the energy availablie for a crack growth dL as
follows: :

d(U-V) = &+ (NdsMdo) . (57)
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Fig.52 Notation for the related plane strain probiem.
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On the other hand for constant N and M and for a change of dL in the crack
Tength we have

ds =5 q , ds =284 . (58)

aL sL

Thus, from (54) and (55) it follows that

: el Bandy
—a"t (U-V) G Vi (N oL + M BL) s (59)

and, by using (51) we find

Ty 38 4 8y 102y
> (NSE M) = K7 (60)

Let us now define the membrane and bending stresses by
o= N/h . m= 6M/h2 (61)

and assume that the solution of the plane strain problem shown in Fig.52a give
the stress intensity factor as follows:

Ky = /M [ogy(s) + mgp{s)] , s = L/h . (62)

where 9y and gy, are known functions. If we also define the following

matrices
g o % 8,9,
- = W = = = =
=) = [T, w= () =1L 6() = (syy) = [gog Td (69
from (54 ) and (62 ) we obtain
'[.. 2 'l.. 2
6 =122 k2= (2 h)eler | (64)

-84~



Similarly, from (59), (61) and (63) we find.

-
@

Ph - (65)

From (54) and (65) it is seen that

%= & (126 (66)
By observing that G is a function of L, v is independent of L and w=0
for L=0, from (66) we find '
L L
we? (1-\;2)(( GdL)t = 2 (1-v2)Ar, A = J 6L 67)
0 0
If we also define
g, (x,+0) '
_rh/e O = Y
B = [ 0 a ] s N = [ V(X,+0) @8)
from 6 = 2uy(xq,0) = 2av(x,0), 8 = 28,(x;,0) = 28,(x,0) and (67}, (68), and
@5) it may be seen that
gy (thdt

c= gy A B, C(x) =7z ATB, T = EC| 69 )
I gz(t)dt

-1

Note that since L = L(x ) L(ax) is a known function of x the matrix A and

consequently € = (1 -v2)" 1a” B consist of also known functions of x.
Subst1tut1ng now from 69-) into(43) and (44)we obtain

élh:i) J [?iz t-X k]](x’t)]g]( )dt + ( k12(X,t)92( )dt
-1 -l
ciq{x) X CynlX) (X N
- 1; f gq(t)dt - 1% f g,(t)dt = - TE" -1<x<1,
o B (70)

1 1
2 [ g ope)at + [ Doy (x.thgy(8) + kpplx,t)ay(t) ot

2r
1 -1

X X oo
- CZT(X)f gq(t)dt - CZZ(X)J go(t)dt = - =, -T<x<l (71)
-1

=1
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j are the elements of C which is defined by (69).

The functions 9¢ and 95 giving the stress intensity factor in an edge-
notched strip as defined by (62) (see Fig.52a ), and the elements of the
matrix A defined by (67) are given in [29]. The functions g, and gy
valid for 0<L/h<0.8 were obtained as follows [29]:

where the functions Cis

g,(s) = /75 (1.1215 + 6.5200s2 - 12.3877s* + 89.055455

- 188.6080s° + 207,3870s10 - 32.0528s12), s = L/h (72)
g, (s) = /7% (1.1202 - 1.8872s + 18.0143s2 - 87385153

+ 241.9124s" - 319.9402s5 + 168.010656), s = L/h . 73)

The dominant part of the system of integral equations (70) and (71)
has only a Cauchy kernel and, therefore, the solution is of the following
form:

g;(t) = =—— , i=1,2 74)

£.(t)

-t
where the functions fy and f, are bounded in the closed interval -T<t<l.
Even in the simplest case (of the infinte plate considered in [29]) the sys-
tem has no closed form solution. However, the unknown functions f] and fz
may be determined numerically within any desired degree of accuracy by using
the quadrature formulas given, for example, in [36]. After determining f1
and fz the net ligament resultants m and o are obtained from (66 ) and the
stress intensity factor from (62).

5.3 Internal Cracks

The line spring model described in the previous section may easily be
extended to internal cracks such as that, for example, shown in Fig. 51b,
In this case the basic integral equations for a through crack in a plate or
shell under membrane or bending loads remain the same and are again given
by ©3) and (44). The major difference is in expressing the resultants o(x)
and m(x) of the net ligament stress GZZ(XT,O,XB) in terms of & and @& or
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Fig. 53  Geometry and notation for an internal crack.

~-87=



v{x) and sy(x) which represent the crack opening displacement and rotation
on the load line (Fig.53). Let the plane internal crack be defined by

L(x]) L(x1)
-a<X <@ Xy = 0, d - 5= < X3 < d + 5 (75)

where, for simplicity, d is assumed to be constant. Thus, if KA and KB are
the stress intensity factors at the crack tips A and B in the corresponding
plane strain problem shown in Fig.53b, as L increases by dL the energy incre-
ment available for fracture may be expressed as

a(u-v) = 122 [k, 2d(L/2) + Kg2d(L/2)] (76)
giving
6 = 2 (1) = 152 (k2 + Kg2) (77)
oL ZE A B

which replaces (54). The rate of energy available for fracture as expressed
in terms of load line "displacements® and "forces" remains the same and is
"~ given by (59).

Let us now assume that the stress intensity factors for the plane
strain problem shown in Fig.53b are known as follows:

Ky = /0 [o gy (s) #mgpls)] s =1L/, (78 )
KB =/ [G gBt(S) +m ng(S)] , $ = L/h (79)

where o and m are again given by (61). The solution of the problem is given
in [37] from which the functions 9pt> Ipp°® 9Bt and Jgp, 2re obtained by a
suitable curve-fitting. It is clear that the derivation given in the pre-
vious section, particularly the integral equations (70) and (71 ) will remain
unchanged and the only change will be in the matrix G(s) defined by {(63).
For the internal crack problem shown in Fig.53 the matrix G now becomes

2 2
L] % * 9gp 9ap9at+9Bp I8t

G(S) = 7

L, , (#0)
Inp9att9898t  9At T 9Bt
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Fig. 54  Stress intensity factors for a semi-elliptic (full lines)
and a rectangular (dashed lines) surface crack in a plate
under uniform tension (v=0.3).
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and the matrices T, A and C are again defined by (86)-(69). After solving
the integral equations (70} and (71) for gy and g,, o and m are obtained
from (63) and (69) and the stress intensity factors from (78) and (79).

From the derivation of the model given in this report it is clear that
the technique can be used to estimate the stress intensity factors in any
plate or shell containing part-through cracks provided the integral equations
for the corresponding through crack problem is available and the related
plane strain crack problem has a reliable solution which can be properly
parametrized. Thus, extending the method to such problems as the corner
cracks [32], collinear surface or internal cracks [32], part-through cracks
in reinforced plates and shells, and other crack-crack and crack-boundary
interaction problems becomes quite straightforward.

5.4 Some Results _

As noted before for the application of the line spring model the contour
of the part-through crack can be any reasonable curve provided the crack is
relatively long (i.e., a>h). Figure 6 shows the stress intensity factor in
an infinite plate containing a surface crack and subjected to uniform mem-
brane loading N;Z away from the crack region. The normalizing stress inten-
sity factor K which is defined by

N
Ko = (—57) hguls)) - s, = L/h (81)

is the corresponding plane strain value for an edge-cracked strip (see
eq. 72)., The figure shows the stress intensity factor at the midsection
(i.e., at x]=0) of a semi-elliptic and a rectangular crack respectively
defined by

L(xT) = L0¢[-1x17a52 = Lov’]-x2 » Llxp)= Lys —a<xy<a . (g2)
Note that the 1imiting values of the stress intensity factor are
K+0 for a/h>0; K+K, for a/h+= . (83)

As one may expect, the stress intensity factor for the rectangular crack is
somewhat greater than that for the semi-elliptic crack and converges faster

to the asymptotic value Ko as a/h + .
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Fig.55 Stress intensity factor at the mid section of a symmetrically
located elliptic crack in a plate under uniform tension:

T99=0g> Lo/h=0.5, Ko=oowwLo72; K, is the corresponding plane
strain value in a strip (i.e., for ay=).
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From a viewpoint of applying the line spring model perhaps the simplest
part- through crack problem is that of a symmetrically Tocated internal crack
in an infinite plate under uniform tension (see the insert in Fig.5§). In
this case since there is no bending the problem is reduced to a simple inte-
gral equation given by (71) in wh1ch kZT’ k22 and ¢,y are zero. In (80)

9at = 9nt and G{s} reduces to gAt and the function c,, becomes
L(x)
cpa(x) = al12)] g (t/maLT” | (34)
0

Figure 55 shows the result of a simple example which is compared with that
given in [38] for a plate containing a symmetrically located elliptic crack
and subjected to uniform tension % N22/h

If the plate is also subJected to uniform bending moment M22’ then in
{80) 9pp = ~Ogp aNd Gpy = Ip and the integral equations (70) and (71)
would be uncoupled. It should, however, be noted that because of crack
closure on the compression side, in this case taken separately the bending
results are meaningless. They may be used together with tension results
which are sufficiently large so that the stress intensity factors on both
sides of the crack are positive. The functions Oat and Jpj 2re obtained
from the results given in [37] as follows:

6pe(s) = /75 %‘ bjsz(j‘” s =L/, (85)
. n j-1
gAb(s) = /as I C.S , s =L/h _ (86)
19 |

where the constants b and cJ are given in Table 8 which is based on the
stress intensity rat1os shown in Table ¢ (see [37]). Extensive results for

multiple part-through cracks of various configurations are given in
Appendices A and B.
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Table 8.

The coefficients bjand c¢;

for the shape

functions gu, and b (e%s. 42 and 43).
J bj o
-1 0.7071 0.7013
2 0.4325 -2,7775
3 -0.1091 90.3734
4 7.3711 -862.4307
5 -57.78%4 4843, 4692
6 271.1551 -~17069.1142
7 -~744.4204 38813.4897
8 1183,9529 ~56865, 3055
9 -1001.4920 51832.6941
10 347.9786 -26731.2995
11 . 5959,4888
Table 9. Stress intensity factors for a centrally cracked
plate subjected to tension (N) or bending (M)
under plane strain conditions, {o=N/h, m=6M/hZ;
Fig. 3b).
L/h f i
ovml/2 mynlL/2
0.05 0.0250
0.1 1.0060 0.0500
0.2 1.0246 0.17001
0.3 1.0577 0.7505
0.4 1.1094 0.2023
0.5 1.1867 0,2573
0.6 71,3033 0.3197
0.7 1,4884 0.3986
0.8 1.8169 0.5186
0.9 2.585 0.7776
0.95 4,252 1.1421




The probiem of a plate having a finite width with the emphasis on collin-
ear part-through cracks and corner cracks was considered in [32]. Figures 56
and 57show some sample results for central and corner cracks. Figure 56 shows
the comparison of the stress intensity factors along the crack front for a
symmetrically located, semi-elliptic and a rectangular surface crack in a

plate under uniform tension. The normalizing stress intensity factors Kto and
KbO shown in Figures56 and 57 are defined by
M L0
( 2} R gy(sg) 5 Kyo = (522) B gy(s,) o s, = 12 (87)

and are the corresponding plane strain values for an edge-cracked strip under
tension or bending. Figure57 shows the stress intensity factor at the free
surfaces of the plate Xy = b in a plate containing two symmetric corner cracks
under uniform tension or bending with crack length being the variabie.

The form of the integral equations such as that given by (70} and (71) is
quite general and is applicable to a great variety of part-through crack prob-
lems in plates and shells, The details of the problem influence only the ker-
nels kij' The analysis and extensive results for collinear surface cracks and
for corner cracks in a plate of finite width are given in Appendix A of this
report.

Extensive results for an infinite cylindrical shell containing an external
or internal, axial or circumferential part-through crack under local membrane
loading or bending moment may be found in [18](see, also [31] for some of the
results). Tables 10 and11 show some sample results for a 24 in. diameter pipe.
The crack profile is again semi-elliptic which is defined by (82). The normal-
izing stress intensity factor K used in these tables is the corresponding edge
crack plane strain value and is def1ned by (87a) for N22 Ne # 0, M22 = Mo = 0
and by (87b) N22 Neo = 0, M22 Mo # 0.

5.5 Conclusions

Despite its simplicity, if carefully applied the line spring model may
give very useful results for certain group of three-dimensional surface and
internal cracks which are otherwise analytically intractable. The application
of the model to the plasticity problems in plates and shells appears to be
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Fig.56 Stress intensity factors for a semi-elliptic (dashed lines)

and a rectangular (full lines) surface crack in a plate of
finite width under uniform tension Ngz.
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Fig. 57 Stress intensity factors in a plate of finite width contain-
ing two symmetrically located quarter elliptic corner cracks
and subjected to uniform tension N22 or bending M22
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also highly promising [27], [28], [33]. If the material has no strain harden-
ing, then the plastic Tine spring reduces to some version of the Dugdale model
which can be analyzed in a relatively straightforward manner [18],[313, [34].
The extension of the model to mixed mode part-through crack problems in plates
and shells is being studied and appears to be quite feasible.
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Table 10. K/K in a line pipe with OD = 24 in., h = 0.344 in.

(/" lo01 o2 103 04 (05 |06 |07 | 08 | 0.9
a/h+ Outer circumferential crack, No#0, Me=0
1.0 10.945 [0.877 [0.664 [0.508 [0.366 [0.247 [0.147 | 0.073 [ 0.033
2.0 10.967 |0.882 |0.766 |0.628 |0.481 {0.340 {0,210 | 0.106 | 0.048
3.0 |0.976 [0.911 {0.817 [0.695 |0.553 [0.405 |0.257 | 0.132 | 0.060
4.0 {0.980 {0.928 {0.847 |0.739 |0.604 {0.455 0,297 | 0.155 | 0.070
5.0 {0.983 |0.938 |0.868 [0.769 |0.642 |0.493 }0.329 | 0.175 | 0.080
6.0 10.985 [0.945 {0.882 [0.791 {0.670 [0.524 {0.357 | 0.193 | 0.088
7.0 10.987 [0.950 |0.892 |0.807 [0.692 [0.549 [0.380 | 0.209 | 0.097
8.0 10.987 10.953 [0.899 10.819 |0.709 {0.570 |0.400 | 0.223 | 0.104
Quter circumferential crack, Ne=0, M.#0
1.0 0.944 10.805 [0.627 {0.443 [0.2/3 {0.133 [0.040 {-0.011 |-0.034
2.0 {0.966 |0.874 |0.741 |0.581 {0.407 {0.242 |0.109 | 0.020 |-0.028
3.0 |0.975 [0.905 {0.798 10.657 [0.492 |0.318 |0.164 | 0.048 {-0.021
4,0 {0.980 |0.923 [0.832 |0.707 {0.551 |0.376 {0.209 | 0.072 {-0.012
5.0 |0.983 |0.934 {0.854 [0.741 {0.594 |0.421 [0.246 | 0.094 |-0.004
6.0 [0.985 [0.941 ]0.869 {0.765 {0.626 |0.457 {0.277 | 0.114 | 0.005
7.0 |0.986 [0.946 {0.880 [0.783 |0.651 |0.485 {0.303 | 0.137 | 0.013
8.0 10.987 |0.950 {0.888 [0.797 {0.670 [0.508 10.325 | 0.146 | 0.020
Inner circumferential crack, Ne#0, M,=0
1.0 10.944 10.814 |0.659 [0.503 j0.361 }0.243 [0.145 | 0.073 | 0.033
2.0 10,965 [0.877 {0.756 {0.615 [0.467 [0.327 {0.201 | 0.102 | 0.048
3.0 10.974 (0.904 |0.803 [0.675 |0.530 |0.383 {0.241 | 0.124 | 0.058
4.0 {0.978 [0.919 }0.831 [0.714 {0.573 |0.423 |0.271 | 0.141 | 0.066
5.0 10.981 |0.929 |0.849 |0.740 {0.604 |0.453 {0,296 | 0.156 | 0.074
6.0 {0.983 (0.935 [0.862 }0.759 [0.628 {0.477 {0.316 | 0.168 | 0.080
7.0 |0.984 |0.940 |0.871 |0.773 |0.646 {0.497 10.332 | 0.179  0.086
8.0 {0.985 10.943 |0.878 {0.784 10.660 |0.513 {0.347 | 0.189 | 0.09]
Inner circumferential crack, Nw=0, Mw#0
1.0 [0.943 70.807 [0.621 [0.436 [0.267 [0.129 {0.037 |[-0.012 {~0.034
2.0 {0.964 {0.868 {0.729 [0.565 |0.3%0 |0.226 {0.099 | 0.015 :-0.030
3.0 {0.973 10.897 |0.782 |0.634 |0.463 |0.297 {0.143 | 0.037 |-0.024
4.0-]0.977 10.914 [0.813 |0.677 |0.513 [0.337 |0.177 | 0.055 |-0.018
5.0 [0.980 {0.924 {0.833 |0.706 [0.548 i0.372 [0.204 | 0.070 }-0.012
6.0 |0.982 |0.931 {0.846 {0.728 [0.575 }0.399 (0.227 | 0.084 [-0.007
7.0 [0.983 ]0.936 {0.856 [0.743 [0.595 {0.421 [0.246 | 0.095 [-0.002
8.0 {0.984 10.939 10.864 !0.755 {0.611 ]0.439 {0.267 | 0.105 [ 0.003
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Table 11. K/KO in a Tine pipe with 0D = 24 in., h = 0.344 in.

L")t o0.1 0.2 10.3 0.4 (0.5 |0.6 [0.7 | 0.8 | 0.9
a/h+ Quter axial crack, Nw#0, Me=0
1.0 |0.946 [0.820 {0.668 [0.512 i0.370 10.250 [0.149 | 0.074 | 0.033
2.0 [0.968 |0.887 (0.774 {0.639 {0.492 {0.350 (0.217 | 0,110 { 0.050
3.0 10.977 |0.917 [0.829 |0.712 [0.574 |0.425 (0.273 | 0.142 | 0.063
4,0 10.983 {0.935 [0.863 [0.762 (0.634 10.485 [0.323 | 0.171 0.077
5.0 [0.986 [0.947 |0.886 {0.797 [0.679 |0.535 [0.367 | 0.200 | 0.090
6.0 {0.988 [0.955 [0.902 10.824 {0,715 (0.577 [0.406 | 0.227 | 0.103
7.0 10.990 {0.961 [0.914 }(0.844 [0.744 |0.611 |0.441 0.253 | 0.117
8.0 |0.991 {0.965 [0.924 [0.860 [0.767 [0.640 [0.472 | 0.277 | 0.130
Quter axial crack, Ne=0, Mo#0
1.0 [0.944 10.807 [0.631 [0.448 {0.2/8 |0.137 [0.042 {-0.010 [-0.034
2.0 [0.967 [0.879 [0.750 [0.593 10.421 (0.255 {0.118 | 0.025 {-0.027
3.0 10.977 {0.912 |0.811 |0.678 {0.517 [0.343 [0.183 | 0.059 [-0.016
4.0 (0.982 {0.931 [0.849 10.734 [0.586 |0.415 10.241 0.092 {-0.005
5.0 (0.985 {0.944 [0.875 {0.775 {0.639 |0.473 (0.292 | 0.124 { 0.008
6.0 [0.988 {0.952 (0.893 {0.805 10.681 |{0.521 [0.338 | 0.155 | 0.022
7.0 10.989 j0.959 [0.907 {0.828 !0.713 [0.562 10.378 | 0.183 | 0.036
8.0 ]0.991 10.963 [0.917 {0.845 {0.740 {0.595 {0.413 | 0.210 | 0.050
Inner axial crack, No#0, M.=
1.0 10.944 10.815 {0.660 {0.504 |0.362.[0.244 10.145 0.073 | 0.034
2.0 |0.966 |0.879 [0.760 |0.620 {0.472 |0.332 10.205 | 0.104 | 0.0489
3.0 [0.975 |0.908 |0.810 [0.685 {0.542 [{0.394 !0.250 | 0.130 | 0.060
4.0 10.980 (0.925 [0.842 [0.730 |0.593 [0.443 0.288 | 0.151 0.071
5.0 [0.983 |0.937 [0.864 |{0.762 [0.632 [0.483 |0.321 0.172 | 0.081
6.0 [0.985 {0.945 [0.880 {0.787 |0.664 [0.517 {0.351 0.191 0.090
7.0 [0.987 [0.951 {0.892 [0.807 {0.690 |0.546 10.378 | 0.209 0.099
8.0 10.988 {0.956 (0.902 |0.823 {0.713 {0.572 i0.402 { 0.226 | 0.108
Inner axial crack, Ne=0, M.#0
1.0 10.943 {0.802 i0.622 |0.437 {0.268 [0.129 [0.038 |~-0.012 |-0.034
2.0 10.965 |0.871 10.734 {0.570 |0.396 {0.232 {0.103 | 0.017 [-0.029
3.0 {0.974 10.902 {0.790 [0.646 |0.478 {0.305 i0.154 | 0.043 |=-0.022
4.0 ]0.979 10.920 |0.825 |0.696 [0.537 |0.362 (0.198 | 0.066 |-0.014
5.0 {0.983 [0.932 10.850 [0.733 |{0.583 |0.409 [0.236 | 0.090 |-0.005
6.0 10.985 [0.947 {0.868 {0.762 |0.620 [0.449 [0.270 | 0.110 | 0.004
7.0 |0.987 10.948 (0.882 |0.784 [0.650 [0.484 |0.301 0.131 0.013
8.0 {0.988 10.953 |0.893 [0.803 (0.676 [0.514 {0.330  0.150 | 0.022




6. THE INTERACTION BETWEEN FLAT INCLUSIONS OF FINITE
THICKNESS AND CRACKS

6.1 Introduction

In studying the strength and fracture of weided components it is often
necessary to take into account, among other factors, the effect of the imper~
fections in the material. Generally such imperfections are in the form of
either geometric discontinuities or material inhomogeneities. For example,
in welded joints, various shapes of voids, cracks, notches and regions of
Tack of fusion may be mentioned as examples for the former and variety of
inclusions for the Tatter. From a viewpoint of fracture mechanics two impor-
tant classes of imperfections are the planar flaws which may be idealized as
cracks and relatively thin inhomogeneities which may be represented by flat
inclusions.

Few unusual results aside, the problem of interaction between two
cracks is relatively well-understood in the sense that the resulting stress
field or the stress intensity factors would either be amplified or reduced
as the distance between the cracks decreases. Almost in all cases the qual~-
itative nature of the result could be predicted intuitively. For example,
if the cracks are parallel then they would be in each other's shadow and
there would be a reduction in the stress intensity factors. On the other
hand if the cracks are co-planar then one would expect an amplification in
the stress intensity factors. The exception or the unusual result in this
case is the reduction in the stress intensity factors at the inner crack tips
for certain relative crack Tocations in plates with relatively smaller thick-
nesses. Some specific problems relating to interaction between cracks were
discussed insections 4 and 5.

Intuitively what is not as well understood is the problem of interaction
between cracks and flat inclusions. Separately both flaws have singular stresses
and consequently are locations for potential fracture initiation. However,
the inclusions are also "stiffeners" and therefore, properly oriented, they
should tend to arrest crack propagation. For this reason in this study it is
found to be worthwhile to undertake a detailed investigation of the problem
on which the technical literature seems to be extremely weak. Particularly
interesting in this problem is the behavior of the stress state around the ends
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of the inclusions and at the points of intersection between inclusions and
cracks. The details of the analysis of this crack-inclusion interaction prob-
Tem and very detailed results are given in Appendix C of this report.
Additional results on _the special case of the inclusion intersecting the
crack are given in AppendixD of this report. The interesting problem in this
case is the peculiar stress singularities at the end of the inclusion which
terminates at the crack surface rather than the crack tip which is discussed
in Appendix C.

‘The correct way of modeling an inclusion would perhaps be to consider it
as an elastic continuum fully bonded to the surrounding matrix. In this case,
however, the crack-inclusion problems are generally difficult and only simple
geometries and orientations can be treated analytically (see, for example, [39],
[407). A simple feature of such crack-inclusion interaction problems is that
generally the stress intensity factors are magnified if the stiffness of the
inclusion is less than that of the matrix and are diminished if the inclusion
is stiffer than the matrix. For certain types of "flat" inclusions a simpler
way of modeling may be to represent them as either a membrane with no bending
stiffness or a perfectly rigid plane stiffener with negligible thickness. In
these problems one may use the basic body force solution as the Green's function
to derive the related integral equations. On the other hand, since the flat
inclusion with an elastic modulus smaller than that of the matrix would itself
have a behavior similar to a crack, it needs to be modeled basically as a
“cavity" rather than a "stiffener".

Even though the technical Titerature on cracks, voids and inclusions which
exist in the material separately is quite extensive, the problems of interaction
between cracks and inclusions do not seem to be as widely studied. Such prob-
lems may be important in studying, for example, the micromechanics of fatigue
and the fracture in welded joints. In this section a simple model for flat
elastic inclusions is presented and the crack-inclusion interaction problem is
considered for various relative orientations.

6.2 Integral Equations of the Problem

The plane strain or the generalized plane stress interaction problem under
consideration is described in Fig.58. It is assumed that the boundaries of
the medium are sufficiently far away from the crack-inclusion region so that
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Fig. 58  The geometry of the crack-inclusion problem
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their effect on the stress state perturbed by the crack and the inclusion
may be neglected and the plane may be considered as being infinite.
Referring to Fig.58 we define the following unknown functions

gy(x;) = 5-)%; [vq (xg:#0)-v4(x45-0)] , (a<xq<b) . (88)
hy(xq) =-§§; [ug (xq540)-uy (x7,-0)]  (a<xq<b) ®9)
gz(xz) = 5%5 [vz(x2,+0)-v2(x2,—0)] , (c<x2<d) , (90)
hZ(XZ) = 5%; [uz(x2,+0)-u2(x2,~0)] , (c<x2<d) 1)

where u and v are, respectively, x and y components of the displacement vec-
tor in the coordinate systems shown in the figure. It is assumed that the
inclusion fills a flat cavity the initial thickness of which is ho(x) which
is "small" compared to its length ZaT. It_is also assumed that the thickness
variation of the stresses and the strain E;x in the inclusion are negligible.
Taus, for the plane strain case, from the Hooke's Law we obtain the following
stress-strain relations in the inclusion

. T-v =2v_ 2% . . .
i _ 0 0 i i _ 1 i
Eyy(x'i) = Eo'(]_\)o') Uyy(xl) s EX_Y(X-I) = 2”0 ny(x'!) s (92)

where EO, Vgs M, are the elastic constants of the inclusion. Now, by observing
that

cyy(X1) = [vy{xq540)=v(x,=0) I/ (xp) (93)

26y, (%7) % [uq(x540)-u (x1,-0) I/ (x) (94)
and

EO = 2u0(1+v ) . Ky = 3-4v0 s (95)

o

from (1), (2) and (5)-(8) we find
X
i B
ny(x.’) B KO-] W} g](t)dt s (96)
@
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A
. b 1
M) = T NG (97)

° a

If we let the medium to be uniformly locaded away from the crack-incliusion
region as shown in Fig.58, for the stress components along the X1 and X, axes

we obtain
2(x0,0) = %y o1®(x0,0) = o 08)
yy' 'l yy xy 1 Xy
200 = w o o ) _ == . n
cyy(xz,o) 9,y COS § + o  sins 25, sinecoss , 99)
(100)

200 T N = 2eocinla
oxy(xz,O) (Uyy GXX)STHBCOSB + cxy(cos e-sin2a) .

From the basic dislocation solution given in, for example, [41], referred
to the coordinate system XqsY1 the stress state at a point (xl,y1) in the plane
due to the displacement derivatives 91’h1 defined by (88) and (89) may be

expressed as
b

1 _
xxg) = | L8, (xyay g (8) + M by ting ()]t (100
1 _ ! 0
5yy (X1s97) ; (6, (xqsy15t)g (2] + Hyy(xpsyqsthhg(t)ddt (102)
d
b _
eyl = [ [6 (xpayyat)gy (£ + Hy Cxpoyp oty (£)1et (103)
d
where

~104-



Gxx(xayst) = A(t-x)[(t-x)z-yzj L]

ny(x,y,t) = A(t-x)[3y2+(t-x)?2] ,

ny(x,y,t) = Ay[y2-(t-x)¢] ,

Hoo (6yst) = Ayly2+3(t-x)2] , (104)
Hyy(x,y,t) = Ay[y2-(t-x)2] ,

ny(x,y,t) = Alt-x}[(t-x)2-y2] ,

2y 1
A(X,y,t) = (Tikj-[(t‘X)2+y2]2 )

and ¢ and « are the elastic constants of the medium (u=E/2(1+v)}, «=3-4v for
piane strain and «=(3-v)/(1+v) for generalized plane stress). Similarly,
referred to the axes X5 Yy the stress state c??, (i,3=x,y) in the plane due
to 92,h2 may be obtained from (101}~(105) by substituting (c,d) for (a,b) and
(xz,yz) for (x1,y1) and (92’h2) for (91,h1).

The integral equations to determine the unknown functions 9}’h1’92’
and h2 may be obtained from the following traction boundary conditions along
(y1=0, a<x1<b) and (y2=0, c<x2<d):

11 12 1 _ i
ny()(} ,O) + ny(XI ,0) + Uyy(X] 10) = Uyy(x1) . (a<x-l<b) s (-[05)
o]](x 0) + ciz(x 0) + c]w(x 0) = oi {(x:) , (a<x,<b) (106 )
Xy*"1? xy'"1? xy'“1? xy*"1/ ? 1 ? -
22 21 oo -
Uyy(xzso) + Uyy(XZ’O) + Uyy(xzso) =0, (C<X2<d) 5 7 (]07)
Sop(xg:0) + ooy (x5,0) + 05r(%5,0) = 0, (cexyed) (108 )

where all except the coupling stresses in the second column are given by
{96)-(104, The coupling stresses have the following meaning: c}i(x1,0) is
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the normal stress on y1=0 plane due to the displiacement derivativés gz(xz} and
h2(x2) and oi;(xz,o) is the normail stress on y2=0 plane due to 91> h1, etc.
Thus, after making the necessary stress transformations similar to (99) and
(100) we obtain

d
12 - 12 12 .
o12x0:0) = [ [620x,t)gy(t) + K20y Oy} Tet (109)
C
d
12 - 12 12
Sy X170) = | [6,0(xqst)gp(t) + H Clxqthnp(t) Idt (10)
o
b
21 - 21 21
Gyy(Xps0) = [ (6 (xpst)gq () + Hy (x5 t)h () ]dt (111)
21 _ 21 21
Zaxp0) = [ 62 0xgut)g () + K2 xputhhg (£) 30t (112)
' a
where from
12 _ 22 ) 22 . 5 22 .
cyy(x],o) cyy(xz,yz)cos 9 + oy sine + oLl sin2e (113)

calculated at Xp™X1C0SE, y2=-x1sine we have

G]Z(

vy x1,t) = G (x1c056,-x151n6,t)c0549 + Gxx(x]cose,-x1s1ne,t)

NAS

+ ny(x]cose, x]sine,t)sinZe , . (114)

12 - . . 2 _ .
Hyy(x],t) Hyy(x]cosa, x1s1ne,t)cos 6 + Hxx(x1cose, x}s1ne,t)

+ ny(x1cose,-xls1ne,t)s1n26 . (115)

Similar expressions for the remaining kernels in(110)-{112) are obtained
by using the stress transformations
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oag (5720 = [oga(xp.¥p) =025 (%9 ,) s inecoss

22(x

-+

- N 2 2

Ty xz,O) oy ( ],y])cos 6 + 0 (x ,y])s1n 2
011(x )sin2s (x =X, COSE =x,.5in6)
xy ‘X129 2 AXgTXHC05E, ¥97Xy d
21 _ M o . .
cxy(xz,o) = [ny(xl’yq) cxx(x1,y])]s1necosa
11 2a_ednZ = = 3
+ cxy(XT,y])(cos e-sin<g), (x1 X5COSE, ¥ x251ne) .

Thus, from (101)-(112) and (116)-{118) it follows that
612( ) = [G (x,y,t)-G (x,y,t)]sinacoss
1 ¥y

+ ny(x,y,t)cos2a, (x=x]cose, y=-x]s1n9) .

12 .
ny(x1,t) [Hxx(x,y,t)-Hyy(x,y,t)]s1necose

+

ny(x,y,t)COSZB, (x=x1cose, y=-sz1ns) .

64 = s2s + G__(x,y,t)sin%e
By (xgst) = B, [xsy,t)co wx  X5Y
- ny(x,y,t)sinEe', (x=x,cos8, y=x,8ine) ,
he! = 526 + H_,(x,y,t)sin?s
Hyy(xpst) = Hyy(xy,theo o XY

)

ny(x,y,t)sinZG s (x=x2cose, y=x251ne) ,
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'(116)

M7

(118)

(119)

(120
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21 _ : .
ny(xz,t) = [ny(x,y,t)-Gxx(x,y,t)]s1nec05c
+ ny(x,y,t)COSZG R (x=x2cose, y=x251n Y, (123)
e (x,,t) = TH . (x,y,t)-H_ (x,y,t)Isinecoss
X_y 23 yy g » XX sJ 2

+ ny(x,y,t)c0525 s (x=x,co0s8, y=x,sins) . (124)

From (105)-(108) the integral equations of the problem may then be obtained as

b X d
1
1 1 12
1y o st = [ stxlay (e + o, [ 6120 thgy(t)at
d a C
{d
12 _ .
*t e, J Hyy(x.l,t)hz(t)dt = =Cylyy s (a<x1<b) . (125)
C
b X d
LI (R (t)dt + }H(x Yho(t)dt + ¢ 612( t)g,(t)dt
T texy 1M 0 X1:413;
a a C
d
+c, [ ooy )y (£)dt = - o7 v (a<xy<b) (126)
C
b b d
c | 68l(x,,t)g. (t)dt + ¢ | HEl(x,,t)h (t}dt + L | —— g (t)dt
) yy "2’ 0 yyr©er i T t—x2 2
a a C
= -co(c;ycosze+cx sinZg-¢ yS1n28), (cexp<d) , (127)
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b b d

21 21 1 1

o | Eglxptigy (et + ¢ | K xputh ()et + 1 | £ ()t
a a C
= -co[(c; -cix)sinecose + cinOSZG], (c<x2<d) s | (128)
where ( v )
u (xt1){k +1

¢ = HE 4 Glx) = - 2 =1’ fL ¥

H HiKg o' "1

u (xt+1)

H(x,) = - -2 . (129)

1 2u ho(x1)

If there is no crack in the medium, g2=0=h2, the integral equations
uncouple and (125)and (126)give the unknown functions 9 and h1. For example,
if the inclusion has an elliptic cross-section given by

hy(x) = bo/Tfif , (130)
(125) becomes
'I 1 g'l(t) X C'] @ .
= [ X dt - J — g](t)dt = =C, oyy {131)
-1 -1
where

- i (1) (T4 )
1 zubO(KO-])

(132))

and without any loss 1n generality it is assumed that a=-1, b=1, X=X The
soTution of (131} is found to be

co
.oy _t s (=1<t<1
59(8) = - 15 = (-1<t<1) (133)

which, for uo=0 reduces to the well-known crack solution. B8y using the follow-
ing definition of the stress intensity factor

ky(t) = ~Tim %%% VZ(T-x) 47(x) (134)

X1
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from (133) it follows that

oo

c

ky(1) =T3% ) (135)

Similarly, in the absence of a crack from (126), {129) and (130) it may be
shown that

h,(t) = - ﬁ-cﬂ——t—- , (-1<t<1) (136)
2 JT=tZ
o u_ {T+c)
- XY 2 Mot TR
) = 15, » %2 b, (137)

As another special case if we assume that the stiffness of the inclusion
uo=0, then the functions G and H defined by (129) vanish and the integral equa-
tions (125)- (128)reduce to that of two arbitrarily oriented cracks shown in
Fig. 58.

6.5 Stress Intensity Factors ‘

In the linearly elastic medium under consideration the intensity of the
stress state around the end points of the crack and the inclusion is governed
by the singular behavior of the displacement derivatives 91> 9o h] and h2
which are defined by 88 }-(91). If we assume the following standard definition
of Modes I and Il stress intensity factors

k1(a) = lim V2{a- x15 (x],O) , : (138)
X 2
ko(a) = Tim /2Ta Ry o) (x7:0) s | | (139)
X,+d
X,
k](c) lézc V2(c- xzi yy(XZ’ ) , etc. , (140)

and observe that the system of integral equations {(125)- (128) which has simple
Cauchy type kernels has a solution of the form
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6;(t) (1)

gi(t) # e, N (t) = —/—— (i=1,2) , (141)
/{b-t)}(t-a) /{d-t) (t-¢)
from (125)- (128) and (138)-(141) it can be shown that
ky(a) =%&‘; Tim V2{x;-a) g4(xq) » (142)
X1>a
k](b) = 1+ T1Eb v2(b- 5 91(X1 , | (143)
X1
kp(a) = £L Tim v2Tx;-a) hy(xq) (144)
2 1ESS
Xy>a
ky(b) = = FL Vim /2677 hylxq) (145)
Xq-D
*1

The stress intensity factors ki(c) and ki(d), (i=1,2) may be expressed in
terms of g, and h2 by means of equations similar to (142)-(145).

6.4 Results

The integral equations (125)- (128)are solved by using the technique
described in [36] and the stress intensity factors are calculated from (142)-
(149 and from similar expressions written for the crack. For various crack-
inclusion geometries and stiffness ratios uO/u (uo being the shear modulus of
the inclusion) the calculated results are given in Tables 12-17. The main
interest in this paper is in relatively "thin" and flat inclusions. Hence
in the numerical analysis it is assumed that the thickness h0 is constant.
Table T2 shows the normalized stress intensity factors in a plane which con-
tains a crack equal in size and coplanar with an inclusion and subjected to
uniform tension and shear away from the crack-inclusion region (Fig.5%a ).
The inclusion model used in this analysis is basically a crack the surfaces
of which are held together by an elastic medium of shear modulus Hye Thus,
for u0=0 one recovers the two crack solution. It may be observed that for
u0>0 there is a significant reduction in the stress intensity factors around
the end points x4=a and x,=b (Fig.59a). In Table 12 the variables are the
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Fig. 59  Special crack-inclusion geometries used in numerical analysis
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stiffness ratio Mo /u and the thickness of the inclusion h /a with the
spacing a/a1 = 0. OT being constant where 2aT is the 1ength of the inclusion
(Fig.59a ;. Similar results calculated by assuming that ho/a = 1/20 and
a/a1 is variable are shown in Table 13

For various values of the stiffness ratio uo/u and fixed values of the
inclusion thickness (ho/a1=1/20) and the distance a (a/a]=0.1), the effnzct
of the angle & on the crack tip stress intensity factors are given in Table
14, The geometry and the loading condition away from the crack-inclusion
region are shown in Fig.5%b . In this example, too, it is assumed that the
inclusion and the crack are of equal length (a2=a1). For the special case
of uo=0, that is, for the case of two cracks of equal lengths oriented at an
angle o the stress intensity factors are given in Table 15,

The stress intensity factors for the symmetric crack-inclusion geometries
shown in Figures60a and 60bare given in Table 16 where the length ratio 3,/
is assumed to be the variable. In both examples the inclusion {half) length
a is used as the normalizing Tength parameter and the relative distance
c/ay (Fig.60a) or a/ay (Fig.60b ) is assumed to be constant.

Table 17 gives the stress intensity factors for a crack perpendicular
to the inclusion where, referring to Fig58, 6=r/2, a=0, u0=u/20 and c/aqy=
0.05 are fixed and ay is variable. .

1t should be noted that since the superposition is valid, the tables
give the stress intensity factors for the most general homogeneous loading
conditions away from the crack-inclusion region. Also, the tables give the
stress intensity factors which are normalized with respect to o?j/ﬁ;"where 2a1
is the length of the inclusion and (i,j)={(x.y), (Fig.58). The notation used
in the tabies is

Kpy = s ky, =, kg =, etc. (146 )
.j/é--l- Uij/g]_ [0 /éT

where‘k1 and k2 are, respectively, Modes I and II stress intensity factors
defined by equations such as (138)-(140) and calculated from the expressions
such as (1422-(145).
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Fig. 60 Special crack-inclusion geometries used in numerical analysis
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Table 12. Modes I and II stress intensity factors for the case of a crack
Tocated in the plane of the inclusion in a medium subjected to

o

Ty or Uiy away from the crack-inclusion region (Fig. 11); c=-a,

d=-b, a/a1=0 01, TC ( )/o /5;, k (d)/c Zc'kz(c)/cxyﬂi;,
e (/07 Ay, K=k (2)/ a7 k2a 2(a)/g f" gy (0)/05, Vo,
k2b ( )/c Vr_' a (b a)/2.
Zh0 uO/u
b-a 0 0.05 0.1 0.25 0.5 1.4 2.0 5.0
0.07 [1.2063 .1578 L1031 .0535 .0303 .0163 .0085% .0035
k.Ib 0.02 [1.2063 .2320 .1578 .(0888 .0535 .0303 .0163 .0068
0.1 1.2063 .5146 .3713 .2320 .1578 .1031 .0634 .0303
0.2 11.2063 | .6836 | .5146 | .3323 | .2320 | .1578 | .10371 | .0535
0.01 (2.9642 .5725 .3908 .2104 . 1207 .0654 .0342 .0740
kTa 0.02 12.9642 . 7941 .5725 .3404 .2104 .1207 .0654 .0276
0.1 2.9642 i1.5036 {1.1620 . 7941 .5725 . 3908 .2478 .1207
0.2 2.9642 11.8803 {1.5036 11.0636 . 7941 .5725 .’3908 L2104
0.07 12.9642 i1.1795 [1.1045 {1.0479 [1.0255 {1.0132 {1.0067 1.0027
k1C 0.02 12.9642 {1.2952 [1.1795 |1.0870 (1.0480 {1.0255 {1.0132 [1.0054
0.1 2.9642 {1.7825 [1.5327 {1.2952 {1.1795 |1.1045 {1.0583 |1.0255
0.2 1]2.9642 [2.0764 {1.7825 |1.4645 {1.2952 |1.1795 {1.1045 {1.0479
0.01T ]7.2063 11.0116 1.0063 |1.0027 11.00714 |1.0007 {1.0004 |1.00Q01
k 0.02 [1.2063 {1.0211 {1.0116 [1.0051 {1.0027 {1.0014 {1.0007 {1.0003
id [0.1 1.2063 [1.0693 {1.0432 {1.0211 {1.0116 {1.0063 {1.0033 |1.0014
0.2 [1.2063 11.1019 {71.0693 |1.0366 {1.0211 {1.0116 [1.0063 {1.0027
0.07T [1.2063 | .3106 | .2159 | .1275 | .0810 | .0482 | .0269 | .0117
k2b 0.02 [1.2063 L4368 .3106 .1910 L1275 .0810 L0482 .0221
0.1 1.2063 .8214 .6500 .4368 .3106 .2159 . 1459 .0810
0.2 :1.2063 .9673 .8214 .5946 . 4368 .3106 .2159 L1275
0.07 12.9642 [1.00/5 . /480 L4743 L3122 . 1900 . 1076 L0470
k2a 0.02 12.9642 {1.3214 {1.0075 6747 L4743 L3122 . 1900 . 0885
0.1 2.9642 |2,1749 |1.8071 i1.3214 }1.0075 . 7480 .5345 .3122
0.2 [2.9642 12.4785 {2.1749 |1.6847 11.3214 (1.0075 | .7480 i .4743
10,07 12.9642 11.4272 {1.2691 {1.1366 {1.0778 {1.0425 i1.0225 {1.0093
k2C 0.02 |2.9642 {1.6463 |1.4272 |1.2298 {1.1366 |1.0778 i1.0425 i1.0182
0.1 2.9642 12.3136 12.0183 (1.6463 |1.4272 |1.2691 i1.1622 |1.0778
0.2 12.9642 {2.5619 {2.3136 [1.9221 i1.6463 |1.4272 {1.2691 :1.1366
0.07 [1.2063 [1.0330 |1.0188 {1.0085 {1.0045 |1.0023 ;1.0012 {1.0005
k2d 0.02 [1.2063 |1.0549 {1.0330 {1.0156 [1.0085 ;1.0045 {1.0023 {1.0010
0.1 11.2063 |{1.1292 |1.0954 {1.0549 {1.0330 11.0188 {1.0103 |1.0045
0.2 11.2063 |{1.1583 {1.1292 |{1.0846 {1.0549 {1.0330 |{1.0188 {1.0085
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Table13. Modes I and II stress intensity factors for the case of a crack
located in the plane of the inclusion in a medium subjected to
U;y or U:y away from the crack-inclusion region {Fig. 11); c=-a,
d=-b, h_/a;=1/20.

2a Ug/H

b-a 0 0.05 0.7 0.25 0.5 7.0 2.0 5.0
0.01 |1.2063 | .3713 | .2611 L1578 | .1031 .0635 | .0366 i .0163
ka 0.5 |1.0517 | .3544 | .2513 | .1527 | .0998 | .0615 | .0354 { .0158
1 |1.0280 | .3493 | .2479 | .1508 | .0986 | .0607 | .0350 | .0156
2 11,0125 | .3453 | .2452 ; .1492 | .0976 | .0601 .0347 | .0154
‘ 0.071 (2.9642 |1.1620 | .87/51 L5725 | .3908 | .2478 | .1454 i .0654
k1a 0.5 (1.1125 | .3877 { .2768 | .1693 | 1110 | .0685 § .039% |, .0176
1 [1.0480 | .3604 | .2564 | .1563 ; .1023 | .0630 : .0364 | .0162

2 {1.0176 | .348] L2474 ) .1506 | .0985 | .0607 ; .0350 | .0Q156

0.07 2.9642 11.5321 |1.3433 J1.1795 ;1.1045 {1.0583 {1.0313 {1.0132
k]c 0.5 |1.1125 |1.0229 {1.0130 {1.0057 {1.0030 {1.0015 {1.0008 (1.0003
T 11.0480 |1.0096 {1.0054 }1.0024 {1.0012 |1.0006 |1.0003 {1.0001

2 11.0176 {1.0035 [1.0020 ;1.0009 {1.0004 [1.0002 [1.0007 [1.0000
0.0T {1.2063 {1.0432 [1.0253 |1.0116 i1.0063 {1.0033 |1.0017 |1.0007

de 0.5 |[1.0517 {1.0704 |1.0058 [1.0026 ;1.0013 {1.0007 |1.0003 {1.0001
1 ]1.0280 {1.0056 |1.0031 {1.0014 }1.0007 {1.0004 {1.0002 |{1.0001

2 |1.0125 {1.0025 {1.0074 |1.0006 j1.0003 {1.0002 |{1.6001 {1.0000

0.01 [1.2063 | .6500 | .4845 | .3106 : .2159 | .1458 | .0943 | .0481
kZb 0.5 11.0517 | .6031 L4576 | .2979 | .2084 | .1412 | .0914 | .0467
1+ 11.0280 & .5925  .4503 | .2938 | .2057 | .1395 | .0903 | .0461

2 |1.0125 | .5849 | .4449 | ,2905 | .2035 | .1380 | .0893 | .0456

.01 [2.9642 ;1.8071 (1.4340 [1.0075 | .7480 | .5345 | .3601 . 1900

k2a 0.5 |1.1125 | .6498 | .4971 .3272 | .2302 | .1867 | .1017 | .0520
1 11.0480 | .60871 | .4636 | .3035 | .2129 | .1446 } .0937 | .0479

2 |1.0176 | .5889 { .4483 | .2930 | .2053 | .1393 | .0902 | .0461

0.01 {2.9642 [2.0183 |1.,7299 |1.4272 {1,2691 |1.1623 }1.0937 |1.0425

k2C 0.5 |1.1125 |71.0523 |1.0344 {1.0172 {1.0095 {1.0050 [1.0026 !1.0011
T 11.0480 {1.0222 (1.0145 {1.0072 {1.0040 {1.0021 |1.001%1 (1.0004
2 11.0176 i1.0081 [1.0053 i1.0026 {1.0014 {1.0008 |1.0004 }{1.0002°

0.01 |1.2063 11.0954 [1.0637 |1.0330 [1.07188 |1.0104 {1.0055 {1.0023

K 0.5 |[1.0517 {1.0239 [1.0157 {1.0078 {1.0043 [1.0023 i1.0012 {1.0005
2d T 11.0280 |1.0129 {1.0084 {1.0042 {1.0023 {1.0012 i{1.0006 i1.0003
2 |1.0125 11.0057 [1.0038 [1.0019 (1.0070 {1.0005 {1.0003 !1.0001
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Table 14. The effect of angular orientation 3 and the modulus ratio
uo/u on the stress intensity factors in a medium under general
in-plane loading (Fig.10); c=a, d=b, ZhO/(b-a)=1/20, 2a/(b-a)=0.1.

G TS R 1 - N - N - R S |
i | u/u = 0'05____.4,ﬁv
ky | 0-2624 | 0.8047 | 1.0961 { 0.8097 | 0.2654 0o
= |ky. [-0.4711 |-0.4636 | 0.0163 | 0.4737 | 0.4585 0
XX kyq | 0.2560 | 0.7618 | 1.0106 | 0.7562 | 0.2518 0
kpq |-0-4378 |-0.4253 | 0.0722 | 0.4432 | 0.4383 0
kye | 0.6402 | 0.2232 {-0.0311 | 0.2749 | 0.8366 | 1.1094
o |ky | 0.4596 [ 0.4217 [-0.0483 |-0.5019 |-0.4771 0
%y |kqq | 0.7052 | 0.2221 |-0.0109 | 0.2568 | 0.7702 | 1.0250
Koy | 0-4105 | 0.3981 {-0.0386 |-0.4636 |-0.4493 0
kye |~0-5020 |-0.5895 | 0.2839 | 1.1440 | 1.0302 0
= |kpo | 0.3394 |-0.5681 |-1.0010 |-0.3793 | 0.7098 | 1.2367
Xy kg 1-0-9072 |-0.8566 | 0.0354 | 0.9049 | 0.8903 0
Koy | 04353 |-0.5284 |-0.9911 |-0.4631 | 0.5521 | 1.0567
! uo/u = 0.1
ki | 0.2552 | 0.7786 1.0613 | 0.7908 | 0.2608 | 0O
. 1Ky, 1-0.4593 [-0.4546 | 0.0095 | 0.4610 | 0.4512 0
“xx tkqq | 0.2534 | 0.7570 | 1.0066 | 0.7540 | 0.2512 0
Koq |-0-4366 |-0.4291 | 0.0072 | 0.4395 | 0.4366 0
koo | 0.6535 | 0.2334 1-0.0181 | 0.2628 | 0.8003 | 1.0643
. k. | 0.4533 | 0.4238 |-0.0293 |-0.4758 |-0.4605 0
°yy |kqq | 07248 | 0.2350 {-0.0058 | 0.2540 | 0.7615 | 1.0143
kpg | 0-4219 | 0.4145 |-0.0215 |-0.4506 |-0.4425 0
kye |-0-6023 |-0.6717 | 0.1849 | 1.0482 | 0.9749 0
= |ky. | 0.3956 |-0.5401 |-0.9996 |-0.4197 | 0.6414 | 1.1599
XY kyq |-0-8892 |-0.8688 | 0.0230 | 0.8910 | 0.8817 0
Koq | 0.4617 |-0.5172 |-0.9943 |-0.4762 | 0.5343 | 1.0374
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Table 15~ cont.

uo/u = 0.5
ko | 0.2478 | 0.7537 | 1.0157 | 0.7622 | 0.2535 0
o= |ky 1-0.4414 1-0.4405 | 0.0019 | 0.4418 | 0.4391 0
XX kyq { 0-2509 [ 0.7517 | 1.0017 | 0.7511 | 0.2503 0
Ky (-0-4341 [-0.4322 | 0.0017 | 0.4347 | 0.4341 0
Ky | 0-7013 | 0.2427 |-0.0045 | 0.2523 | 0.7620 | 1.0158
o |Kpe | 0-4381 | 0.4288 |-0.0078 |-0.4448 [-0.4407 0
Tyy kpq | 0-7446 | 0.2469 1-0.0072 | 0.2570 | 0.7527  1.0033
Koy | 0-4312 | 0.4292 |-0.0048 |-0.4371 |-0.4353 0
ko |-0.7657 |{-0.8011 | 0.0517 | 0.9166 | 0.8971 0
koo | 0.4738 |-0.5057 |-0.9981 |-0.4766 | 0.5420 | 1.0479
kyy4 {-0.8712 |-0.8639 | 0.0061 | 0.8726 | 0.8702 0
kog | 0-4970 |-0.5046 |-0.9987 |-0.4938 | 0.5094 | 1.0105
uo/u =2
kqe | 0.2484 | 0.7504 | 1.0041 | 0.7535 | 0.2510 0
= ik, [-0.4356 |-0.4354 | 0.0003 | 0.4356 | 0.4349 0
XX kg | 0-2503 | 0.7505 | 1.0004 | 0.7503 | 0.2501 0
koq |-0-4333 |-0.4328 | 0.0004 | 0.4335 | 0.4333 0
kye | 0-7317 | 0.2473 1-0.0012 | 0.2505 | 0.7531 | 1.0042
= [Kpo | 0.4330 | 0.4314 {-0.0022 |-0.4363 |-0.4352 0
Yy Kyq | 0-7487 | 0.2492 |-0.0003 | 0.2503 | 0.7507 | 1.0009
koq | 0-4326 | 0.4321 |-0,0012 |-0.4341 |-0.4336 0
kyo |-0-8318 [-0.8460 | 0.0146 } 0.8801 | 0.8748 0
= |kye | 0.4947 |-0.5001 |-0.9989 |-0.4932 0.5122 | 1.0139
Xy k4 {-0.8674 |-0.8655 | 0.0016 ; 0.8678 0.8672 0
Koq | 0-4976 |-0.5013 |-0.9997 |-0.4983 | 0.5026 | 1.0029
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Table T6. Interaction of two cracks (Fig. 11b): uy/uy=0, c=a, d=b,

2a/(b-a) = 0.1.
50
30 60 90 120 150 180
kia 0.1834 -0.0122 | -0.1604 | -0.1271 : -0.0361 0
k2a 0.1293 0.0928 0.2122 0.2877 0.1946 0
ka -0.1471 -0.1373 | -0.0666 -0.0113 0.0024 0
- k2b 0.1825 0.2323 0.2104 0.1371 0.0588 0
“xx klc 0.3637 1.0032 1.2370 0.8684 0.2790 0
ch -0.5576 -0.4950 0.0577 0.5191 0.4810 0 .
kld 0.3073 0.8057 1.0308 0.7633 0.2536 0
kZd -0.3956 -0,3708 0.0477 0.4591 0.4447 0
kTa 0.5843 0.9140 1.2370 1.3954 1.4643 | 1.4914
k2a -0.1912 -0.0242 | -0.0577 -0.7080 ¢ -0.0730 0
ka 0.9210 1.0081 1.0308 1.0567 1.0994 | 1.1220
- kZb 0.0215 -0.0427 | -0.0477 -0.0168 0.0054 0
Oyy k]c 0.4051 -0.1004 | -0.1604 0.3999 1.14971 | 1.4914
k20 0.6195 0.4264 | -0.2122 -0.6987 | -0.6027 g
k?d 0.4666 0.0652 | -0.0666 0.2821 0.8481 | 1.71220
k2d 0.1916 0.1811 | -0.2104 -0.5795 | -0.5082 0
k1a 0.1842 0.7402 0.6381 0.3381 0.1384 0
kZa 1.174% 1.1315 1.0152 1.1777 1.4058 | 1.4914
k1b 0.4327 0.1938 0.0748 0.0610 0.0532 0
- k2b 0.5851 0.7960 0.9950 1.1104 1.1305 | 1.1220
Xy k]c =0.4402 -0.4311 0.6381 1.4876 1.2302 0
k2c 0.3095 -0.6671 -1.0152 -0.2462 0.9347 | 1.4914
‘k1d -1.1414 -0.8951 0.0748 0.9554 0.9234 0
k2d 0.1531 -0.6362 | -0.9950 -0.4219 0.6115 | 1.1220
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Table 17. Stress intensity factors for the case of a crack perpendicular
to the inclusion, uO/u=T/20, hO/a1=1/20.

o k aZ/a1
0.1 0.5 T.0 5.0

kyg=kq, | -0-0088 | -0.0479 | -0.0933 | -0.1449

. Kpg==Ko | =0.0058 | -0.0820 | -0.1428 | -0.2729

Fig. 33 | XX | Kig +1.0636 | 1.1611 1.1572 | 1.1256

a=-b=-a, k14 1.0320 1.0245 1.0109 1.0029

c/a7=0.1 Kq7K1p 0.3424 0.3441 0.3441 0.3438

: . Ky,=-Koy | 0.0006 0.0039 0.0039 0.0033

Oyy K1e -0.1220 | -0.0896 | -0.0632 | -0.0255

Ky 4 -0.0988 | -0.0116 0.0067 0.0021

k;,=-Kqp | -0-0004 | -0.0162 | -0.0850 | -0.5164

. Koa=Kop 0.5703 0.5162 0.4502 0.4199

Ixy Koo -0.7288 | -0.9533 | -1.0730 | -1.2431

Kog -0.7856 | -1.0338 | -1.0638 | -1.0200

Ky, 0.0208 | -0.1238 | -0.2149 | -0.2773

-~ Kyp 0.0006 0.0100 0.0234 | -0.1170

. 1 kqekyg | 140037 | 1.0053 | 1.0701 1.0026

Fig. 3b kp.=-Kpq | -0.001T | -0.0074 | -0.0107 | -0.0045
c=-d=-a2 <

a/a;=0.1 K1a 0.3476 0.3543 0.3764 0.3057

- K1 0.3416 0.3418 0.3416 0.3469

4 k1c5K74 0.1584 | -0.0186 | -0.0324 | -0.0048

kpe==Koy | =0.0353 0.0460 0.0406 0.0073

Koa 0.6514 0.5903 n.4304 0.0544

. Kog, 0.5808 0.6066 €.6315 0.3702

“xy Kyo=-Kqq | -0-4813 | -0.2431 | -0.7012 | -0.0010

Kpo=kpq | -1-3694 | -0.9632 | -0.9372 | -0.9946

=120~




Table 18 Stress intensity factors for a crack perpendicular to the

inclusion (Fig. 1); 8=n/2, a=0, 2c/(b-a)
ZhO/(b-a)=0.05.

=0.05, uo/u=1/20,

- ) A
0.1 0.5 1.0 5.0
Ky, .0399 .2055 .3675 1.1277
Koy .0128 .0418 .0555 1125
K1p .0005 .0035 -.0081 -.0715
. Koy .0021 .0402 .1107 . 3050
Oxx Kqc 1.0762 T.1674 1.1729 T.1435
Koc .0162 -. 0056 -.0311 -.0740
k4 1.0310 1.0274 1.0143 1.0018
Kog .0207 .0212 .0115 -.0015
K 3574 73776 3797 3887
Ko .0092 .0283 .0390 .0533
Ky .3414 L3417 .3418 .3456
. Kop, .0001 -.0010 -.0036 -.0062 .
yy 3 -.0490 -.0607 -.0514 -.0250
Koc -.3157 -.2298 -.1863 -.0933
Ky 4 -.0468 -.0250 -.0084 -.0009
Kog -.1943 -.0830 -.0464 -.0048
Kia .0887 L3231 -4952 T.1795
Ko .6265 .7947 .9710 1.9112
Kqp .0002 .0001 .0079 .2709
. Kop .5805 .5910 .5713 4743
Txy K. 1.7620 64T L4373 .1825
Ky -1.0423 -1.1380 -1.1889 -1.2670
Kqg .6504 .1454 .0426 .0045
Kog -.9292 -.9710 -1.0075 -1.0117
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PART II
MECHANISMS OF CORROSION FATIGUE IN LINEPIPE STEELS

In this part, results of studies, designed for developing mechanistic
understanding of corrosion fatigue, are described. These studies provide the
scientific bases for guiding the development of methodology for assessing the
safety and durability of pipelines in service, and for guiding the development
of improved materials and protection systems. The results are not intended

for use directly in design and rule-making.

1. INTRODUCTION

Transmission and distribution pipelines are exposed to a broad range of
chemical environments, both in terms of corrosive species that are present in
soils (such as carbonates, chlorides and nitrates) and of deleterious species
that may be transported within the Tines (such as hydrogen and ammonia, and
hydrogen sulfide and water/water vapor as impurities in natural gas and oil)
These environments, acting 1h concert with operating stresses (both static and
cyclic stresses) and residual stresses, can cause cracks to initiate and grow,
and resuylt in subsequent failure {leakage or rupture). In addition to these
external environments, hydrogen that might be present in the steel (introduced
during fabrication, processing or field installation, or by corrosion or
cathodic charging during service) can also lead to cracking. Quantitative
information and understanding are needed, therefore, to assess the safety,
durability and reliability of pipelines during service, and to guide in the
development of improved materials and protection systems.

Although a considerable amount of research has been devoted to the prob-
lem of environmentally assisted cracking in Tinepipe steels, most of this
effort, however, has been directed to the study of stress corrosion cracking
(or cracking under static loading) and of corrosion per se. For a range of
reasons, quantitative understanding of the phenomenological and mechanistic
aspects of environmeﬁta1]y assisted cracking is yet to be fully developed.
Results during recent years, at Lehigh University and elsewhere [1-7], have
shown that environmentally assisted cracking results from the interaction of
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clean metal surfaces (produced by cracking or by deformation) with the envi-
ronment, and that the very early stages (i.e., the first few milliseconds to
several seconds) of reactions are responsible for the enhanced cracking.
Fatigue (associated with cyclic loading from a variety of sources), being a
proficient mechanical process for creating new surfaces, acting in concert
with corrosion, therefore, may be a more serious failure mechanism than stress

corrosion cracking.

The need'to consider corrosion fatigue as a potentially significant
failure mechanism in pipelines is based on the recognition that operating
pressures (or stresses) do not remain truly constant and that minor fluctua-
tions in stresses can significantly alter cracking response [8-11]. Indeed it
has been difficult to reconcile service failures and laboratory stress corro-
sion cracking data without allowing for the possibility for corrosion fatigue
[11,72]. To properly address the problems of corrosion fatigue, it is essen-
tial to recognize the multi-faceted nature of the phenomenon which reflects
the synergism of chemistry/electrochemistry, mechanics and metallurgy. The
cracking response reflects both the nafure and the kinetics of chemical reac-
tions between the environment and the fresh crack surfaces, and the inter-
actions of hydrogen that is produced by these reactions with the microstruc-
ture [6]. Significant advances in understanding and in placing corrosion
fatigue analysis on a fundamentally sound and quantitative basis depend on the
understanding of the mechanisms of the various processes that control corro-
sion fatigue.

2. PROGRAM OBJECTIVE AND SCOPE

In this part of the program, a multi-disciplinary research was undertaken
to investigate the mechanisms of corrosion fatigue crack initiation and propa-
gation in linepipe steels exposed to aqueous environments. The program 1is
directed at (1) the development of quantitative understanding of the early
stages’of chemical reactions in relation to crack initiation and growth,
(2) elucidating the mechanisms for corrosion fatigue crack initiation and
growth, including the influences of chemical, mechanical and metallurgical
variables, and (3) the formulation and evaluation of models for predicting
cracking response and service performance. A combined fracture mechanics,
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surface chemistry and materials science approach was used. The specific areas
of planned research were as follows:

(1) Determination of the kinetics of passivation (viz., initial
reactions) as functions of pH, ion concentration, and other
factors.

(2) Determination of the kinetics of fatigue crack initiation as a
function of temperature for selected environmental conditions,
and correlation with the chemical data.

(3) Determination of the kinetics of fatigue crack growth as a
function of temperature for selected environmental conditions,
and correlation with the chemical data.

(4) Examination of the influences of loading variables (such as
cyclic load frequency, waveform, and load ratio) on corrosion
fatigue crack initiation and growth.

(5) Synthesis of chemical, mechanical and metallurgical data to
develop quantitative understanding of the mechanisms for corro-
sion fatigue crack initiation and growth. Formulation and veri-
fication of models for predicting cracking response and service
performance.

The research program was planned for a period of three (3) years, and
complemented an ongoing study on the mechanisms for corrosion fatigue in high-
strength steels and titanium alloys sponsored by the Office of Naval Research.
Because of funding constraints, the program has been restricted to studies of
the kinetics of passivation and the kinetics of fatigue crack growth in X-70
steel. Results from the first two (2) years are summarized in this final
technical report. '

3. MATERIAL AND EXPERIMENTAL WORK

A X-70 steel, obtained as 5/8-inch-thick plate, was used in this study.
Passivation measurements and corrosion fatigue crack growth studies were
carried out over a range of temperatures from about 0°C to 90° C (273 to
363 K). Procedures for the electrochemical and crack growth experiments are
described separately in the following subsections.
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3.1 Electrochemical Measurements

Two electrochemical measurement techniques were considered [13,14]. The
first one (the potential step technique) involved cathodically polarizing a
"clean" surface at a suitable potential in the electrolyte of interest, sud-
denly switching to another potential, and monitoring the current transient
under potentiostatic conditions at the new potential. In the second (galvanic
current) technique, the galvanic current between a cathodically "cleaned"
surface and a surface that had been "oxidized" in the electrolyte was mea-
sured. The current flow in each of these two cases was expected to contain
information on the reactions of a clean surface with the electrolyte. Because
the second technique was believed to more closely simulate the reactions at
the crack tip, under open circuit conditions, it was selected. A schematic
diagram showing the essential elements of this technique is given in Fig. 1.

Galvanic current measurements were made on X-70 steel in a deaerated
electrolyte, consisting of an equivolume mixture of 1IN NapCO5-1N NaHCO3 at pH
= 9.7 (at room temperature), at temperatures from about 0° to 90°C (or 273 to
363 K). The desired test temperature was obtained by immersing the corrosion
cell in a constant-temperature bath, and was maintained constant to + 1°C. To
minimize contamination of the electrolyte, the cleaning electrode was placed
in a separate cell, and was connected to the main cell through a salt bridge.
The specimen was mechanically polished, rinsed with acetone and methanol, and
was cleaned ultrsonically in distilled water. It was then introduced into the
galvanic cell and cleaned electrochemically at -1700 mV SCE for at least 10
minutes before starting the galvnic current experiment. Current transients
and the associated electrode potential were recorded digitally and were
analyzed.

3.2 Fatigue Crack Growth Measurements

Fatigue crack growth experiments were carried out on the X-~70 steel, as a
function of frequency, in distilled water and in an 1N Na2C03—]N NaHCO3 solu-
tion at temperatures ranging from 23° to 90°C (296 to 363 K). A Timited
number of tests were also carried out in a 0.6N NaCl solution at room tempera-
ture. Compact tension (CT) specimens, with thickness of 12.7 mm (0.50 in.)
and width of 63.5 mm (2.5 in.), were used, and were tested in the LT orienta-
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tion; that is, with the crack plane perpendicular to the principal ro11iﬁg
direction and crack growth in the long-transverse direction of the plate.
Tests were carr{ed out under constant-K conditions, at AK = 40 MPa—m”2
(36.4 ksi—in]/z) and a load ratio R = 0.1, in an automated electrohydraulic
testing machine. Crack growth was monitored by the compliance method [15].
The calibration relationship given by Hudak and Saxena [16] was checked ex-
perimentally and was used. Crack growth rate measurements were estimated to
be better than 10%, and specimen-to-specimen variation in rates was estimated
to be about 207Z.

The experiments were first conducted in static (quiescent), deaerated
solutions. It was recognized that the chemical conditions in the crack may be
different in the absence of forced flow, and additional experiments were then
carried out with the deaerated solution flowing at a rate of about 0.1 m1/min.
(or about 1.6 x 10~3 gal/h). The solutijons were deaerated by continuous
purging with pure nitrogen.

4. RESULTS AND DISCUSSIONS

4.1 Fatigue Crack Growth Response

Fatigue crack growth rate data for X-70 steel are shown as a function of
the effective time for reactions (1/2f, where f is the cyclic load frequency)
at different temperatures in Fig. 2, for quiescent distilled water, and in
Fig. 3, for flowing distilled water, respectively. A comparison between room
temperature data in quiescent and flowing (0.1 m1/min.) distilled water is
given in Fig. 4.

At a given temperature (Figs. 2 and 3), crack growth rates increased with
decreasing. frequency. This increase in rate is consistent with the increased
time for chemical/electrochemical reactions at the lower frequencies. In-
creases in temperature shifted the entire crack growth rate versus inverse
frequency response curves in the direction of higher frequencies (i.e., to the
left or to shorter times), while leaving the form of the response curve
sensibly unchanged. The observed shift with temperature indicated that at
least one of the reaction steps, responsible for crack growth enhancement, is
thermally activated. The constancy in form of the response curve suggested
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that the responsible reaction remained unchanged over the temperature range
used in the investigation. These results are consistent with those observed
in a modified HY130 steel in distilled water and in acetate buffer solution
[6,13,14], and suggested that the behavior may be representative of corrosion
fatigue of steels in aqueous environments,

From Fig. 4, it may be seen that the crack growth rates in flowing water
were slower (by about 50Z) than those in quiescent water:; (compare also
Figs. 2 and 3). This difference may be attributed to changes in pH at the
crack tip. Brown and coworkers [7] have shown that, under freely corroding
conditions, crack-tip pH can be highly acidic even when the pH of the bulk
solution is neutral. Acidification of the crack tip region resulted from
hydrolysis of the anodic dissolution products, as follows:

Fe** + 2Hy,0 = Fe(OH)* + Ha0*

Solution flow tended to minimize this acidification process by flushing hydro-
gen ions out of the crack tip region, and both the anodic dissolution and the
hydrogen reduction rates are expected to be reduced. The observed decrease in
crack growth rates with solution flow is therefore consistent with control by
the rates of electrochemical reactions at the crack tip.

Fatigue crack growth behavior of X-70 steel in N NayCO3~1N NaHCO3 solu-
tion (pH = 9.7 at 296 K} was found to be more complex and more difficult to
explain. A comparison of crack growth rate data in quiescent and in flowing
TN NayC05-1N NaHCO3 solution (pH = 9.7) at room temperature (296 K) is given
in Fig. 5. The frequency dependence of fatigue crack growth rates in the
flowing solution is consistent with that observed in distilled water. In the
quiescent solution, on the other hand, the growth rates were essentially in-
dependent of frequency from 0.03 to 10 Hz, This difference in behavior cannot
be readily explained in terms of crack tip pH, since the solution was well
buffered. Measurement of crack tip pH for the quiescent case, using Brown's
indicator method, indeed showed no change in pH between the crack tip and the
bulk solution. Addition work is required to understand this phenomenon.

Since the response in filowing solution was well behaved, principal atten-
tion was directed towards the study of fatigue crack growth response for this
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case. Fatigue crack growth data in TN NapCO3-1N NaHCO3 solution at different
temperatures are shown in Fig. 6. The characteristic shift of crack growth
rate response towards the higher frequencies (or to the left) with increases
in temperature (as was observed in distilled water) is again apparent, and is
indicative of control of fatigue crack growth by thermally activated reaction
processes.,

At a given temperature, the overall fatigue crack growth rate response in
TN NapCO3~TN NaHCO3 solution is slower than that in distilled water. In other
words, the crack growth rate curve is displaced in the Tower frequency direc-
tion (or to the right), such that the growth rate at any given frequency would
tend to be slower than the corresponding rate in distilled water. In fact,
the addition of any foreign ions into (pure) distilled water tended to retard
crack growth rate response. This phenomenon is illustrated in Fig. 7 where
the room-temperature fatigue crack growth data in three different environments
are compared. It may be noted that, at a given frequency, the crack growth.
rate is highest in distilled water; followed by 0.6N NaCl solution, and then
1N NasCO3-TN NaHCO3 solution. The fact that the crack growth rate is faster
in C.6N NaCl solution than in 1N Na2C03—1N NaHCO3 solution is not surprising,
because the NaCl solution is deemed to be more corrosive; (interpreted here as
having faster reaction kinetics). What is surprising, however, is tﬁe obser-
vation of slower fatigue crack growth rates in 0.6N NaCl solution relative to
that in distilled water, because the presence of chloride ions is known to
accelerate metal dissolution in occluded regions (such as pits; crevices and
cracks) [18]. Apparently the presence of foreign ions, including chloride
ions, moderates and slows (and may alter the mechanisms for) the metal-elec-
trolyte reactions that are responsible for the enhancement of fatigue crack
growth. The ions, however, do not appear to inhibit the extent of or to
prevent the completion of such reactions. The nature of the reactions and the
mechanisms for the ionic influences are not known at the present time, but are
important to the understanding of corrosion fatigue crack growth response.

The overall crack growth response (Figs. 2 to 6) and the similarity of
this response to that of other steels [5,6,13,1%] strongly suggest that
fatigue crack growth of X-70 steel in aqueous environment is controlled by
electrochemical reactions at the crack tip. A modified superposition model
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has been proposed to analyze the contribution by electrochemical reactions
[6], and may be used to correlate the crack growth and chemical reaction data.
According to this model, the observed crack growfh rate in an aqueocus environ-
ment, (da/dN)e, is expressed as the sum of two rates [6]:

(da/dN)g = (da/dN)% + (da/dN).¢ (M

In Eqn. (1), (da/dN)ﬁ is a modified reference crack growth rate which dincor-
porates the inert environment crack growth rate and the contribution by the
extremely fast initial chemical reaction, and (da/dN)Cf is the contribution
associated with electrochemical reactions [4-7,20]. Actually, Egn. (1) is to
be viewed as a condensed form of a more correct representation_of concurrent
micromechanisms for crack growth, which is described in detail in [20]. The
common plateau rate at the higher frequencies (greater than about 5 Hz) in
Figs. 2 and 6 corresponds to (da/dN)ﬁ. Increases in crack growth rate beyond

this base level are considered to be electrochemical in nature and correspond
to (da/dN)cf.

Reaction controlled fatigue crack growth response in aqueous environments
is assumed to be analogous to that in a gaseous environment [19]. As a first
order approximation, first—order or Langmuir reaction kinetics may be assumed,
and the reaction controlled model for crack growth may be expressed in the
following simple form [19]:

(da/dN) ¢ = (da/dN) ¢, s [1 - exp(=t/T)]
or
(da/dN)cs = (da/dN)g, g [1. = exp(- 5] (2)
_ T

where (da/dN)cf,s is the saturation crack growth rate, f is the reaction time
constant, and f is the frequency.

By using estimated values of (da/dN)¥ = 3 x 10~/ m/c and (da/ciN)cf!s =
1.4 x_'iO'6 m/c, approximate time constants were estimated from Figs. 3 and 6
by "fittiné" Eqn. (2) to the crack growth data. The crack growth response
based on Egn. (2) are shown as dashed curves in these figures. The time
constants ranged from about 1.5 to 10 s for distilled water, corresponding to
temperatures from 336 to 296 K, and from about 2.5 to 35 s for the 1N NajCO3~
IN NaHCO3 solution from 355 to 296 K, respectively. These time constants
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correspond to an apparent activation energy of about 37 kd/mol. The time
constants from the 1N Na2C03—TN NaHCO3 solution may be compared to those
observed in the simulation electrochemical experiments to probe the correla-
tion between crack growth rates and electrochemical reaction kinetics.

4.2 Electrochemical Reaction Kinetics and Correlation with Crack Growth

Typical current transients obtained from the electrochemical experiments
at different temperatures are shown in Fig. 8. The change in reaction rates
with temperature can be clearly seen. The nonlinear nature of the log i
versus time data indicated that the current transients represented the opera-
tion of more than one process. Assuming that the electrochemical reactions on
the fresh metal surface proceeded by two or more parallel first-order pro-
cesses, an approximate time constant may be then determined for each reaction
step by the using the following equation [21]:

1=+ E i exp(-t/t}) (3)

where i is the observed current, i, is the base level (or steady state)
current, iy and 1) are respectively the initial current and the time constant
for the k-th reaction, and t is time. The time constants, t), may be deter-
mined from the experimental data by using a suitable nonlinear regression
analysis method, or estimated graphically from the Tog i vs. t curves.

Three (3) sources of current have been identified [14], namely (i) the
discharge of the double layer (or electrons), (ii) oxidation of adsorbed
hydrogeﬁ (and perhaps hydrogen gas) that have been deposited on the specimen
surface during cathodic cleaning, and (iii) anodic reactions of the clean
surface with the electrolyte. The initial current decay is believed to
reflect principally electron transfer from the first two sources. Based on
this recognition, time constants were estimated graphically and were found to
range from 1 to 80 seconds. Recognizing that the longer time constants may
correspond to the formation of higher order reaction products or may be attri-
buted to slow eqilibriation in the galvanic current experiment, the range of
time constants may be reduced to about 1 to 40 s. This range overlapped that
of the crack growth results, which strongly suggests the correlation between
crack growth and electrochemical reactions at the crack tip.

-133-



A more careful examination of the galvanic cell experiment revealed,
however, that there is one important difference between this simulation ex-
periment and the real crack tip condition [14]. In the galvanic cell experi-
ment the clean metal surface was obtained by cathodic cleaning, which caused
an accumulation of extraneous charges on the working electrode. These extra
charges would not be present on the fresh metal surface at the crack tip under
open circuit condition, During the galvanic cell experiment, the extra
charges would be transferred and contribute to the total current. Therefore,
depending on the relative contribution of these extra charges to the whole
reaction process, the galvanic cell experiment may or may not be a proper
simutation of the crack tip condition, and provide usable information on the
electrochemical reaction kinetics.

The experimental results now suggest that the extraneous charges due to
cathodic cleaning may have been excessive [14]. Although the galvanic cell
experiment may be considered adequate for obtaining information on hydrogen
evolution kinetics, the results could not be used at this time to make an
unequivocal correlation between the electrochemical kinetics and the crack
growth kinetics, particularly with respect to the rate controliling process.
Resolution of this uncertainty must be made to arrive at a more complete
understanding of the rate of electrochemical reactions in corrosion fatigue.

Since the extra charges were introduced by cathodic cleaning, an obvious
way of resolving the problem is to produce the clean metal surface by mechani-
cal means. A modified scratching electrode method may be used, whereby a
masked working electrode is coupled to the freely corroding cathode and then
scratched to expose fresh metal surfaces. The resultant current and potential
transients may then be analyzed by the same way as was discussed previously.
Another possibility may be in situ breaking of a specimen in the electrochemi-
cal cell to generate the requisite clean surfaces. The in situ fracture
technique is being examined under another program, and may be adopted for use
in further studies of X-70 steel under internal funding.
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5. SUMMARY

Corrosion fatigue crack growth behavior of a X-70 Tinepipe steel 1in
deaerated distilled water and 1N NapCO3-1N NaHCO; solution was examined as a
function of frequency and temperature at _K of 40 MPa—m”2 and R=0.1. The
frequency and temperature ranges were 0.03 to 10 Hz and 296 to 355 K, respec-
tively. Room temperature tests were also carried out in deaerated 0.6N NaCl
solution to provide for comparison.

In these environments, corrosion fatigue crack growth rates were shown to
depend strongly upon frequency and temperature. The dependence was consistent
with a model for surface reaction controlled fatigue crack growth, and was
thermally activated, with an apparent activation energy of about 40 kd/mol.
This dependence was reflected by a shift of the entire crack growth response
curve to higher frequencies with increasing temperature, while leaving the
growth rates within the response curve (or the form of the response curve)
sensibly unchanged. Crack growth response in deaerated distilled water was
found to be the fastest, followed by deaerated 0.6N NaCl solution, and then
deaerated IN NapCO3-IN NaHCO3 solution. The highest (or "saturation™) growth
rates in the three electrolytes, however, were essentially the same. '

The crack growth results also showed a strong influence of solution flow,
particularly for the deaerated 1N Na2003—1N NaHCO3 solution. Crack gowth
rates tended to be faster in quiescent distilled water as compared to water
flowing at 0.1 Titer per minute. For the deaerated 1N Na2C03w1N NaHCO3 solu-
tion, on the other hand, crack growth rates became essentially independent of
frequency from about 10 Hz downward to 0.3 Hz, while the response in the
flowing solution appeared "normal’, '

Efforts were made to obtain independent measurements of the rates of
electrochemical reactions of X-70 steel with the deaerated TN NayCO3-1N NaHCO3
solution to provide for a direct correlation between corrosion fatigue crack
growth rates and electrochemical reaétion kinetics. A new electrochemical
measurement technique was used, whereby a "clean" surface of X-70 steel was
suddenly coupled to an "oxidized" surface of the same steel in the electro-
Tyte. The time constants of the resulting galvanic current transient were
expected to serve as a measure of the reaction rate constant. The results
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showed that the time constants (ranging from about 1 to 40 s) and the apparent
activation energy (of about 40 kd/mol) compared well with those obtained from
the fatigue crack growth experiments. Because of uncertainty introduced by
the accumulated charges during cathodic cleaning in the simulation experiment,
however, it was not possible to make a definitive connection between these
measurements and corrosion fatigue cracking response, and to make a positive
identification of the rate controlling {anodic or cathodic) process. To
alleviate the difficulty associated with cathodic cleaning, in-situ breaking
of a specimen inside the electrochemical cell and the use of a modified
version of the scratching electrode method are being considered as alternate
means of creating clean metal surfaces.

Nevertheless, it is clear that corrosion fatigue cracking response can be
compliex. The frequency and temperature dependence must be recognized and
incorporated in the acquisition of design data and in the design of pipelines
and offshore structures. These factors are of particular concern when it
becomes necessary to make extrapolation beyond the range of existing data, and
in the development of "accelerated" tests. Identification of the electro-
chemical reactions that control corrosion fatigue crack growth will facilitate
data analysis and the formulation of rational design procedures. Additional
{or continued) research in this area is to be encouraged.
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transient between '"clean"” and "oxidized" metal surfaces.
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APPENDIX A

SURFACE CRACKS IN A PLATE OF FINITE WIDTH

UNDER EXTENSION OR BENDING

F. Erdogan and H. Boduroglu

Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the problem of a finite plate containing collinear
surface cracks is considered. The problem is solved by using the line
spring model with plane elasticity and Reissner's plate theory, The
main purpose of the study is to investigate the effect of interaction
between two cracks or between cracks and stress-free plate boundaries
on the stress intensity factors and to provide extensive numerical
results which may be useful in applications. First, some sample results
are obtained and are compared with the existing finite element results.
Then the problem is solved for a single (internal) crack, two collinear
cracks and two corner cracks for wide range of relative dimensions.
Particularly in corner cracks the agreement with the finite element
solution is surprisingly very good. The results are obtained for semi-
elliptic and rectangular crack profiles which may, in practice, corre-
spond to two limiting cases of the actual profile of a subcritically
growing surface crack,

1. Introduction

Surface cracks are among the most common flaws in structural com-
ponents, particularly in welded structures. Under cyclic loading or
under static loading in the presence of corrosive environment any sur-
face flaw has the potential of subcritically growing into a surface
crack. Analysis of the structure containing such flaws is needed for
model ing and prediction of the corresponding crack propagation rate. A
review of the subject and a number of articles dealing with the analysis

of the surface crack problem in plates may be found in [1]. At this
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point the analytical treatment of the problem appears to be intractable.
Therefore, the reliable solutions of the problem seem to be based on
numerical techniques, most notably on the finite element method (see,
for example, [2] for the solution of a wide plate containing a semi-
elliptic surface crack). In recent years, however, there has been some
renewed interest in the application of the line spring model which
was first described in [3] to the amalysis of surface crack problems.
The method was used in [4] in conjunction with Reissner's plate theory
and the stress intensity factors for a semi-elliptic and a rectangular
surface crack were calculated for a wide plate under tension or bending.
The semi-elliptic crack results described in [4] compare very favorably
with the finite element solution given in [2].

in this paper the general problem is considered for a plate having
a finite width. Analytically, it is known that if the stress fields
of more than one crack or that of a crack and a stress-free boundary
of the pliate interact, there would be some magnification in the stress
intensity factors. The problem may therefore be important in plate
structures having more than one initial surface flaw or having a flaw
near or at the boundary. Extensive finite element results for a single
central or corner surface crack in a plate of finite width are given
in[5] and [6] . Empirically developed expressions for stress intensity
factors based on the results given in [5] are also described in [7].
The present study was undertaken partly to show that the line spring
model may be used for cracks in finite plates, particularly for corner
cracks just as effectively as the infinite plate and partly to supple-
ment the results given in[5] and [6] by, for example, considering the

cases of a rectangular crack profile and collinear surface cracks.

2. The General Formulation of the Problem

The problem under consideration is described in Fig. T. It is
assumed that X4X3 and Xy X3 planes are planes of symmetry with respect
to loading and geometry and the length of the plate in Xy direction is

relatively long compared to the width 2bh so that in formulating the

~148-



perturbation problem one may assume the plate to be infinitely long.
Even though the numerical results ére given for uniform tension in Xy
direction and cylindrical bending in x2x3 plane applied to the plate

away from the crack region, as will be seen from the formulation of the
problem, there is no restriction on the external loads provided in
the absence of any cracks the membrane and bending resultants in x1x3
plane can be obtained for the given plate geometry and the applied loads.

The problem is formulated for the collinear cracks shown in Fig. 1.
The single central crack and the edge or the corner cracks are then
considered as the special cases. One of the advantages of the line
spring model is that the crack profile (as described by the function
L(x1) giving the crack depth) can be arbitrary. However, the actual
crack morphology studies indicate that for a given length 2a and a
depth Lé the crack profile may be bounded by a semi-ellipse and a rec~
tangle. Hence, in this paper the calculated results will be given only
for these two limiting crack shapes.

Ordinarily, the problems of in-plane loading {as expressed as a
generalized plane stress problem) and bending of a plate are uncoupled.
Consequently, the corresponding through crack problems can be solved
independently. For the plate geometry shown in Fig. | the plane elasti-
city and plate bending solutions are given in [8] and [9], respectively.
In the case of surface cracks, because of the absence of symmetry in
thickness direction, the membrane and bending probliems are cleafiy
coupled. As in [9] in this paper, too, a transverse shear theory is used
to formulate the bending component of the problem. The particular
theory used is that of Reissner's [10] which is a sixth order theory
and accounts for all three boundary conditions on the crack surfaces
separately. |

Referring to Appendix A for normalized quantities and, for example,
to [11] for the general formulation, the basic equations of the plate

problem may be expressed as follows:

vy = 0, (1)

Viw =0 , (2)

~149-



K72 -y ~w=0 |, (3)

1=y

< -V -0=0 , (4)
O = 357 (8) L o = §§} (o) s o = - aizy (ho) (5)
bR [ s 0wt B g
n, =l ey - (1) 2Ly, (8)
Mo = ) o 2L s o) E2- 5D, (9)
vx=—°§+§(1-v)g—3—+—§{-, {10)
v, = s -5 G-y e gt . (11)

where, in the usual notation, F (or ¢) is the Airy stress function,

N Mij’ and V., (i,j=1,2) are the membrane, bending, and transverse

.
s;iar resultants, B1 and 62 are the components of the rotationkvector,
Uy, Uy and uy are the components of the displacement vectar, a is a
length parameter representing the crack size (a*=a for O<c<d<b and a*=d
for c=0, d<b, Fig. 1), E and v are the elastic constants, the constants
k and A are defined in Appendix A, ¥ and @ are auxiliary functions
defined in [11], and the dimensions h, a, b, ¢, and d are shown in Fig. 1.
Because of symmetry, it is sufficient to consider the problem for

0<xy<b, 0<x,<= only. Thus, the membrane and bending problems of the

2
plate must be solved under the following boundary and symmetry conditions

stated in terms of the normalized quantities (Fig. 1 and Appendix A):

u(0,y) = 0, ny(o,y) = 0, O<y<= , (12)

N (BY,y) =0, ny('b',y) = 0, O<y<=» , (13)
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ny(x,O) = 0, 0<x<b', (14)
N, (%,0) = & Fo () + o(x)] , e'<x<d' (15a)
v(x,0) = 0, O<x<c?, d'<x<b' ; (15b)
8, (0,) =0, M _(0,y) =0, v (0,y) =0, Ogy<=, (16)
M (b'.y) =0, Mxy(b',y) =0, ¥ (b',y) = 0, Ogy<= , (17
Mxy(x,O) = 0, Vy(x,O) = 0, O<x<h' , (18)
My (x,0) = g Fm () = mG) T, crexed’ (192)
By(x,O) = 0, O<x<c', d'<x<b! . (19b)

The conditions stated above refer to the perturbation problem in which
the crack surface tractions are the only nonzero external loads. Conse-

quently, in addition to (12)-(19) it is required that

] ®} = '
Nyy(x, } =0, ny(x, ) = 0, O<x<b' , (20)

il

o« =~} = oo - ]
Myy(x, ) = 0, Mxy(x, ) =0, Vy(x, ) =0, 0<x<b' . (21)

The input functions o_ and m_which appear in (15a) and {(19a) are
defined by

o (x) = N, (x,,0)/h, m_(x) = 6M,(x,,0)/h? (22)

where N?j (x1,x2) and M?j(x1,x2), (i,j=1,2) are the membrane and moment
resultants in the plate under the actual applied loads in the absence

of any cracks. The functions o{x) and m(x) are unknown and are defined

by N(x,)

6M(x,) 6M(a™x)
og(x) = =

= N(a“x) = hi (23)

h h

, m{x) =

where the membrane load N(x1) and the bending moment M(x1) represent
the stress component 622(x1,0,x3) in the net ligament c<x,<d,

<D

3°2

- Dex
2
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In the bending problém the solution of the differential equations
(2)-(4) satisfying the symmetry conditions (16) and the regularity

conditions (21) may be expressed as follows [9]:

=2

w(x,y) %—f (:0‘1+\/»*\2)e""y cosax do .

Q
co

+
ST

f (C1cosh8x + szsinth) cosBy dB , (24)

o]
o o

Y 2 . )
J Bie sinax da + F'J B2 sinh ryx sinBy dB , (25)

o Q

SR

Q{x,vy)

L]

%‘! [‘A1+(2Ka-y)A2]eﬂay cosax da

Y (x,y)

o}
%'J [;(C1+2KBC2)costh-szsinhBX]COSBY dg, (26)

+

o}

where Ai(a), Bi(a) and Ci(B)’ (i=1,2) are unknown functions and

2 71", (27)

. .
= a2 2 z - a2
ry = [o? + k(1-v) I ) (82 + k(1=v)

By substituting from (24)-(26) into (7), (9)-(11) and by using five
homogeneous conditions. (17) and (18) five of the six unknown functions
may be eliminated. The mixed boundary condition (13} would then deter-
mine the sixth.

Similarly from the plane stress solution of the plate satiéfying
the conditions {12), (14) and (20) the stresses and the y-component

of the displacement may be expressed as [8]

- _2 - -ay
Nxx(x,y) = -z { h1(a)(l ay)e cosax da
w O

J [hz(B)cosh8x+8xh3(B)sinhsx]cossy dg , (28}

Q

=N
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-]

1
a|m

Nyy(x,y) J h, (o) (T+ay)e ™Y cosax da

o
©

+
AN
L-“"'""—i

[(h2+2h3)cosh8x+8xh sinhBx]cosBy dB, (29)

3

f ayh1(u)e_ay sinax do

o]
o

[(h2+h3)sinh6x + Bxh

o

]
'
o

ny(x,y)

3cosh8x]sin8y ds , (30)

+
=T
———

=]

TE— vix,y) = %—J ] (1+K + ay)e Y cosax du

o

sinhBx]singy dB . (31)

%.J [( 1+K h )costh + xh,

In this case the unknown functions hi’ h2 and h3 are determined from

the remaining boundary conditions {13) and (15).

3. The integral Equations

If we now replace the mixed boundary conditions (15) and (19)

respectively by

%V(X,O) = g,{x) , 0zxb , (32)
a —
'a? By(xso) - 92(3‘() » 0_<_X<b ] (33)

it is seen that by using (17), (18), (13), (32) and (33) all nine
unknown functions Ai’ Bi’ Ci’ (i=1,2) and hj’ {(j=1,2,3) which appear
in the formulation of the problem given in the previous section may be
expressed in terms of the new unknown functions 9, and gy From the
definitions (32) and (33) it also follows that conditions (15b) and’

(19b} are equivalent to
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gi(x) =0, O<x<c' , d'<x<b', {i=1,2) , (34)
d' _
f g, {x)dx =0, (i=1,2) . (35)

CI

The functions 94 and g, may now be determined from the two remaining
conditions (15a) and (19a). Referring to [8] and [9] for details, the

following integral equations may be obtained from these two conditions:

d‘
O'(X)_ 1 [ 1 + 1 'f“k( ) k( ) —O'm()() 6)
E E‘TT m— ?-l_-x- 1 X,t) - 1 X,~t ]g1 (t)dt = E ’ (3
cl
(x) * 2) ¢
m{x a“{1-v - v, 1 1 be(1-v) 1 ]
6E  “Zmhx f tL 1+v (t-x * t+x) IR EEY i =L (t+x)5]
ct
+ % ['E%( KZ(YIt-xl) + Ej'-}' Kz(y|t+x|)] + &, (x,t)
m,, (x)
- kz(x,-t)}gz(t)dt = TE_ N c'<x<d' , - {37)

where Kz-is the modified Bessel function of the second kind, the
Fredholm kernels k1(x,t) and kz(x,t) are given in Appendix B and the

constant vy is given by

Y= lztl-huzja* ' (38)
The functions o(x) and m{x) which appear in (36) and (37) are

- defined by (23) and represent the membrane and moment resultants of

the tensile stress Tgn in the net ligament c'<x<d'. By using the plane
strain solution for an edge crack occupying (h/z)-L<x3§h/2 in a strip
of thickness h (Fig. 1} under membrane load N(x]) and bending moment
M(xi) (apptied in XoXs plane) and by expressing the rate of change of
the potential energy in terms of crack closure energy and the change of

compliance, o{(x) and m(x) may be expressed in terms of the crack opening
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displacement 2v(x,0,0) and the crack opening angle 28 {x,0) as follows
{see [1] and [4] for detalls) ‘

o(x) = Ely (x}v(x) +Ytb(X)Byfx)] , (39)

m{x) = BE [th(x)v(X) + Ybb(x)By(X)] , (40)

where the functions Yi , (i,j=t,b) depend on the local crack depth L{x)

~ and hence are Imp]ICIt functions of x. The algebraic expressions of

these functions are given in [4] . From (32), (33) and (34) by observing

that
X X

vix,+0) = f g, (t)dt , Sy(x,-!-O) = J g, (t)dt ;. (41)

c' c'

and by using (39) and (40), the integral equations (36) and (37) may

then be expressed as

X d!
Ytt(x)J g,(t)dt - ‘zlﬁ'J [t—i? tlx + kyx,t) - k, (x,-t)]g1 (t)d;
cl cl :
X .
+ ytb(x)f g, (t)dt = é-cm(x) , cl<x<d' , (42)
cl
X X ) 4!
th(")f g, (t)dt + Ybb(x)f g, (t)dt - mel?i ) j e (tlx
c! c! ¢!
| b (1-v) ]
+ ;+x} - K]+vv [ (t-x)° * (t+x)3J ]+v[ KZ(Ylt-xll
+ o K ([T * kg, 8) = Ky lx,t) b, () de

= 3]? mw(x) , cla<x<d! . (143)

From the following asymptotic behavior of the Besseil function Kz{z) for

small values of z
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Kz(z) = g%-- %—+ 0{z2%10g z) (44)
it can be shown that, as in (42), the integral equation (43) has a
simple Cauchy type singular kernel. We also note that the system of
singular integral equations (42) and (43) must be solved under the
additional conditions (35).

After solving the integral equations (42) and (43) for g, and g,
the Mode | stress intensity factor K at the leading edge of the crack
may be obtained by substituting from (39)-(41) into the following expres-~
sion giving K in a strip containing an edge crack of depth L and sub-

jected to the membrane load ¢ and bending moment m [4]:

K{x) = /F'EJ(x)gt + m(x)gb] (45)

where 9y and g, are functions of L/h and are obtained from the correspond-
ing plane strain solution. From the results given in [12] the expressions

for 9, and 9 valid in 0<L/h<0.8 may be obtained as follows:

g, (s) - Vi (1.1216 + 6.5200s2 - 12.3877s* + 89.0554s6

~ 188.6080s" + 207.3870s10 - 32.0524512) | (46a)
gb(Q) = vus (1.1202 - 1.8872s + 18.014352 - 87.385]s3

+ 2b41.9124s™ - 319.9402s5 + 168.0105s6) , (56b)

where s = L{x)/h.
We now note that for O<c’<d'<b the solution of the system of singu-

lar integral equations is of the form
6. (x)

3 3 , Cl<x<d' | (i=]s2) »
(x-c?)* (d'=-x)* (47)

gi(x) =

where the bounded unknown functions G1 and GZ may easily be obtained

by using the technique described, for example, in [13] .
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The general crack geometry shown in Fig. 1 has two special cases.
The first is the case of a symmetrically located single crack along
-d'<x<d', {(i.e., c'=0, d'<b'). In this problem by using the symmetry
considerations and by observing that gi(t) = -gi(~t), {(i=1,2), the
integral equations (42) and (43) may be somewhat simplified as follows:

vee 0] (08 - - [ [+ kbt (et

-d! =gt
X
] gy = Lot L et (18)
-g!
X X d’
th(X)[ gy (t)de + Ybb(x)f 9, (t)dt - gé%:¥;l’f [%E%'"%?k
~d! ~d! -d!

- 2l IR e T Qe + iyl 0)lg (D)

= g%.mw(x) , ~dt<x<d . | (49)

By using (4&) it may again be shown that (49) has a simple Cauchy kernel
and the solution of the integral equations is of the following form:
F.(x)

g.{x}) = ——— , -~d'<x<d' , (i=1,2) . (50)
t (dt2_x2)i

The second special case is that of corner cracks for which O<c'<d'=b'.
In this case it may be shown that as x and t approach the end point b'
simultaneously, the kernels k1 and k2 in (42) and {43) become unbounded.
As shown in [8] and [9] the singular part of these kernels may be separ-
ated and may be shown to be

_ R I b{b'-x)>
s bot) = ko bot) = sy - ez Y s 0 B

where
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ki(x,t) = kis(x,t) + kif(x’t) , (i=1,2) (52)

and ka and sz are bounded. Together with the Cauchy kernellif(t-x) in
(42) and (43), (51) constitutes a generalized Cauchy kernel. It may

be observed that the generalized Cauchy kernel kg(x,t) = 1/(t-x)+kis(x,t)
has the property that kg(x,b') = 0, kg(b',t) = 0 and consequently g](t)
and gz(t) are nonsingular at t=b' [8] . Also, in this case the single-
valuedness conditions (35) are not valid and, as pointed out in [8] ,

are not needed for a unique solution of the integral equations.

4. The Results

First, some sampie problems are solved in order to compare the
results obtained from the line spring model in this paper with that
obtained from the finite element solutions given in [5] and [6] . In [5]
the single symmetric semi-elliptic surface crack problem is considered
for a finite plate under uniform tension or cylindrical bending (i.e.,
c=0, d<b, Fig. 1). It is assumed that the half length of the plate is
£=5d. Figures 2 and 3 show the comparison of the normalized stress
intensity factors calculated along the crack front by the two methods.
The normalizing stress intensity factor KN shown in these figures is
defined by

Ky = o /wL JE(K) , k = /T-(Z/d? (53)
and is the stress intensity factor at the location Xy = 0, X, = 0, x3 =

L, (i.e., the end points of the minor axis) of a flat elliptic crack
{(with semi axes d and Lo) in an infinite solid subjected to uniform
tension Ogg = Oy in X, direction (c=0, Fig. 1}. Note that, considering

the simplicity of the line spring model, the agreement is not bad. One

may also note that at the intersection point of the g¢rack and the plate
surface x = x1/d = 1 the results based on the line spring model would
not be expected to be very good. Furthermore, at the singular point on

the free surface the power of the stress singularity seems to be less
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than 1/2 [14] . Hence, theoretically the stress intensity factor defined
on the basis of conventional 1/2 power should tend to zero as the point
on the crack front approaches the free surface at an angle of w/2. Thus,
strictly speaking, the bounded nonzero stress intensity factor given by
the finite element solution at the surface do not seem to be correct either.

Figures 4 and 5 show the comparison of the stress intensity fac-
tors for a corner crack having the profile of a quarter ellipse and
obtained from the line spring model and the finite element solution given
in [6] . 1t should be noted that the finite element results are obtained
for a finite plate in which the half length is equal to the total width
of the plate and the crack is only on one corner (see the insert in
Fig- 4). However, since the crack length-to plate width ratio in both
cases is relatively small (2a/2b = 1/10 in line spring and 2a/b = 1/5
in finite element solution), the stress intensity factors for the two
geometries should be approximately equal. The figures again show that
the agreement is quite good.

The calculated stress intensity factors are given in Tables 1-11.
All stress intensity factors were calculated as a function of x = x1/a*,
(a*=d for a single crack, a*=a for two cracks, Fig. 1) defining the
location along the crack front and of the re!ative‘dimensions of the
crack and the plate.. The following notation and normalizing stress
intensity factors are used in presenting the results:
K, (x)

(r,0,x,) , x = x,/a¥ (54)
Y Vi ‘

K, (x)
Utzz(r’o’x‘l) = z‘n-r y X = x}/a" (55)

Oh22

e

where supscripts b and t correspond to plates under bending and tension,

respectively, Tao is the cleavage stress around the crack front, r and ©

are the usual polar coordinates at the crack front in XyXg plane (Fig. 1)
and Kb and Kt are the corresponding Mode | stress intensity factors.

The results are given for uniform membrane load sz = N_ and cylindrical
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bending moment M22 = M away from the crack region. The normalized

stress intensity factors shown in the tables are defined by

Kb {x) Kt (x)

=_"——,k()= P) (56)
Koo T R

k, (x)

p {

N
Keog = (57 7P g, s ), s = L/h (57)
6Mw
Kbo = (T;TJ 7R gbfso) » S, = Lo/h (58)
where Lo is the maximum crack depth and the functions 9 and g, are
given by

(5) and (46). One may note that gt(so) and gb(so) are the
shape factors obtained from the corresponding plane strain solution of

a plate with an edge crack of depth Lo and, for the values of Lo/h shown
in the tables, are given by [12] .

s, = L /b 0.2 0.4 0.6 0.8
gt(so)//wso  1.3674 2.1119 5,035 11.988
gb(so)//wso 1.0554 1.2610 1.915 4.591

Table 1 shows the normalized stress intensity factors at the deep-
est penetration point of a centrally located single semielliptic surface

crack (i.e., ¢=0, d<b, Fig. 1) in.a plate under uniform tension N_ or

bending M_. Here the crack profile is given by
L2 x?
ztg=1 (59)
o
or
L{x) = Loﬂ-xz , (x = x/a% , a* = d) (60)
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and hence x=0 is the deepest point on the crack front. This is also
the point where kt assumes its maximum value. For b/h = 10 relatively
complete and for other plate dimensions some sample results showing
the variation of the stress intensity factors along the crack front
are shown in Tables 2 and 3. Similar results are shown in Tables &
and 5 for a single surface crack with a rectangular profile (i.e., for
Li{x) = L,» ~1<x<1). One may observe that, as expected, generally the
stress intensity factors for the rectangular crack are higher than that
for the semi-elliptic crack. |

The results for two collinear semi-elliptic surface cracks (Fig. 1}
are shown in tables 6 and 7. Here the crack profile is defined by
(Fig. 1)

L{x) = LOVT:EE-, X = 1 :c+a) , =l<x<t | (61)
Table 6 shows the value ki(x*), (i=b,t) and the location x = x* of the
maximum stress intensity factor for various crack geometries in a plate
for which b = 10h and a = h. The factor D = a/{a+c) determines the crack
location. Table 7 shows some sample results giving the distribution of
the stress intensity factors along the crack front for two extreme crack
locations considered. The skewness in this distribution does not seem
to be very significant. ' |
The results for a plate containing two corner cracks having a pro-
file of a quarter ellipse are shown in Tables 8 and 9 (Fig. 1). In

this case the crack profile (or the crack depth) L is defined by

- 5= _ X,-{c+a) -
LG =L 1-0 3  ga (62)

Table 8 shows the normalized Mode | stress intensity factors at the

maximum penetration point of the crack which is on the plate boundary
x =b' (i.e., for X; = b or Xx=1orlL= Lo); Some results showing the
distribution of the stress intensity factors are given in Table 9. The

results were similar for all crack geometries in that for plates under
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tension and for those having shallow cracks under bending the maximum
stress intensity factor was on the boundary x = b', whereas for deep
cracks in plates under bending K was maximum at the surface Xy = cor
x = ¢' (Fig. 1). For corner cracks with a rectangular profile results
similar to those shown in Tables 8 and 9 are given in Tables 10 and 11.
For this crack geometry too one may note that generally the stress
intensity factors for rectangular cracks are higher than those for the
elliptic cracks.

From the formulation of the problem it may be seen that all results
in the surface crack problem are dependent on the Poisson's ratio v
of the plate. The stress intensity factors given in this paper are cal-
culated for v = 0.3, However, as shown [9] , since the stress intensity
factors are not very sensitive to the Poisson's ratio, the results

given in Tables 1-11 should be valid for nearly all structural materials.

References

.  The Surface Crack: Physical Problems and Computational Solutions,
J.L. Swedlow, ed, ASME, New York, 1972.

2. I.S. Raju and J.C. Newman, ''Stress Intensity Factors for a Wide
Range of Semi-Elliptical Surface Cracks in Finite Thickness Plates'',

Journal of Engineering Fracture Mechanics, Vol. 11, pp. 817-829,
1979.

3.  J.R. Rice and N. Levy, ''The Part-Through Surface Crack in an Elas=-
tic Plate', J. Applied Mechanics, Vol. 39, pp. 185-194, Trans.
ASME, 1972.

b, F. Delale and F. Erdogan, ''Line Spring Model for Surface Cracks
in a Reissner Plate', Int. J. Engng. Science, Vol. 19, pp. 1331-13%0,
1981.

5. J.C. Newman, Jr. and 1.S. Raju, Analysis of Surface Cracks in
Finite Plates Under Tension or Bending Loads'', NASA Technical Paper
1578, 1979.

-162-



10.

11.

12.

13.

4.,

J.C. Newman, Jr. and 1.S. Raju, '"Stress Intensity Factor Equations
for Cracks in Three-Dimensional Finite Bodies', ASTM, STP791, 1983.

J.C. Newman, Jr. and |.S. Raju, '"An Empirical Stress Intensity
Factor Equation for the Surface Crack”, Journal of Engineering
Fracture Mechanics, Vol. 15, pp. 185-192, 1981.

G.D. Gupta and F. Erdogan, ''The Problem of Edge Cracks in an Infinite
Strip'", J. Appl. Mech., Vol. &1, pp. 1001-1006, Trans. ASME, 1974.

H. Boduroglu and F. Erdogan, ''Internal and Edge Cracks in a Plate
of Finite Width Under Bending'', J. Appl. Mech., Vol. 50, Trans.
ASME, pp. 621-629, 1983.

E. Reissner, ''On Bending of Elastic Plates', Quarterly of Applied
Mathematics, Vol. 5, pp. 55-68, 1947-48.

F. Delale and F. Erdogan, ''Transverse Shear Effect in a Circumfer-
entially Cracked Cylindrical Shell', Quarterly of Applied Mathematics,
Vol. 37, pp. 239-258, 1979.

A.C. Kaya and F. Erdogan, ''Stress Intensity Factors and COD in an
Orthotropic Strip', Int. Journal of Fracture, Vol. 16, pp. 171-190,
1980.

F. Erdogan, '"Mixed Boundary Value Problems in Mechanics'', Mechanics-
Today, S. Nemat-Nasser, ed. Vol. 4, pp. 1-86, Pergamon Press,
Oxford, 1978.

J.P. Benthem, "The Quarter Infinite Crack in a Half Space: Alterna-
tive and Additional Solutions', Int. J. Solids Structures, Vol. 16,
pp. 119-130, 1980.

-163-



Appendix A

The definition of normalized quantities

X = x}/a* , ¥ = xZ/a* , 2 = x3/a* s | (A.1)
u = uI/a* , V= uz/a* , W= u3/a* , (A.2)
b = —o B, =8, , B =8 (A.3)
a*%hE * “x 172 %y 27 ‘ ’
O = T4/E o, 0go/E Ty = 3o /E , (A.8)

N, . M. .
NGB - T#%" MaB = H%%" (@,B) = {x,y} , (1,j) = (1,2) , (A.5)

Vx = Vl/hB . Vy = VzlhB . (A.6)
_5 E - _E b co2Yat2 sn2
B = I EST c KT mw s M= 12(1=-v2)a%2/h2 . (A.7)

B' = b/a* . c!' = ¢c/a% , d' = d/a*

in the problem described by Fig. 1, a* = a = (d~¢)/2 for O<c<d<b and

a® =d for ¢ = 0, d<b.
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Appendix B

The Fredholm kernels k1 and k2 which appear in the integral
equations (36) and (37)

k1(x,t) = fm

0

o~ (2b'-t)e 28b
7857 -ABb' - {- [1+(3+28b')e” ]costh

1+48b'e

-28b"

-28xe sinhBx-{[28x sinhfx+(3-23b"

+e 2Py coshax[1-28(b'-t) T3ds , (8.1)

o -28

A L A k') - 1+e
f {[ m T+v B(bI t)] 1o ZBb'

(Zb'-t-x)s

[

kz(x,t)

o)

- -2ryx R o R
. mel v) I+e:-.2 - (326 (b'-t)ry _ 8re (b t)S)e (b'=x)ry
v 1-e”“"2
-2b'B
28 _ 2b'82 1+e -28xy . & . s, -28x
+ (= I . 2b,B,(He )+ 1+v {83 (1+e )
g2 -28x v “2BXy 4,7 1 -(2b'-t-x)8
+-2—x(l-e ) 'T:;B“"‘e )}]E D]e
o~ (bT=x)8 o~ (b-t)ry g2 “2roxy 1 -{b'~t)R
+ Dye ] - I+v r2(1+e ) 5 [Dle
2b'8
o~ (b'-t)ry ~(b'=x)r,
* 2 ] e ‘Zb’-f'z e 1dg » (B.Z)
- 2b'|"2 et
Dl gg-l" (] Zb B) ]+e-2b' " 2(]"'8 2b B_)
Y T-e 2

]+e"‘2b !

+ —",2‘{2_8 [‘]‘(b"t)ﬁl]-(l.-v) [—i— (b’-t)-KBZ](]_e'Zb'B)

(B.3)
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2 ~2b'r
_ _ 2B l+e 2 . =2b'By _ 241 __=2b'8 _
Dz = -YZ ]..e"Zb"rz (] e ) B (1 V) (] e ) 3 (B.l*)
- t - 1
D = bb'p2e 2b'8 | (%;%-B + 2¢B3) (1-e 4b B)
-Zb'r‘z B ' 2
+ 28%r, L2 (1720 'F) (.5)
1-e~ r2
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Table 1.

The normalized stress intensity‘Factors at the maximum

penetration point (x=0) of a symmetrically located

single semi~elliptic surface crack in a plate under uni-
form tension or bending (v=0.3).

L = 0.2h L = 0.4h L = 0.6h L = 0.8h
b d O Q [s] o]
h h
kb(O) kt(O) kb(O) kt(O) kb(o) kt(O) kb(O) kt(O)
0.5 | .709 | .729 | .308 | .390 | .0518} .175 |-.0290 | 0.0503
0.6 | .737 | .755 | .342 | .421 | .0705| .192 |-.0257 .0555
0.8 | .777 | .792 | .398 | .470 | .104 | .221 |-.0188 L0648
1 .805 | .818 | .443 | .508 | .132 | .246 {-.0121 .0730
4/3 | .837 | .848 | .501 | .559 | .174 | .282 |-.0014 .0848
o | 2 | -876 | .884 | .584 | 630
A .930 | .934 | .723 | .752 | .390 | .46L | .0726 .155
6 .953 | .956 | .800 | .819 | .49g9 i .556 | .127 .203
8 .967 | .969 | .853 | .865 | .592 | .634 | .190 .256
9.5 { .975 | .976 | .885 | .893 | .659 | .689 .249 .305
9.61 | .976 | .977 | .887 | .894 | .664 | .693 | .25k .310
9.8 | .977 | .978 | .891 | .898 | .672 | .700 | .26L .318
0.5 | .709 | .729 | .308 | .390 | .05138] .175 |-.0290 .0503
0.6 | .738 | .755 | .342 | .421 | .Q706| .192 {-.0256 .0556
0.8 | .778 | .792 | .399 | .470 | .104 | .221 {-.0188 L0649
3 1 .805 | .818 | .44k | .509 | .133 | .247 |-.0120 .0731
2 877 | .885 | .586 | .632 | .246 | .341 | .0189 .105
4 .932 | .936 | .730 | .758 | .hoOo | .72 | .077h .159
6 .957 { .959 | .814 | .830 | .525 | .576 | .144 .216
7.69 | .97V | .972 | .867 | .876 | .626 | .660 | .223 .282
7.84 | .972 | .973 | .872 .880 | .635 | .667 | .233 .290
0.5 ¢ 710 ) .729 | .307 | .391 | .0521| .176 |-.0289 .0503
0.6 | .738 § .756 | .343 | .422 | .0710! .192 {-.0256 .0556
0.9 | .79% | .807 | .42& | .492 | .122 | .235 |-.0152 .0693
1.2 | .827 | .839 | .483 | .543 | .160 | .270 |-.0051 .0807
6 | 1.5 | .851 { .861 i .530 | .583 | .196 | .301 | .0046 .0910
3 .915 | .920 | .681 | .715 | .341 | .423 | .0631 137
4 .930 | .934 | .723 | .752 | .390 | .4éL | .0726 .155
5 .953 | .955 | .802 | .818 | .507 | .560 | .136 .208
5.77 + .963 | .964 | .839 | .850 | .576 | .616 i .187 .250
5.88 | .964 | .965 | .844 | .855 | .587 | .625 | .197 .258
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Table 1 (cont)

b| 4 L, = 0.2h L0 = 0,4h Lo = 0.6h | Ly = 0.8h
h h . . . -
kb(O) kt(O) kb(O) ktCO) kbCO). kt(Ol‘ kb(O), kt(O)
0.5 | .711 | .730 | .309 | .392 | .0528| .176 |-.0289 | .050L
0.666! .755 | .771 | .366 | .u441 | .0839| .204 {-.0231 | .0591
0.8 | .780 | .795 | .403 | .474 | .106 | .223 |-.0184 | .0653
i 1 .809 | .821 | .450 | .54 | .137 i .250 [-.0112 | .0738
1.33| .843 | .853 | .512 | 568 | .183 | .289 | .0006 | .0866
1.5 | .856 | .865 | .540 | .591 | .204 | .307 | .0068 | .0929
2 .886 | .893 | .608 | .650 | .265 | .358 | .0257 | .111
3.92| .951 | .953 | .800 | .815.| .519 { .565. | .152 .218
0.5 | .716 | .735 | .316 | .398 | .0557! .179 |-.0287 | .0508
0.6 | .747 | .763 | .355 | .431 | .0768( .197 |-.0249 | .0564
0.8 | .791 | .804 | .421 | .488 | .117 | .232 |-.0166 | .0671
5 | 0.9 .808 | .820 | .450 | .5%13 | .136 | .248 |-.0121 | .0722
1.0 | .823 | .843 | .477 | .537 | .156 | .265 [-.0072 | .0774
Lys | .864 | .872 | .561 | .608 | .224 | .321 | .0118 | .0961
1.9 | .916 | .919 | .701 | .726 | .385 | .450 | .0754 | .150
1.96 | .920 | .924 | .718 | .740 | .11 | .471 .} .0903 | .162
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Table 2. Distribution of the stress intensity factors along
the crack front in a plate containing a single sym-
metric semi-elliptic surface crack (b/h = 10, v =

0.3, x = x]/d).

kb kt ky kt ky [ kt ky I kt
L,/h 0.2 0.4 0.6 0.8
X ~b/h =10, d/h = 0.5, v = 0.3
0.929 [0.628 |.547 |.428 |.340 1.191 }.152 | .0L86 |.uL4
0.828 | .672 |.609 |.392 |.349 |.154 |.156 | .0314 |.472
0.6838 | .694 |.656 |.361 {.364 [.123 |.162 | .0%113 |.510
0.516 | .704 |.691 {.336 |.376 |.092L4 |.169 |-.0061 |.512
0.319 | .708 |.715 |{.318 {.385 |.0672 |.173 |-.0187 |.502
0.108 | .709 {.727 |.308 }.390 |.0535 |.175 |-.0276 .503
0 .709 {.729 {.307 |.390 [.0518 }.175 |-.0290 |.503
b/h =10 ,d/h =1, v=0.
0.929 | .631 1.545 |.505 {.391 |.272 {.205 | .0809 |.0649
0.828 | .709 |.639 |.496 |.426 {.239 |.215 | .0621 .0677
0.688 | .756 1.710 |.480 |.457 |.209 |.226 | .0396 |.0718
0.516 | .783 |.762 |.h64 |.482 |.177 |.236 | .0183 |.0729
0.319 | .798 1.798 |.451 {.499 |.149 |.243 | .0163 |.072%
0.108 | .804 ;.816 |.4Lhk !.507 |.134 !.246 i-.0103 i.0728
0 -805 |.318 |.443 [.508 |.132 |.246 [-.0121 |.0730
b/h =10 , d/h = 4 , v = 0.
0.929 | .623 }|.535 {.561 !.420 |.402 |.285 | .168 !.121
0.828 | .739 |.661 [.626 |.517 |.420 |.339 | .163 |.137
0.688 | .819 |.763 [.666 |.601 |.426 [.387 | .14k |.150
0.516 .875 |.84L |.695 }|.671 |.418 k25 .120 .156
0.319 | .910 |.901 [|.713 {.722 |.402 |.457 | .0953 |.156
0.108 | .927 }.930 {.722 |.748 |.391 |.463 | .0756 |.155
0 -930 |.934 |.723 |.752 |.390 |.464 | .0726 |.155
b/h =10, d/h=8, v =o0.
0.929 ; .622 1.533 |.571 {.423 [.453 [.316 | .238 i.170
0.828 | .747 1.667 |.665 |.542.1.513 |.403 | .260 |.209
0.688 | .837 [.778 |.735 |.653 {.560 |.487 | .261 |.2%40
0.516 | .90! ;.868 {.797 {.749 |.586 |.558 | .245 |.256
0.319 | .944 [.931 |.830 |.821 |.593 |.607 | .219 |.259
0.108 | .965 |.965 |.850 |.860 |.592 {.631 | .19% |.256
0 .967 [.969 |.853 |.865 |.592 |.63h i .190 |.256
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Table 2 (cont.)

Ky kt kb kt Kp kt kb kt

Lo/h 0.2 0.4 0.6 0.8

x b/h =10 , d/h=9.8, v =
0.929 | .629 |.538 |.597 |.442 |.508 |.355 ¢ .312 .225
0.828 | .753 |.673 |.692 |.562 |.572 |.kh6 | .341 .270
0.638 | .8h4 |.784 |.763 |.675 |.626 1.536 | .345 .305
0.516 | .909 |.875 {.822 |.775 |.658 b4 | 328 .323
0.319 } .952 [.939 |.865 |.851 |.670 |[.669 | .298 .324
0.108 | .974% |.973 |.888 {.892 |.672 |.697 | .268 .319

0 .977 |.978 }.891 |.898 {.672 |.700 | .264 .318
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Table 3. Distribution of the stress intensity factors
along the crack front in a plate containing a single
symmetric semi-elliptic surface crack (b/h = 2,4,6;
v=0.3). |

k * kt ky I k k ] k k k

L /h 0.2 0.4 0.6 0.8

.929 |.646 |.559 ;.542 |.421 }.306 }.232 | .0941 |0.0752
.828 |.726 }|.654 }.533 [.h456 [.271 |.240 | .0736 | .0768
.688 {.774 |.726 |.517 {.487 {.238 {.249 | .0492 | .0796
.516 {.801 |.779 |.500 |.511 {.204 {.257 | .0261 .0793
.319 |.816 |.814 }.486 |.527 |{.174 [.262 | .0077 | .0777
.108 |.823 }.832 |.478 |.536 [.158 {.264 |-.0053 | .0774

.537 |.156 {.265 |-.0072 | .0774

OO0 OO0

b/h =14, d/h =1, v

li
(o)
w

.929 |.634 |.548 {.512 |.397 [.278 {.210 | .0833 | .0668
.828 j.713 |.642 |.504 |.432 |.245 }.220 | .0642 | .0634
.68B8 1.760 |.713 |.4B88 |.463 |.214 ].230 | .ob41k | .0733
516 {.787 1.766 |.471 |.488 {.182 |{.240 | .0198 | .0741
.319 1.802 |.801 |.458 |.505 |.154 t.246 | .0028 | .073k
.108 [.808 {.819 |.451 {.513 }.139 |.249 |-.0094 | .0737
0 .809 |.821 {.450 |.514 |.137 {.250 |{~.0112 .0738

= NeNo e Ro o)

b/h = 6, d/h = 1.2, v = 0.3

.929 |.632 |.545 |.522 }.402 |.296 |.221 .0921 .0723
.828 {.717 |.645 |.523 |.446 |.266 |.234 | .0732 | .0754
.688 {.770 |.722 |.513 |.483 [.237 |.247 | .0501 .0796
.516 {.801 |.778 |.501 {.512 |.206 |.258 | .0277 | .0808
.319 |.819 1.817 |.490 |.532 [.178 [.266 | .0096 | .0802
.108 }.827 {.836 |.474 |.541 [.162 }|.270 {-.0032 | .0806
0 .827 |.839 |.483 |[.543 {.160 |.270 |-.0051 .0807

COOoOO000
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Table &.

The normalized stress intensity factors at the center
(x=0) of a single symmetric rectangular surface crack

in a plate under tension or bending {(v=0.3).

L = 0.2h L = 0.k4h L = 0.6h L = 0.8h
b d Q Q o] e}
Al R
kb(o) kt(o) kb(o) kt(O) kb(O) kt(OJ kb(O) ktto)
. .765 |.784 |.340 |.429 L0607 {.194 |[-.0316 |.0599
1012 .915 }.922 |.652 {.699 .284  }.388 L0261 |.122
5 .970 {.973 |.847 |.868 S U611 L3k | L222
. .999 |.999 |.987 |.989 914 }.927 .557 |.603
.766 |.785 1.340 |.429 .0608 [.194 |-.0316 |.0599
8 .853 {.865 |.hk96 |.563 54 1,276 |-.0105 |.0851
.963 [.966 |.814 |.84o 487 |.562 .10k {.195
.998 1.998 .982 |.985 .892  |.907 .503 |.55k
. .766 1.785 |.341 429 L0610 1.194  |-.0316 |.0600
6 | 1 .855 |.867 |.498 |.566 155 1,277 {-.0103 |.0854
3 .951 .955 |.767 |.797 b [ L500 .0721 {.165
.997 |.998 |.975 |(.978 .857 |.878 J43h 0 {491
. .768 1.787 |.343 [.431 .0619 {.195 {-.0315 {.0602
g |0 .859 [.870 |.505 {.571 .159  1.281 [-.0095 {.0863
2 .930 [.936 |.690 {.732 .320 |.419 L0370 |.133
.996 |.996 |.959 .965 .797 1.826 L341 | .408
1.776 §.794 1.352 }.439 L0655 }.198 |-.0312 |.0609
5 880 1.890 {.545 |.K06 .186 |.304 |-.0047 |.0923
1.5 }.941 945 {.710 |.749 L334 | .432 .0395 |.135
1.96 {.990 }.991 .916 1.927 666 |.715 .205  {.285
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Table 5. Distribution of the stress intensity factors along
the crack front in a plate containing a single sym-
metric rectangular surface crack, x = x1/d.

% ke Ry | ke Ky ke Ky ke

L/h 0.2 0.4 0.6 0.8

x ' b/h=2,dh=1,v=0.3
0.929 |.585 |.618 |.233 |.334 | .0289 |.159 [-.0295 |0.0458
0.828 |.737 {.759 |.35h |.4k0 | .0798 [.209 |-.0261 | .0619
0.688 |.814 |.829 |.439 |.514 | .122 |.248 |-.0190 | .0741
0.516 |.852 |.864 |.495 |.562 | .154 |.276 |-.0120 | .0831
0.319 |.871 |.881 [.528 [.591 | .174 |.294 |-.0070 | .0890
0.108 [.879 |.889 |.543 |.605 | .18% |.302 |-.00b4 | .0920

0 1.880 |.890 |.545 |.606 | .186 |.304 |-.0041 | .0923

b/h=6, dh=1, v =0.3

0.929 [.566 |.601 {.210 |.314 | .0181 [.149 |-.0302 | .ok39
0.828 |.715 |.738 |.321 |.h11 | .0623 |.19k |-.0283 | .0586
0.688 |.789 {.806 {.399 |.480 | .0996 |.228 |-.0227 | .0694
0.516 |.827 |.841 |.451 l.524 | 127 |[.253 |-.0169 | .0773
0.319 |.846 |.858 |.482 |.551 | .145 |.269 [-.0127 | .0825
0.108 |.B54 |.866 |.496 |.564 154 1,276 j-.0105 .0851

0 |.855 |.867 |.498 |.566 | .155 |.277 |-.0103 | .085k

b/h = 10, d/h = 1, v = 0.3

0.929 {.423 |.470 !.112 {.228 |-.0172 {.108 {-.0293 | .0309
0.828 |.57h {.609 |.191 [.298 | .0038 |.138 |-.0343 | .0417
0.688 |.667 |.694 |.252 |.352 | .0250 |.160 |-.0350 | .0492
0.516 |.721 |.7h4 |.297 {.390 | .0421 |.177 |-.0339 | .0545
0.319 |.751 |.771 |.325 |.B15 | 0539 [.188 |-.0325 | .0580
0.108 |.764 |.783 {.339 |.427 | .0599 |.193 |-.0317 | .0597

0 765 |.784 |.340 |.429 | .0607 |.19k {-.0316 | .0599
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Table 6. The location x=x* and magnitude ky{x*) and ki {x*) of the
normalized stress intensity factors in a plate containing
two collinear semi-elliptic surface cracks, D=a/(a+c).
L = 0.2h L = 0.4k L = 0.6h L = 0.8h

D Q 0 Q Q
kb(x*) kt(x*) kb(x*) kt(x*) kb(x*) kt(x*) kb(x*) kt(x*)
0.112 [ xx | 0.2 |o0.05 | .929 | .319 | .929 | .923 | .929 | .929
k(x*) | .831 | .839 | .649 | .554 | .409 | .308 | .138 | .107
0.125 | x* 0 0 929 | .00 | .929 | .108 | .929 | .516
k {x*) .812 .824 | .522 .518 .287 .523 .867 .756
.250 | x* o | o |¥.929 0 .929 0 .929 |%.516
k(x*) | .807 | .820 | .509 | .512 | .275 | .248 | .0822 | .735
0.5 X 0 0 -.929 0 |-.929 o |-.828 | .516
k {x*) 811 .823 .521 517 .285 .251 .0858 L0744
0.75 1| x* -0.50 0 -.929 -.050 -.929 -.108 -.929 -.688
k{(x*) .818 .829 | .550 .528 .310 .259 .0951 | .786
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Table 7.

Distribution of the normalized stress intensity

factors along the crack front in a plate contain-
ing two._collinear semi-ellj

X = [xl-(c+a)]/a (Fig. 1).

ptic surface cracks,

Ky l Ke 1 ky [ ke (R | Ky Ky, Ke
L /h 0.2 0.4 0.6 0.8
X b/h=10, d/h=1, D=a/(c+a)=0.112, v=0.3
0.929 1.688 .596 |.649 |.505 |.409 |.308 | .138 !.107
0.828 1.766 |.689 [.623 |.527 |.351 |.300 | .106 |.102
0.688 .805 |.754 |.584 [.541 [.297 |.294 .0720 |.0975
0.516 |.824 |.798 |.548 |.550 |.246 |.289 | .0ktl .0915
0.319 1.831 1.827 |.519 |.554 |.204 |.285 | .0175 |.0858
0.108 1.831 |.839 {.500 {.553 |.178 |.280 | .0073 .0829
0 .829 1.839 |.49L4 |.550 [.173 |.278 |-.0016 |.0821
-0.108 1.826 }.835 |.491 |.546 [.172 1.275 |-.0004 |.0814
-0.319 1.816 |.814 |.492 |.532 |.184 [.269 | .0117 |.0809
-0.516 1.799 |.776 |.500 |.512 {.209 |.261 | .0293 |.0818
-0.688 |.769 |.721 |.513 |.484 |.240 |.250 | .0516 |.081L
-0.828 |.720 |.649 {.526 |.450 |.270 {.239 | .0751 |.0780
-0.929 |.640 |.553 |.533 ;.413 |.303 |.229 | .0949 |.0758
b/h=10, d/h=1, D=a/(c+a)=0.75, v=0.3
0.929 1.637 |.551 ;.521 |.4o4 |.288 |.217 | .0872 |.0698
0.828 [.716 |.645 [.514 |.4ho |.254 [.227 | .0678 |.0721
0.688 |.764 |.717 |.499 |.472 |.224 |.237 | .ouké .0757
0.516 [.793 |.771 |.48h |.498 |.192 |.2h7 | .0225 |.0763
0.319 |.809 {.807 {.472 |.516 |.164 |.254 | .0050 |{.0753
0.108 |.816 |.826 |.467 |.526 |.149 |.258 |-.0075 |.075h
0 .818 1.829 |.467 |.528 |.148 |.258 |-.0093 |.0755
-0.108 |.818 |.828 |.469 |.528 {.151 |.259 !-.0073 .0755
~0.319 |.814 |.812 |.480 |.522 {.169 |.258 | .0057 |.0760
-0.516 |.801 |.778 |.497 |.509 |.200 |.253 | .0243 .0778
-0.688 1.776 |.727 |.517 [.488 |.236 |.247 | .0481 |.0786
-0.828 |.730 |.657 |.538 |.460 |.272-|.240 | .0735 |.0766
-0.929 1.651 {.563 |.550 |.427 }.310 {.235 | .0951 {.0757
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Table 8. The normalized intensity factors on the edges (x=%b') of

a plate containing two symmetric corner cracks having a
profile of a quarter ellipse (Fig. 1).

tension and for those having shallow cracks under Bending the maximum
stress intensity factor was on the boundary x = b', whereas for deep
cracks in plates under bending K was maximum at the surface Xy = cor
x = ¢' (Fig. 1). For corner cracks with a rectangular profile results
similar to those shown in Tables 8 and 9 are given in Tables 10 and 11.
For this crack geometry too one may note that generally the stress
intensity factors for rectangular cracks are higher than those for the
elliptic cracks.

From the formulation of the problem it may be seen that all results
in the surface crack problem are dependent'on the Poisson's ratio v
of the plate. The stress intensity factors given in this paper are cal-
culated for v = 0.3, However, as shown [9] , since the stress intensity
factors are not very sensitive to the Poisson's ratio, the results

given in Tables 1-11 should be valid for nearly all structural materiais.
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Table 8 - cont.

L = 0.2h L = 0.4h L = 0.6h L =0.8h
b a o o 0 0

ho R BT TR BT TR, 57T TR 7] [k (7] [k (6] [k (') K, (57)
0.25 772 .787 .376 452 . 0967 .218 {-.0165 .0684

0.75 .873 .882 .576 .625 .249 .3h49 0307 .118
1 .895 . 902 .630 .672 .299 . 391 0483 L0135

1.5 .922 .927 . 704 .736 .378 457 0786 .163

10 2 .939 <943 755 .780 bk .510 | .106 .188

- 2.5 .951 .953 .793 .813 494 .555 133 211
3.0 .959 .961 .823 | .840 .5h41 .594 | 160 .234

3.5 .966 .968 .848 .861 .584 .630 | .188 .258

4.0 .972 .973 . 869 .880 .624 .664 | .218 .283

4,5 .976 .977 .888 .896 .664 .696 .252 .312

20 1 .895 . 901 .629 .671 .298 .390 0483 .135
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Table 9.

Distribution of the normalized stress intensity

factors along the crack front in a

D;zlate containing

two (elliptic) corner cracks, x = 1-(c+a)]/a
(Fig. 1).
Ko Lke R [ ke Ry ke | Ky Ke
Lo/h 0.2 0.4 0.6 0.8
X b/h =2, a/h = 0.5, v = 0.3
0.999 (.852 |.862 .522 |.577 1.197 .303 1.0089 {.0963
0.936 |.846 }.856 515 1.571 {.191 |.297 .0073 1.0936
0.784 §.834 |.843 |.503 .557 .182 |.286 |.0050 |.0883
0.558 |.824 |.828 L1493 543 §.177 |.274 |.0064 L0834
0.279 |.813 |.808 492 [.528 1.184 |.266 .0138 |.0805
-0.026 {.799 777 | . 498 {.510 |.204 .257 1.0263 |.0798
-0.329 |.776 [.732 .511 |.488 .231 }.248 }.0450 L0794
-0.600 {.736 |.669 |.526 |.460 |.261 |.240 .0679 {.0768
-0.815 }.668 |.583 |.537 |.427 .294 |.231 {.0882 |.0748
-0.953 .549 |.460 |.532 }.390 .336 {.232 {.112 L0772
b/h = 8, a/h = 0.8, v = 0.3

0.999 [.879 |.887 .589 [.636 [.260 .358 [.0343 [.7122
0.936 |.874 |.882 |.582 .630 |.253 |.351 .0317 |.118

0.784 |.866 }.872 {.570 |.617 |.242 .339 1.0277 ].112

0.558 {.857 [.859 |{.561 |.602 .237 [.326 [.0281 |.105

0.279 |.844 |.836 [.557 |.583 |.243 -314 1.0357 [.101
-0.026 |.825 |.800 |[.557 [.559 .259 [.302 |.0489 |.0990
-0.329 [.793 |.746 |.558 .525 |.282 |.286 L0677 |.0966
-0.600 |.741 [.&71 .558 |.481 |.304 .269 |.0896 0917
-0.815 [.658 |.573 |.547 |.428 [.326 |.249 [.108 |.0869
-0.953 {.527 {.434 }.502 .361 {.345 .23 L1127 .0850
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Table 10. The normalized stress intensity factors at the edges x = ¥b'
of a plate containing two symmetric rectangular corner cracks.

bl a L, = 0.2k L, = 0.4k L, = 0.6h L = 0.8h

h h I 1 1 3 1 t
kb(b') kt(b ) kb(b ) kt(b ) kb(b ) kt(b’) kb(b ) kt(b )

0.25 | .821 .835 415 bk .108 .238 |-.0185 | .0773

2 0.5 .895 .903 .581 .638 .223 .337 |-.0119 | .109
0.8 .954 .958 .754 .787 .388 477 .0620 | .156
0.26 | .820 .835 RAL) .h97 112 242 |-.0163 | .0797
y [0-4 .860 .871 .507 .57k .17k .295 .0014 | .0985
] .937 .942 716 .755 .359 453 .0595 | .154

1.6 .976 .978 .856 .876 .550 .617 .139 227
0.27 | .823 .838 426 .504 117 256  1-.0149 l0.0812

g 0.6 .891 .900 .589 645 .240 .353 L0227 1 .120
1.6 .956 .960 .788 .817 453 .534 L0983 | 190
2.4 .984 .985 .902 .915 .648 .700 .202 .283
0.28 | .827 841 433 .510 J122 .250 |-.0136 | .0826

g 0.8 .912 .919 .648 .696 .294 .399 .0%09 | .138
2 .967 .970 .833 .856 .525 .595 .133 .222

3.2 .988 .989 .927 .937 714 .756 .255 .331
0.27 | .823 837 425 .503 117 246 [ -.0150 | .0811

10 { ! .927 .933 .692 .73k 341 439 L0573 | .153
2.5 .974 .976 .864 .882 .581 643 .165 .251

A .991 .992 .943 .951 761 . 796 .302 .374
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Table T1. Distribution of the normalized stress intensity

factors in a plate with rectangular corner cracks,

X = [x1-(c+a):|/a.

kb kt k kt ky kt kb kt

Lo/h 0.2 0.4 0.6 0.8
X b/h = 2, a/h = 0.5, v = 0.3
0.999 |.895 |.903 |.581 [.638 |.223 [.337 ! .0119 |.109
0.936 {.892 {.901 |.576 |.634 |.218 |.332 | .0102 |.107
0.784 |.887 |.896 |.564 |.623 |.207 |.323 | .0059 !{.103
0.558 |.879 [.889 |.5k8 |.609 |.193 {.310 | .0003 |.0967
0.279 |.868 |.879 {.525 |.589 |.175 {.295 {-.0057 |.0902
~0.026 |.851 |.863 |.493 |.561 |.153 }.275 [-.0122 |.0828
-0.329 }.818 |.833 |.444 |.518 |.124 |.249 |-.0195 |.0739
-0.600 {.756 |.776 }.370 {.454 |.0852{.214 {-.0268 |.0626
-0.815 1.630 |.660 }.262 {.353 |.0373|.168 |-.031L |.0481
-0.953 [.385 |.434 |.115 |.229 -.0098 .107 |-.0260 |.028%4
b/h = 8, a/h = 0.8, v = 0.3

0.999 {.912 |.919 |.648 {.696 |.294 (.399 i .0409 :.138
0.936 1.911 1.918 {.643 |.692 |.289 |.394 | .0383 |.135
0.784% 1.907 |.915 {.633 {.683 |.277 (.384 | .0322 |.129
0.558 }.902 |.910 |.619 |.671 |.261 |.370 | .0249 |.121
0.279 }.894 |.902 |.598 }.652 {.242 |.353 | .0172 |.114
-0.026 |.830 |.890 [.567 j.625 |.217 }.331 .0086 j.105
-0.329 |.856 |.868 [.520 |.584 [.183 [.301 {~-.0015 |.093%
-0.600 |{.809 .82k |.446 }.520 |.137 |.260 |~.0133 [.0792
~0.815 }.705 }.729 1.331 {.420 |.0759|.205 |-.0245 |.0610
-0.953 |.462 {.505 |.160 {.270 |.0073|.131 |-.0263 |.0367
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Fig. 2 Comparison of stress intensity factors calculated by the

finite element and line spring methods in a plate containing
a symmetrically located semi-elliptic surface crack and sub-
jected to uniform tension.
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Fig. 3 Comparison of the stress intensity factors calculated by the

finite element and Tine spring methods in a plate containing
a single symmetric semi-elliptic surface.crack and subjected
to uniform bending.
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Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,
Ly/2a = 0.4, b/2a = 5.
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Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,
Lo/2a = 0.2, b/2a = 5.
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APPENDIX B

EINTERACTION OF PART-THROUGH CRACKS

IN A FLAT PLATE

‘B. Aksel and F. Erdogan

Lehigh University, Bethlehem, PA

ABSTRACT

Main purpose of this study is to determine the accuracy of the
line spring model, to investigate the effect of interaction between
two and three cracks, and to provide extensive numerical results
which may be useful in applications. Line spring model with
Reissner's plate theory is formulated to be used for any number and
configurations of cracks provided that there is symmetry. This model
is used to find stress intensity factors for elliptic internal
cracks, elliptic edge cracks and two opposite elliptic edge cracks.
Unfortunately, because of the unavailability of previous work done
on the cases considered, only stress intensity factors for central
elliptic crack could be compared with other methods. - Despite the
simplicity of the line spring model, the results are found to be

surprisingly close.

-186-



1. INTRODUCTION

From the viewpoint of practical applicaticns, the analysis of a
part through crack in a structwral component which may locally be
represented by a "plate™ or a "shell" is certainly one of the most
impertant problems in fracture mechanies. In ‘its general form, the
problem is a three-dimensiomal crack problem in a bounded geaneiry
where the stress fiel-ds perturbed by the crack interacts very
strongly with the swrfaces of the solid. At present, even for the
linearly elastic solids, a neat analytical treatment of the problem
irery heavily rely on some kind of numeriecal technique, such as
altermating method, [5], [6], or boundary integral equation me thod,
[7]; but most notably on the finite element method, [8]-[10]. The
renewed interest in recent years in the so called "line-spring
‘model“ first described in [3] has been due partly to the desire of
providing simpler and less expensive solutions to the par t-through
crack problem and partly to the fact that for certain important
crack gecmetries, the model seems to give results that have an

acceptable degree of accuracy.

In a plate or shell containing a part-through crack and
subjected to membrane and bending loads, the net ligament(s) around
the crack would generally have a constraining effect on the crack
surface displacements and rotations. The basic idea underlying the

Bline-spring model" consists of approximating the three-dimensional
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Ccrack problem by a two-dimensiom] coupled bending-membrane problem
through the reduction of the net ligament stresses to the neutral
surface of the plate or shell as a membrane load N and a bending
moment M. In the resulting two~dimensional problem, the crack
surface displacements are represented by a crack opening
displacement & and a crack swurface rotation 8, referred to, again,
the neutral swface, The quantities N, M, & and 8 are assumed to be
functions of a single variable, namely the coordirate X4, along the
crack in the neutral surface (Fig. 1). The pair of functions (5,8)
or (N,M) are determined from the corresponding mixed boundary vazlue
problem for the plate or the shell having a through gr-ack in which N
and M are treated as unknown crack surface loads. Once N and M are
determined, the stress intensity factors are evaluated from the twoe
dimensional elastieity solution of a strip under the membrane force

N and the bending moment M.

The model introduced in [3] is based on the classical theory.
However, the asymptotic stress field arcund the crack tip given by
classical plate bending theory is not consistant with the elasticity
solutions, whereas a transverse shear theory (such as that of
Reissner's) which cah accomodate all stress and moament resultants on
the crack surface seperately (i.e., three boundary conditions in
plates, five in shells) give results which are ldentical to the
asymptotic solutions obtained from the plane strain and anti-plane

shear crack problems [2], [11). The line spring model was later used
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in [12], [13] to treat the longitudinal part-through crack problem
in a cylinder by using the classical shell theory and in [1], [14]
by using transverse shear theory. Rather extensive results for
corner cracks and for collinear surface cracks in a plate having a
finite width are given in [15]. The similar problem of swface
crack-boundary interaction in a cylindrical shell with a.free or a

fixed boundary is considered in [16] and [17].

In f.his study, stress intensity factors for elliptic internal
cracks under pure bending and tension, and for collinear elliptic
edge cracks under pure tension will be studied by using the line-
spring model with Reissner's plate bending theory. Interaction of
two and three identical elliptic edge and internal crcaks will also

be studied by using the same method.
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2. FORMULATION OF THE PROBLEM

2.1 Governing Integral Equations

The problem under consideration is a surface or an internal
crack problem for a relatively thin-walled structural component
which is solved basically as a plate or shell problem. In the uswal
notation Ugy Un, uy are the components of the displdcement vector,
£, and B, are the angles of rotation of the normal to the neutral

surface in XX and x2x3 planes, respectively, and Ni M.. and

Jr Ui
Vi(i,j=1,2) are rgspectively the membrane, moment and transverse

shear resultants (Fig. 1).

Related mixed boundary value problem for any number of ceracks
has been formulated in [15] by using Reissner's plate bending
theory. The derivatives of the crack surface displacement and the
"erack surface rotation on the neutral surface are chosen as the
unknown functions. Fredholm kernels kT(x,t) and kg(x,t) in [15]
represent the effect of finite length of the plate in X4 direction.
They will vanish in this case since the plate has an infinite length
in Xy direction. Integral equations are written for only half of the
infinite plate (x1 > 0) and are only valid when symmetry with
respect to the XX p_lane exists, D represents the normalized
cracked region on the x4 axis, which means that if there is a crack

in the region (b,c), D represents the region (b/a , c/a) where Mat
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is the half crack length and equals to (c~b)/2. x is also normalized
parameter on X, axis which is x=x1/ai, where ay the half ocrack
length for the corresponding crack(i subscript is needed because

general formulation is done for more than one crack).

From [15], integral equations are as follows:

G'(x) &, (x)
—_ ——]G(t) dt = ,  XED, (n
tex t+x E
m(x) 1 1 1 1
—— = R R, |——~ 4+ —| = R +
6E 1 [2 [t'.-x t.+x] 3[(t-x)3 (t+x)3
D
1 1
+ RH[— K5 (p t=x]) + —— Ko (plt+x| )] ] G5(t) dt
t=x t+x
m. (x)
= ° ’ XED ] (2)
6E

~.

where K, is the modified Bessel function of the second kind and the
constants R1, R2, R3, RL} and p are defined in Apbendix I. h is the
thickness of the plate, 2a is the length and L(x1) is the depth of
the crack (Fig. 1). E is the modulus of elasticity and y is the
Poisson's ratio of the material. The unknown functions are defined

by
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Gq(x) =§.3y(x,+o) ’ Gy (x) =%—v(x,+0) ’ (3)
X X

s y=£ 2 ] V=UE/a .
The external loads

QO
N2»2 6M3

' mo = 2 ? (1;)

F = —
h h

]

represent uniform membrane and bending resultants applied to the

plate away from the crack region and & and m which are defined by

N{x,0) 6M(x,0)
e{x) = , B(X) = ——, XED , ‘ (5)
) h he

are the membrane and bending loads applied to the orack shrf‘aces
(Fig. 1). The integral equations are obtained from the following

mixed boundary conditions in %5=0 plane
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Nop(x,0) = =83, + N(x) , x¢€D, (6a)

us(x,0) =0 , X€ED , (6b)
M22(x,0) = - 22 + M(x) ) X ED r (Ta)
’E(x’o) =0 ? XED ' (Tb)

where the general principle of superposition is used to account for
the loading Nga, and Mga applied to the structwe away from the

crack region.

2.2 Line-Spring Model for an Edge Crack

Edge crack is chosen for introductory purposes because of the
simplicity of its formulation. Modifications will be made as more

complicated crack gecmetries are examined.

The configuration studied here is an "infinite" elastic plate
of thj?elaless h, which contains a surface crack of length 2a and
depth L(x.l) penetrating part through the thickness (Fig. 1). For
general purposes L(x1)can be any function which emables us to treat
any c¢rack geocmetry. At remote distances from the crack gite, the

plate is subjected to loads equipollent to a uniform simple tension

in the Xo direction and to pure bending about the X4 axis. The first
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assumption in the line-spring anslysis is that the stress intensity
factor at a point along the crack front with coordinate Xq 1is
identical to the stress intensity factor for an edge cracked strip
in plane strain (Fig. 2), subjected to an axial forece and moment
equal, respectively, to N22(x1,0) and M22(x1,0), and having a crack
depth equal to L(x1). In [1], [3], mode I stress intensity factor

for the plane strain problem is given as

Vb [eg, (s) + mgy ()1 , (8)
L(xy)/h , (9)

K(s)

S(X1)

‘where functions gt(s) and gb(s) are called shape functions for

tension and bending respectively, and given as

n .

gy (s) = yms ZbiSZ(l-” . (10a)
i=i
ﬂ ]

gb(s) = \/‘!l’sz cis(l'” . (10b)
iwl

The value of n is chosen according to the desired accwacy. The
coefficients bi and ¢y can be found by a suitable curve fitting
(Appendix II). Coefficients of the shape functions for a number of

crack geametries are given in Tables 2, 4, 6, 8, 10, 12, 14, 16, 17.
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In order to obtain N(x4) and M(x1) in terms of G, and G,, the
energy available for fracture along the crack front is expressed in
two different ways, namely as the crack closure energy and as the
product of load-load point displacement. In a plate with an edge
arack subjected to uniform tension N and uniform bending moment M
(Fig. 2), if K is the stress intensity factor given by the plane
strain solution, from the crack closure energy, the energy (per unit

width) available for fracture may be obtained as

D 1-p2
Gz (U-V) = — K2 (11
L E

where U is the work done by the external loads and V is the strain

energy.

.Let & and @ be the load line displacements corresponding to N
and M shown in Fig. 2 and d& and d® be the changes in & and 8 as
the crack length goes from L to L+dL under fixed load conditions.
Then referring to Fig. 2, the changes in U and v may be expressed as

dU = Nd® + Md® |, (12)

dV = (1/72) [N($+dd) + M(8+a®) - (1/72) (N + MB) =

(1/2) (N&® + MdB) (135

Equations (12) and (13) give the energy available for a crack growth

dl as follows:
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d(U-V) = (1/2) (Ng® + Mde) . (14)

On the other hand for constant N and M, and for a change of dL in

the crack length, we have

0% ao'
dd = ——aL, d8 = ~——— dL . (15)
oL oL

Thus, from (14) and (15) it follows that

d 17198 Qe
a—(U—V) = G .-.; [Na_+ M.._], (16)

1,98 Q8. 1-p2
;[N——-I-M-—]:

2
| (17)
oL OL

B

. From (5) and (8), we may rewrite (17) in terms of & and m as
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follows:

1 [ 08 hzaa] 1-#2 - 5 2
— {®h—+ M — |2 h—e (g56° + 2g g Om + g2m2) . (18)
2 OL 6 OL E ¢ b b

In order to solve ¢ and m in terms of 8 and ® or vice versa we
introduce the =o called compliance coefficients. In a cracked strip,
displacement and rotation are functions of both the applied stress

and bending moment. This relation may be expressed as

hd

h?8/6 = 4,6 + Am (19b)

Agy® + Agm (19a)

where (with proper normal izations) AtbzAbt by elastic reciprocity.
The compliance coefficients Aij depend only on L and vanish when
L=0. If we substitute (19) into (18) and equate common coefficients

in the quadratic forms of both sides, we get

dAgy  2(1-#2)n

= Er
dL E ¢

(20a)
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2

= i 81 s (200)
dL dL E t¥b
A,  2(1-#2)h )
dL E

By defining
L
qij = h-1fgigj dL , (i, 3 = b,t) y (21)
o]

and knowing that Aij.-.o at L=0, we may write

212(1-»2)
E
2hZ( 1-92)
E
2n2(1-92) |
E
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Substitution of (22) into (19) gives

2h( 1-#2)
E
12( 1-92)
e - - (“bt' + cbbm) . (24)

where &, =®&,.. From (3), & and ® may be expressed in terms of the

unknown functions G1 and G2 as

x

8 = 232(x,+0) = 2 fﬁh(t) dt (25)
-1 x _
8 = Eauz(x,+0) = 2a J’Gz(t) dt . (26)

~]

If we solve (23) and (24) for &(x) and m(x) and substitute (25) and

(26) for 8 and 8, we can determine ®(x) and m{x) in terms of the

unknown functions G1 and 62 as fellows:

x x
¢(x) = E ["‘l’tt(x) Gz(t) dt + ‘vtb(x) j’G*I(t) dt] , {27)
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X x
m(x) = 6E [+, (x) jGa(t) dt + ¥ pp(x) | Gy(t) at] , (28)
-1 -1

where

a L« 4
b
'ftt - 2 b ¥ (293-)
h(1-#¢) &
1 &
tb
4 4 - ' (29%)
8" Te(1-v2) A&
1 a
Yyp = - A (26¢)
6n(1-¥2) A
Y = 1 Tet {29d)
P " (1) &
& =apa, -l . _ (28e)

We should keep in mind that “ij is a function of L(x)/h, which means

“ij is also a. function of x.
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For a single crack shown in Fig. 1, the normalized ecracked
region on x4 axis (called D in (1) and (2)) is defined as (0,1). (1)

and (2) then become

&(x) 1 1 1 S,
- [ + ]G1(t)dt=——, 0<x<1, (30
E

E 2% 3 t=-x t+x
i
m(x) 1 1 1 1
- R‘l R2 —_— r—— - R3 [ + ]
6E 3 t=x t+x (t—x)3 (t+x)3

1
+ Ru[—l{z(p[t-xl) +
t-x Cax

K, (pft+x]) ] }Gz(t) dt

Z e 0<x< 1, (31)

For convenience in the numerical solution of integral equetions we
need to convert the integrals calculated over (0,1) to (=1,1).
Because of that the geametry and loading conditions are symmetric
with respect to the X5X3 plane, uz(x,'+0) and ﬂz(x,+0) should also

be symmetr;c with respect to the same plane. In mathemathical form

up(-x,+0) = us(x,+0) ' (32a)
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Bz(“X,'!'O) = 32(1{,'5'0) . (32b}

Observing that derivative of a symetric function is antisymmetrie,

we may write

G1(-t) -G1(tJ ' (33a)

Gpl-t) = =Gy (t) . (330)

By applying the above properties, integrand of (30) can be rewritten

as

i |
1 1 1
[--- + _.-]01(1-.) dt =
t-x t+x t=-x

(o} Q l

G1(t) dt

1

Gy(ty) dty . (34)
t1+x
o)

By a change of variable t1 = =t and from (33a), we can write
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i -1

1 1
t1+x -t+x

o o]
o]
1

=j—--—G1(t) dt . (35)
t-x
-]

Substituting (35) in (34)

1 1 1
[_...+__]G1(t) dt = | ——G(t) dt . (36)
£

-X t+x t-x
0 -

After applying the same procedure to (31) and substituting (27) and

(28) for ®(x) and m(x), integral equations take the following final

form

b4
1 1
'Ybb(X) J’ G1(t) dt - R1 j[Rz - R
t

I -X 3(t—x)3
~ - =1
X
1
+ Ru: Kz(p[t-x])] Gy (t) dt + “r‘bt(x)sz(t) dt
-1
m
- =2, <x<1, (37a)
6E



X X
?tb(x) IG1(t) dt + ‘Ytt(x)f GE(t) dt
=1 | -]

1 (t) s
% dt = ~— , ~1<x< 1. (37b)
£

2% t=-x
=i

From (3) it follows that the unknown functions G, and G, must

satisfy the single valuedness conditions given by

I !
fG1(t) dt = 0 , sz(t) dt = 0 . (38)

After solving (37) ‘and (38) by using Gauss-Chebyshev closed type
integration formula which is defined in Appendix III, a backward
procedure is applied to find the stress intensity factors along the
crack front. Unknown functions are integrated (Appendix IV) from -1
to the value of x at which the stress intensity factor is desired.
Then those integrals are substituted to (27) and (28) with the
functi?ns 'fij(x), (i,j=t,b) evaluated at that particular point to
get cor;responding ¢ and m. Once & and m are found, (8) gives the

stress intensity factor at a specific peint on the crack front.
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2.3 Internal Cracks

The line-spring model described in the previous section may
easily be extended to internal cracks such as that shown in Fig. 3.
In this case the basic integral equations remain the same and again
are given by (1) and (2). However, there are two crack tips (shown
as A and B in Fig, 3) which create two different stress intensity
factors for each cross-~section taken perpendicular to X4 direction.
Previous assumptions regarding the stress intensity factors will
also remain the same; however, they are now defined seperately,

i.e.,

K, = s/l? [6gy.(3) + mgy,(s)] (39a)}

KB = \/IT[G'gBt(S) + mng(S)] * . (3%)

where 8atr Bppr Bgyr 8pp are the shape functions corresponding to
erack tips A and B, Unlike the edge arack case, these shape
functions are now functions of both L(x4)/h and d/h where d is the

distance from the center of the crack to the neutral plane. Two way
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parametrization is needed in order to define the shape functions
which are valid for any kind of internal crack. Since elliptic
cracks whose major axis are parallel to the free surface are the
main concern in the present study, parametrization can be simplified
by observing that the distance between the center of any crack
obtained by taking cross-sections perpendicular to the major axis
and the center line of the plate is fixed. In other words, d is
constant for any elliptic crack whose major axis is parallel to the
free surface. Because of this property, as in the previous case, we
may again define the shape functions for each crack as a function of

only one variable, which is L(x1)/h, as

n.
ta)
. n,
el
ﬂ ]
il
n
tal

Keep in mind that coefficients are different for each value of d,

The next step is the representation of the energy available for
fracture in terms of both stress intensity factors and pr'oduét of

lcad-load point displacement. As L increases by dL, the energy
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increment available for fracture may be expressed as

1-92
d(0-V) = [<2 atw2) + &3 d(L/2)] , (41)
E
giving
2
d 1-9
G =—(U-7) = — (&3 + k3) (42)
oL 2E

which replaces (11). The rate of energy available for fracture as
expressed in terms of the load line displacements and forces remains
the same and is given by (16). If the same procedure as in the

previous section is followed, the functions ®(ij) may be found as

[
Ry = nt I (git + g%t)/2 dL (43a)
- OL
Sy = h-1 J' (gib + g%b)lz dL , (43b)
° L
Xip = Xy = p~1 I'(gAtgAb + gBthb)/Z daL . (43e)

2]

~After this point, everything, including the resulting integral
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equations and the solution method, is exactly the same as explained
in Section 2.2, After scolving the equations, the functions G1 and G,
are again substituted to (27) and (28) to find & and m, which are
then substituted to (39) to find the two stress intensity factors at

the corresponding value of x.

2.4 Symmetric Internal Crack

This is a special case of an internal crack where d=0. Due to
the fact that simple tension cannot create any crack surface
r-otat;‘.on and simple bending cannot create any crack opening
displacement (on the neutral plane), from (23) and (24) one can

write

which gives

Substitution of (45) into (37) would decouple the integral equations
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(only unknown in (37a) is G4 while the only unknown in (37b) is Gz)
which would in turn enable us to solve them seperately. This
property reduces both the computer time and memory space needed in

the numerical solution.

2.5 Two Opposite Elliptic Edge Cracks

Two opposite edge cracks shown in Fig. 4 has exactly the same
properties as symmetric internal oracks except for the coefficients
of the shape functions. Once the shape functions are established by
a sultable curve fitting, the same procedure that is applied to
symmetric internal cracks is applied to find the stress intensity

factors,

2.6 Interaction Between Two Identiecal Cracks

All the crack geometries that we considered up to now were
single cracks lying in the region (-a,a) on the X, axis. Only

difference among them was their configuration in the thickness
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direction. Shape functions, énergy available for fracture and
functions “ij and ‘rij are all sensitive to this conf iguration,
while the form of the integral equation is independent of it. In
this section, we will modify (1) and (2) for two identical cracks
which is shown in Fig. 5. In this case D is defined as (b/a y c/aj.

With the new definition of D, (1) and (2) will take the following

form.
CI
c(x') s,
[ ]G.l(z) dz=—2, br<x'<o, (46)
2"!’ z—x' Z+xX ! E
bl
m(x') j 1 1 1 1
- R R + - R +
E 1 . 2[z-x' z+x'] 3[(z--x')3 (z+x')3]
b.
1 ‘
+ Ru[ Kz(plz—x'l) + Kz(plz+x'l)]] G,(z) dz
z-x! Z+x'
)
T — ’ b < x' < e , (47)
~ bE
where
x' = x4/a, b' = b/a, e' = c/a .

Again we have to comvert the limits of integrals to (-1,1) for
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numerical solution purposes. By introducing the following parameters

(keep in mind that from Fig. 5, (e'=b")/2 = 1)

"
L]

(2x'-c'-b') / (e'-b') , (48)

x!

13

[(e'=b')x+c'+b?] / 2 = x + [(c'+b!) / 2] , (4 9)

dx'= dx s

and

t = (2z-c'-b') / (e'-b') (50)
z = [(c'=b')t+e'+b'] / 2 = t + [(e'+b') / 2] s (51)
dz = 4t ’

and substituting (27) and (28) for ®(x) and m(x) respectively, (46)

and (47) can be rewritten as follows:

|

X
11 1
Too(x) | 610 at = By | [Ry[— +—] - R3[~ +._3}
-1 iy v Y2 1Y
X

1 1 |
+ Ru[“— Ka(pfy1]) + — Kg(PlY2|)]]G1(t) dt + ‘th(x)j'Ga(t) dt

7 ' Y2

-1
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5 — s =1 < x <1

’ (52)
6E

b x I

1 1 1
‘ftb(x.) G1(t) dt + ‘ftt(x) f Ga(t) dt == [—+—] Gz(t) dt

2w/ ly, g
-1 -1 - P2

%S
= — y -1<x<1 , {53)
E
where
Y1=t'x ’
Yo = t+ X +b" +e" . (5%)

Integral equations (52) and (53) will again be solved by Gauss-

Chebyshev closed form integration formula with the additional

conditions

H
o
-~

!
. J'G1(t) dt
-]

]
Q

!
J;Gz(t) dt

and the same baclward procedure defined in Section 2.2 is used to

find stress intensity factors at any point on the crack defined in

-212-



the region (b,c¢). Due to symmetry with respect to the XoXq plane,
stress intensity factors on the two cracks are also symmetric with
respect to the same plane. Integral equations are valid for any two
identical crack (edge, internal, two opposite) problem providing the

corresponding 4 functions defined in Seetion 2.2 .,

2.7 Interaction of Three Identical Cracks

As stated earlier integral equations for general case given in
(1) and (2) are valid for any number of cracks provided there is
symmetry with respect to the XpX3 plane. This means that any three
crack system composed of a symmetric crack surrounded by two
identical cracks (not needed to be identiecal with the third one) can
be solved by wusing (1) and (2)., But in this study, fqr
simplification purposes, all of them are chosen identical.
Configuration and parameters are shown in Fig., 6. D is defined as
(0,1), (b/a , e/a). Because of the nature of the problem, we expect
that c¢rack surface displacements and rotations be symmetric with
respect to the XpX3 plane. This suggests that two outer cracks
should have the same rotation and displacement at.the_equidistant
points from the origin, while the third one undergoes completely

different displacement and rotation. For this reason G functions
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should be defined seperately for inner crack and two outer oracks.

Let

G : Crack swrface rotation derivative for
11
the inner crack, {(-a,a),

G12 ! Crack opening displacement derivative for
the inner crack, (-a,a),

G21 : Crack surface rotation derivative for
the outer crack, (b,c),

622 : Crack opening displacement derivative for
the outer crack, (b,c).

Also &(x) and m(x) for the inner and outer cracks should be def ined

seperately as follows,

&,(x) : &(x) for inner crack,
m, (x) : m(x) for inner crack,
cz(x) : §(x) for outer crack,

mz(x) : m{x) for outer crack.

(1) and (2) can be written for inner crack

+
E 27 Ze=x ! z+x! 27 Z~X"'

81(x') 1 1 1 ] 1 1

O
o

~214~



.|.-.-_..]G12(z} 42 =, O0<x'< 1, (55)
Z+x! E

m1(x')_R1J’[R2[_L+ 1 | . 1 1

-+
6E z=-x"' Z+x ! (z-x‘)3 (z+x')3
Q

1 1
+ Rll[_ Kz(p z=x' ) +

Ko(p z+x! )]:!612(2) dz

Z=x1! z+x !
c
1 1 1 1
- R [R - + - R +
1] 2|:z-x' z+x'] 3[(z-x'):"’ (z+x')3]
b

1 1
+ By — Ky(plz=x'1) +

z-x! Z+x!

Ka(plz"'x'l) ]] Gza(z) dz

o,
z — 0<xt< 1, (56)
6 A
and for outer crack
! c’
cz(x') 1 1 1 1 1
- — | =+ —]6y(2) @z - —
E 27 Z-x"' zZ+x' 27 4 " z-x!
o b
1 s,
+ ']G12(z) dz = ——, b* < x' < ¢, (57)
Z+x! E
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m2(x') J' 1 [ 1 1
- R - R +
1 z-x' z+x'] 3 (z-x')3 (z+x')3]
(o}
1 1
+ Ru[ KZ(DIZ"X'I) -+ Ka(piZ'l'X'l)]]G-'z(Z) dz
Z-x! Z+x !
cl
1 1 1 1
- R [ + - - R +
! J’ R2[z-x' z+x'] 3[(z-x')3 (z+x’)3]
&
1 1
+ Rh[ Ky (plz=x']} + Ké(p[z+x'])]} Gy5(2) dz
Zex ' Z+x!
m
=—~ , b'<x'<e’, (58)
6E
where x'= x/a, b'= b/a, c'zc/a.
From (36), we may write
| l
1 1 1
[ . —] Gy,(2) dz = 6,4(2) dz (59)
z-x' Z+x"' Z-x"!
o] -]
1
1 1 1 1
+ - R + + R K.(plz-x"'{)
z-x! z+x " 3[(z—x')3 (z+x')3] u[z-x' 2
Q
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1 1 1
+ Kz(p[z'i'X'l)]:lG-la(Z) dz = J [Rz - R3 —_——

zZ+x!' z-x ' (z-x1)3

-1
1
+ Ry —— K2(p!z-x'|)] Gyo(2) dz . (60)

z-x"

Same expressions as (59) and (60) can also be written for (}21 and

Gope

If we define
X' = x for -1 <x' <1 '
z =t for -1 <z <1 ’

and use (49) and (51) for b' < x' < @! and b' < z < o
respectively, and substitute (27), (28) for ®(x) and m(x), (55),

(56), (‘57), (58) will take the following final form.

!

x 1 1 1 1
¥ pp (%) fcm(t) dt - R, J'[Rz[—+«-—] - 33[.-?—5]
:

- | Y9 ¥2 ¥y ¥

T 1 1
+ nu[_xawmf) +~—K2(P|Y2”]] G29(t) dt - R, J[RE v
¥q Y2 73
-1
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X
1 1

- R3—-§ + Rn—- Kz(pIYBI)] G11(t) dt + ‘th(X)J' G22(t) dt
3 Y3 -1

"
&l

y =1 <x <1, - (61)

x > I
1 1
'\'tb(x) jG21(t) dt + ‘l'tt(X) szz(t) dt = e —

B iy 2&'- Yy
|
1 . 1 1 G‘o
+__] Gpp(t) @t = —— | —Gyo(t) db == , -1 <x<1, (62)
¥ 2'-1 y3 E
x ]
1 1 1 1
"y i Yy Y5 y?, Y5
|
1 1 1
+ Ru[—-Kg(p Yy ) +—K(p yg )]]Gz.l(t) dt - R, Ry, —
¥y ¥y I ¥4
1 %
) ¥ ¥4 : 2
m
= - ’ -1 <x <1, {63)
6E
x x |
) 1 1
-} - 21'_[ y’-l»
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!
1 1 1 s

+==] Gt dt = — | —Gp(t) db =2 , 1 <x< 1, (68)
¥ 2% ) y E
5 [ 1
where ¥y = t-x : ’
yz = t+x+b'+a? )
Y3 = t=x - [(b'+e') / 2] ,
Yy = t+x + [(bt+e') / 2] ,
V5 = t=x + [(b'+e!) / 2] .

This problem has four integral equations, (61), (62), (63),
(64), with four unknown functions, G”, G12, G21, Gy5, which will be
solved by Gauss-Chebyshev closed type integration formula under the

following single-valuedness conditions.

I
ol

I
-1

I
me(t) dt = 0 ’
_| .

I
IGQZ(t) dt = 0 .
ol

After solving for the unknown functions, the same backward procedure
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defined in Section 2.2 will be used for each crack seperately in

order to find stress intensity factars.

Provided the corresponding % functions, equations (61), (62),
(63), (64) can be applied to any type(edge, internal, collinear) of
identical cracks. The only reason for considering identical craclks
to demonstrate interaction of three cracks in this section is
simplicity. Line-spring model can also be applied to any three crack
system which has two outer identical coracks with another
symmetric(with respect to the XpX3 plane) crack in the middle. In
this case, % functions and crack length will be defined seperately
for both(outer ones and inner one) cracks. One should keep in mind
that crack length is a parameter in the coefficients of (61), (62),
(63), (64), Attention must be paid to redifine the coefficients in

such case,
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3. RESULTS AND DISCUSSION

There are two main objectives in this study:

1. Assess the accuracy of line spring model,

2. Provide extensive numerical results which may be userful
in application.

Due to unavailability of the solutions for the cases that we
are interested in, the first objective can only be reached for the
central (d/h=0) elliptic internal crack under pure tension.
Extensive results for central, eccentrie internal cracks and two
cpposite edge cracks as well as the interaction among two and three
cracks are tabulated. In all cases it was assumed that $=0.3
However, the effect of ¥ on the stress intensity factors does not

seem to be significant.

First "step for the application of 1line spring model is to
represent the SIFs as a polynomial in L)h. For this purpose,
extensive information about plane strain (a/Lo ) stress intensity
factors are needed., These results are obtained from previous
materials for internal cracks, from [18] for two opposite edge
¢racks and are tabulated in Tables 1,3,5,7,9, 11,13, 15. Corresponding
coefficients of shape functions are tabulated in Tables
2,4,6,8,10,12, 14,16, Coefficients of shape functions for the edge

crack case are directly taken from [1] and tabulated in Table 17.
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As noted before, for the application of the line spring model,
the contour of the part-through crack can be any reasonable curve,
Elliptic cracks are studied here since it is believed that ellipse
is the closest contour for the actual shape of the crack which may
be encountered in practical applications. Thus, crack length for any

eross section is defined by,

L(xg)} = LY1 = (x4/a)2 = L1 - %2

L, being the total erack length at the midsection (x=0) . Note that

the limiting values of the SIF are

K+~0 for a/h-0 H K-»Koo for a/h- 00

The first case that is studied is the central internal elliptic
crack (d/h=0). Extensive results and formulas developed from a
finite element method for this case are given in [19]. Table 18 and
Figs. 19,20 show the comparision of the SIFs obtained from this
study with those generated from the formulas given in [19]. SIFs
obtained from [19] are represented as K' while the normalizing SIF
is XK = s'o'\/‘wLofa where F, = Ng;/h. Both values and the percent
differences between them are given for various parameters at x=0 and

x=1/2 . As expected, the SIFs K(Lo) for the elliptic crack are
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consistently smaller than the plane strain values. Tﬁe table shows
that with the exception of relatively small values of a/L0 at small
Lo/h (for which the line spring is really not a suitable model) the
agreement is sﬁrprisingly good. From the results, one may conclude
that line spring can be used with Some confidence for any central

internal elliptic crack which has an a/LO ratio larger than 2.

SIFs for the same geometry, but under pure bending are given in
Table 20 (Fig. 21). This time, normalizing SIF is defined as
K, = mofﬂlLO/2)1/2 where m, = GMSg/h . The results given are for the
tension side. On the compression side the stress intensity factors
have the same values with a negative sign. Under pure bending, since
the crack faces on the compression side of the plate would close,
the results given in the table cannot be used seperately. The
results are, of course, useful and valid if the plate is subjected

to tension, as well as bending, in such a way that the superimposed

SIF is positive everywhere.

From Table 20, by excluding the case of a/L,=0.5 which proved
to be unreliable, it may be concluded that SIF are independent of
a/L, ratio for Ly/h <€ 0.5 . For Ly/h > 0.5 , SIF begins to increase
with inereasing Lolh ratio, which is expected. Though we are unable
to confirm the accuracy of the line spring model in this case, we
could say that there is no unusual behaviour in the results, Results

are asymptotically approaching to plane strain values as a/Lo is
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increased except for large L,/h values,

Another comparision with the pfevious finite element results
[20] is shown in Table 19 (Fig. 23). It should be noted that in the
results given in.Table 19 a/L,=1.25 is relatively small for the line
apring modél to be effective. Despite that, the relative error does

not seem to be very high,

After symmetrie internal eracks, nonsymmetrically located
internal cracks are studied both under pure tension and pure bending
conditions, Extensive results which scan almost all possible
configurations are given in Tables 21-32 (Figs. 7-18). Normalizing
SIFs are the same as that defined in the previcus case for both
tension and bending. Again we are unable to verify in which region
the line spring results are reliablé because of the lack of previous
work done on this kind of problem. Asymptotic convergence to plane
strain rgsults is fairly good. A close observation of the tension
results would show that for small a/L, ratios SIFs first decrease,
then increase with increasing LO/h. This is mainly due to the fact
that éabulated results are normalized with respect to covq;£;7§ .
Thus, e;en though the norﬁalized SIF is decreasing, the real SIF may
increase (which indeed happens in this case) but with a lower rate
than the rate of increase of L, . Also, again for small L,/h and
a/Lo values SIF on the inside part of the crack front turns Aut to

be greater than that on the other part of the crack border which is
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closer to the free surface,

Two cpposite elliptic edge cracks have been studied only under
pure tension. Normalizing stress intensity factor is again
L (QLO/Z)”'2 with €, = Ng;/h » Decreasing-increasing behaviour of
the SIFs is again observed here. Same explanation which is given
earlier is also valid for this case. Plane strain results are very
close to each other in the region that we observe the slight
decrease in SIFs. For this reason, a small uncertainity in the
calculations can easily result with a slight decrease while we are
expecting a slight increase. Except this behaviour, everything is as

expected in Table 33 (Fig. 22).

Results for the interaction of two identical elliptic internal
cracks under pure bending and pure tension have been tabulated in
Tables 34 and 35 respectively. It can be seen that there is alnost
no interaction between two identical elliptic edge cracks if the
distance between them (Fig.5) is larger than 8 times the half crack
length, a., Another result which may be observed is that the
interaction 1s more effective for the cracks having large Lo/h

ratios.

SIFs for the two identical central internal elliptic cracks are
tabulated in Table 36, Results are given only for tension case

because it has been observed that there is no appreciable
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interaction for the crack geometries given in Table 36 under pure
bending. SIF deviates not more than 1% froam the single crack value
for b/a=0.1 in bending. It is seen that as the distance between the
two cracks is increased the single crack solution is easily
recovered. There is almost mo interaction for b/a > 0.1 for the
cracks Lolh < 0.5 . If Lolh > 0.5 , no interaction region can be

defined for b/a 2 4 ,

Interaction results for any two identical elliptie internal
cracks are given in Table 37. Seme erratic results are observed for
small a/Lo ratios at amall Lo/h ratios. Clearly, for these crack

geometries line spring is not a suitable model.

As the last example, SIFs for the three identical internal
elliptic cracks under pure tension are calculated and are given in
Table 38. The only conclusion one may draw from these results is
that the SIFs on the middle crack are slightly higher than the SIFs
on the outer crack. But the difference is so small that they may be

regarded as equal.
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Table 1. Stress intensity factors for centrally cracked
plate subjected to tension N or bending M
under plane strain conditions.

/b | (K/E )y (K/K,)
0.05 0.0250
0.1 | 1.0060 0.0500
0.2 | 1.0246 0.1001
0.3 | 1.0577 0.1505
0.4 | 1.1094 0.2023
0.5 | 1.187 0.2573
0.6 | 1.3033 0.3197
0.7 | 1.4884 0.398
0.8 | 1.8169 0.5186
0.9 | 2.585 0.7776
0.95 | 8.252 1.1421

Table 2. The coefficients bi and ¢y for the shape
- functions gt and g, for symmetric internal

{d/h=0) crack.
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i by ey
1 0.7070 0.0169
2 0.4325 ~0.4629
3 -0.1091 15. 0622
4 T.37T11 =-143.7384
5 -57.7894 807.244 ¢
6 271.1551 -2844. 8525
7 ~T44. 4204 - 61468. 9152
8 1183.9529 -9477.5512
9 ~1001.4920 8638.7826
10 347.9786 -U4455.2167
11 993.24 82



Table 3. Stress intensity factors for the plate which has an
internal crack with 4/h=0.05 subjected to uniform
tension N or bending M under plane strain conditions.

Wh | (Rp/Ro)y (Kp/Koly (Rp/Roly  (Kp/Koly
0.0001 0.1001  0.1000
0.09 |1.0053  1.005  0.1455  0.0555
0.18 |1.0221  1.0200  0.1923  0.0120
0.27 |1.0530  1.0452  0.2809 -0.0305
0.36 [1.1021  1.0823  0.28@5 -0.0722
0.45 |1.1769  1.1380  0.3497 -0.113%
0.54 [1.2909  1.2053  0.4175 -0.1547
0.63 | 1.4731  1.3053  0.5068 -0.1973
0.72 [1.7983  1.4518  0.6467 -0.2430
0.81 |2.5631  1.6887  0.9525 -0.2%23
0.855 |3.6610  1.8858  1.3814 -0.3125

Table 4, The coefficients of b; and e; for the shape
functions &, and g for internal crack with
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d/h=0.05.

i Ops b1 Cp1 °Bi

1 0.7071 0.7071 0.0708 0.0707
2 0.4597 0. 4347 -0.0623 -0.3701
3 0.7671 ~0.0915 13.1229 0.5654
3 0.1552 2.6973  -166.4280 -6.6423
5 -9.3017 -14,1195  1145,8217 45,7189
6- 97.3172 54,9653  -A762.0914  -189.9515
7 | -413.9673  -135.3432  12511.5152 198.8463
8 936. 4719 205.3051  -20927.0019 - 834.5704
9 |-1078.2322  -173.3480  21613.9362 862.1672
10 504 0555 62.8847 -12568.0268  -501.4354
11 3148.4879 125.5869






Table 5. Stress intensity factors for the plate which has an
internal crack with d4/h=0.10 subjected to uniform
tension N or bending M under plane strain conditions.
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L/h (Kp/Koly (Rg/Kody (Kp/Koly (Kp/Koly
0.0001 0.2001 0.2000
0.08 1.0050 1.0046 0.2410 0.1609
0.16 1.0212 1.0179 0.2843 0.1236
0.24 1.0513 1.0399 0.3308 0.088t
0.32 1.0998 1.0709 0.3821 0.0545
0.40 1.1743 1.1126 0.45410 0.0231
0.48 1.2887 1.1677 0.5136 -0.0059
0.56 1.4722 1.2418 0.6123 ~0.0313
0.64 1. 8002 1.3465% 0.7701 ~0.0504
0.72 2.5705 1.5167 1.1183 =0,0519
0.76 3.6693 1.6727 1.6050 -0.028)
Table 6. The coefficients of by and ¢; for the shape
functions g, and g, for internal crack with
d/h=0.10.
i Day : a1 B3
1 0.7071 0.7072 0.1415 0.1414
2 "0.5498 0.5043 -0,1734 -0.3871
3 1.5235 -0.5779 18.7434 1.2936
4 -2.2395 7.64 80 -266.7713 -17.0715
5 -5.2844 -52.8793 2066.4692 132.0282
6- 226.0267 257.2074 ~-9%61.5218 -617.3023
T -1423.2887 -799.7410 28556 .2764 1826.3191
8 L4348,1446 1530. 8314  -53734.1216 -3441.9797
9 ~6553.5540 -1634,0240 62435.9340 4007.6642
10 3959.2116 T749.0673  ~H0O84Y4.236Y4 -2628.6642
11 11511.5912 T43.3343



Table 7. Stress intensity factors for the plate which has an
internal crack with d4/h=0.15 subjected to uniform
tension N or bending M under plane strain conditions.

Wh | (Kp/K)y (Rp/K)y (Rp/K)y (Kg/K )y
0.0001 0.3001 0.3000
0.07 1.0049 1.0045 0.3365 0.2663
0.14 1.0208 1.0172 0,3763 0.2352
0.21 1.0506 1.0380 0.4206 0.2066 .
0.28 1.0988 1.0671 0.54714 0.1807
0.35 1.1729 1.1057 0.5319 0.158
0.42 1.2868 1.1561 0.6089 0.1395
0.49 1.46 93 1.2235 0.7164 0.1271
0.56 1.7938 1.3197 0.8909 0.1259
0.63 2.5476 1.489 1.2760 0.1533
0.665 [ 3.6065 1.6426 1. 8090 0.2032
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Table 8. The coefficients of b; and ¢; for the shape
functions g; and gy for internal crack with
d/h=0.15,

I Pai bp1 Cai °B1

1 0.7071 0.7072 0.2122 0.2121
2 0.7028 0.6376 -0.2929 =0,4042
3 2.7653 -1.2331 26.3239 . 2.2494
y -7.2036 19.0057 -427.2558 ~33.6757
5 9.1384 -173. 8407 3782.9591 297.4990
6 667.4954 1108.9410 ~20214.1250 ~1590.1109
T -6105.7233 =4517.1019 68285.5344 5378.6049
8 25260.2847 11317.3469 -146859.586 -11588.2217
9 ~50586.0054 -15802.5485 165038.2341 15425.1699
10 40325. 8388 Qu75.74 80 =-145833.6228 -11566.8288
11 46 980 .5243 3740.3538



Table 9. Stress intensity factors for the plate which has an
internal crack with d/h=0.20 subjected to uniform
tension N or bending M under plane strain conditions.
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/h (KA/KO)N (KB/KOJN (KA/KO)M (KB/KO)M
0.0001 0. 4001 0. 4000
0.06 1.0048 1.0044 0.4319 0.3718
0.12 1.0205 1.0170 0.4682 0.3468
0.18 1.0897 1.0374 0.5102 0.3252
0.24 1.0968 1.0660 0.5601 0.3070
G.30 1.1691 1.103%4 0.6216 0.2930
0.36 1.2799 1.1535 0.7020 0.2844
0.42 1.4562 1.2202 0.8162 0.2839
0.48 1.7668 1.3161 1.0031 0.2981
0.54 2.4756 1.4 806 1.4127 0.338&
0.57 3.4498 1.6422 1.9%74 0.4165
Table 10. The coefficients of bi and ey for the shape
functions gt and gp for internal crack with
d/h=0.20,
i Dy bpi Cpi Cpi
1 0.7071 0.7072 0.289 0.2828
2 0.9394 0.8534 -0, 4105 -0.4162
3 5.0186 -2.2518 36.3675 3.4524
q -19.6345 47.2610 -686.9924 -59.3848
5 76.1489 ~589.373% T7097.1745 611.7184
6 2376. 8770 5125.5432  =-44245,1037 -3814.7743
7 -32402.0663 -28413.7181 174386.6733 15058.0019
8 187563.3073 06818.0664 ~43750U4.1661 -3780.2290
9 | =-517758.746%5 =183743.9141 678087.6506 58816.9514
10 566112.6482 149736.5141 -591607.7634  -51479.6217
11 222394, 8277 19433.7456



Table 11. Stress intensity factors for the plate which has an
internal erack with d/h=0.25 subjected to uniform
tension N or bending M under plane strain conditions.

-232-

L/h (KA/KO)N (Kg/Kgly (KA/KO)M (KB/KOJM

0.0001 0.5001 0.5000

0.05 1.0046 1.0042 0.5273 0.4771

0.10 1.0197 1.0165 0.5598 0.4583

0.15 1.0476 1.0364 0.599 0.443Y4

0.20 1.0925 1.0644 0.6473 0.4327

0.25 1.1610 1.1016 0.7084 0.4270

¢.30 1.2652 1.1505 0.7900 0.4277

0.35 1.429%5 1.2160 0.9074 0.4380

0.40 1.7151 1.3099 1.099% 0.4649

0.45 2.3529 1.4684 1.5149 0.5310

0.475 | 3.2077 1.6192 2.0658 0.6085
Table 12. The coefficients of bi and ey for the shape

functions g, and gy for internal crack with

d/h=0.25.
i Day b Cpt Cpy
1 0.7071 0.7071 0.3536 0.3536
2 11,3081 1.1918 ~0.5246 ~0.4284
3 9.6510 -4.1793 50.2589 4,859
q ~57.8163 129.7358 -1136.1027 ~097.6558
5 450.7761 -2325.3551 14085.0245 1206.5210
& 10351. 821 29069,6053 =105370.0173 -%029.9162
T 1 -227973.9193 =231101.0011 L98386.1475 42788.3389
8| 1960136.6080 1128028.3541 -1500844.1305 -1296153.3052
9 |[-7899243.5583 -3063223.0225 2791092.0497 240895,9775
10 | 12538854.7550 3568834.5097 -2922538.2779 -253169.5873
11 1318591.9416 114779.29%5



Table 13. Stress intensity factors for the plate which has an
internal crack with d/h=0.30 subjected to uniform
tension N or bending M under plane strain conditions.

L/h (Kp/Ro)y  (Kg/K))y  (Kp/Kdy  (Rg/Ko)y
0.001 0.6001 0.6000
0.04 1.0043 1.0040  0.6226 0.584
0.08 1.0183  1.0155  0.6510  0.568
0.12 1.0442 1.0343 0.6867 0.56 07
0.16 1.0855  1.0608  0.7320  0.5568
0.20 1.1481 1.0959  0.7909  0.5584
0.24 1.2425  1.1419  0.8708  0.5669
0.28 1.3898  1.2031 0.986 0.5855
0.32 1.6423 1.2895  1.1755  0.6209
0.36 2.1937 1.4309  1.5773  0.6939
0.38 2. 9157 1.5591 2.0992  0.7709

Table 14. The coefficients of b; and c; for the shape
functions g and gy for internal crack with
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d/ h=0.30.

i Ppi bpi Cai °pi

1 0.7071 0.7071 0. 4244 0.4243
2 1. 9027 1.74 80 ~0.6553 ~0. 4321
3 20,8636 -8.90087 72.3179 5.6403
4 ~197.8895 440.7103 ~2037.1553 -160.0429
5 2675.1513 -12390.9668 31569, 7505 2468, TT4T
6| - T71601.3880 241718.2677  -295202.5115 -23090. 84 86
7 -2639273.5314 ~2989605.6659 1745346.7908 136788.4159
8| 35994016.1511 22618755.1306 -6570139.7052  -516213.4074
9|-227958779.2155 -94950523.9757  15273818.2302  1203%28.2026
10| 567162515, 8604 17054204%.2578 -19993047.6604 -1582260.0614
11 11276922, 9053 897240.7983



Table 15. Stress intensity factors for the plate with
collinear edge cracks subjected to uniform
tension N under plane strain conditions.

/b (K/K )y
0.0001 | 1.1221
0.1 1.1231
0.2 1.1254
0.3 1.1292
0.4 1.1370
0.5 1.1546
0.6 1.2117
0.7 1.3254
0.8 1.5393
0.9 2.0836

Table 16. The coefficients of bi for the shape function
g, for collinear edge crack.

b

[

i

0.7934
0.0775
-0.7542
T.585
=-12.1712
-186.5011
1236.2858
-3043.619%0
3350.3456
-1374. 8426

OO ~TOUmtwN —

-t
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Table 17. The coefficients of bi and ey for the shape
functions g; and g, for edge crack.

i bi ey

1 1.1216 1.1202
2 6.5200 -1.8872
3 -12.3877 18.0143
4 89.0554 -87.3851
5 -188.6080 241. 9124
6 207.3870 ~319. 9402
T -32.0524 168.0105
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Table 18, Compariscn of the stress intensity factors K(x)
calculated in this study at x=0 and x=1/2 (x=x1/a)
for an internal planar elliptic crack in a plate under
uniform tension N with the corresponding values KF(x)
given in Ref.[19] . #D=100(k -K)/K’ .

r
Lo/h | oasL, | x R(x)/K,  K'(x)/K, %D
0.1 0.5 0 0.916 0.637 43.7
0.1 0.5 /2 0.868 0.637 36.2
0.1 1.0 g 0.955 0.827 15.5
0.1 1.0 1/2 0.896 0.78 14.2
001 200 0 0'976 0'935 u03
0.1 2.0 1/2 0.911 0.875 4,1
0.1 3.0 0 0.983 0.9T7 1.7
0.1 3.0 1/2 0.916 0.4902 1.6
0.1 4.0 0 0.987 0.980 0.6
0.1 4.0 1/2 0.919 0.914 0.5
0.1 10.0 0 0.993 0.999 -0.6
0.2 0.5 0 0.82 0.638 35.1
0.2 0.5 1/2 0.827 0.638 29.6
0.2 1.0 0 0.931 0. 830 12.2
0.2 1.0 /72 0.880 0.788 11.6
0.2 2.0 0 0.9M1 0.942 3.1
~ 0.2 2.0 /2 0.908 0.881 3.1
0.2 3.0 0 0.98 0. 976 1.0
0.2 3.0 1/2 0.918 0.910 0.9
0.2 4.0 0 0.993 0.991 0.2
6.2 4.0 1/2 0.923 0.923 0.0
0.2 10.0 0 1.007 1.0613 -0.6
0.2 10.0 1/2 0.933 0.942 -1.0
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Table 18~ Cont.

k(x)/K0

Kr(x)/Ko

o o o0
. . .
= o £ =

oo
= =

o O
* L
= =

oo
=

1/2

1/2

1/2

1/2

1/2

172

1/2

1/2

1/2

172

1/2

172

0.81%
0.79

0.920
0.871

0.979
0.914

1.001
0.930

1.012
0. 937

1.034
0.952
0.798
0.775

0.920
0.871

1.000
0.929

1.030
0.950

1.047
0.961

1.078
D.9&
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0.641
0.640

0. 837
0.7%H

0.957
0.893

0.9%
0.927

1.014
0.942

1.041
0.966
0.6%45
0.6“1;

0.851
0.804



Table 18- Cont.

r

L,/h a/L, b e K(x)/K, K" (x) /K, %D

0.5 0.5 0 0.783 0.654 19.8
0.5 0.5 /2 0.761 0.650 17.2
0.5 1.0 0 0.932 0. 874 6.7
0.5 1.0 1/2 0.880 0.821 7.3
0.5 2.0 0 1.036 1.030 0.6
0.5 2.0 /2 0.956 0.949 0.7
005 310 0 1-078 1-090 "’101
0.5 3.0 1/2 0.98 0.998 -1.4
0.5 .0 0 1.101 1.121 -1.

0.5 4,0 1/2 0.998 1.023 =2.4
0.5 10.0 0 1.145 1.172 -2.4
0.5 10.0 1/2 1.025 1.063 -3.5
0.6 0.5 0 0.779 0.667 16. 9
0.6 0.5 /2 0.756 0.658 1%.9
0.6 1.0 0 0. %0 0. 911 5.4
0.6 1.0 172 0. 901 0. 846 6.4
0.6 2.0 0 1.095 1.103 -G,

0.6 2.0 172 0.997 0.999 -0.2
0.6 3.0 0 1.151 1.183 -2.7
0.6 4,0 0 1.183 1.225 -3.5
a.6 4,0 172 1.052 1.092 -3.6
0.6 10.0 0 1.245 1.298 =k,

0.6 10.0 1/2 1.088 1.143 4.7
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Table 18- Cont.

r

Ly/h a/L x K(x)/K, K (x) /K, %D

0.7 0.5 0 0.788 0.687 14.7
0.7 0.5 172 0.760 0.671 13.3
0.7 1.0 0 1.009 0.9%38 4.3
0.7 1.0 1/2 0.935 0.88 6.0
007 200 0 1.187 10213 -2.2
.7 2.0 1/2 1.058 1.067 -0.8
0-7 3.0 0 1'266 1.322 -!“02
0.7 3.0 /2 1.106 T.144 -3.3
0.7 k.o 0 1.310 1.381 =5.1
0.7 4,0 1/2 1.132 1.183 ~4.5
C.7 10.0 0 1.403 1.483 -5.4
0.7 10.0 1/2 1.179 1.242 -5.1
0.8 0.5 0 0.818 0.717 4.1
0.8 0.5 172 0.777 0.686 12.9
0.8 1.0 Q 1.0% 1.051 4.3
0.8 1.0 1/2 0.991 0.930 6.6
0.8 2.0 0 1.341 1.372 -2.3
0.8 2.0 /a2 1.152 t.1852 0.0
0.8 3.0 0 1.457 1.521 ~4,3
0.8 3.0 172 1.218 1.245 -2.2
0.8 h,o 0 1.525 1.603 ~4.9
¢.8 4.0 1/2 1.253 1.290 -2.9
0.8 10.0 0 1.674 1. 747 -4.2
0.8 16.0 1/2 1.318 1.349 ~2.3
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Table 18- Cont.

r
L/h a/L, X K(x)/Ko K (x)/Ko 4D
0.9 0.5 0 0.905 0.759 19.3
0.9 0.5 1/2 0.813 0.709 14,7
0.9 1.0 0 1.284 1.167 10.0
0.9 1.0 1/2 1.086 0.987 10.1
0.9 2.0 0 1.661 1.504 y,2
0.9 2.0 1/2 1.310 1.246 5.1
0.9 3.0 0 1.858 1.789 3.3
0.9 3.0 /2 1.405 1.347 4,2
0.9 5.0 0 1.981 1.912 3.6
0.9 5.0 1/2 1.456 1.392 4.6

Table 19. Comparison of the stress intensity factors K(L_)
caleculated in this study at the midsection of a
symmetrically located internal(d/h=0) planar crack
in a plate under uniform tension N with the
corresponding results K¥ given in [20]. L,/b=.75,
a/Lg=1.25, x=xq/azcosB, #D=100(K-KF)/KT.

8 X Kr/Ko K/K, 4D
90° 0 0.985 1.120 13.7
80° | 0.174 0.971 1.103 13.6
70° | 0.342 0.944 1.052 11.4
60° | 0.500 0.898 0.973 8.4
u5° | 0.707 0.810 0.832 2.7
40° | 0.766 0.770 0.742 ~3.6
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Table 20. Normalized stress intensity factors calculated
at the midsection of a symmetrically located
(d/h=0) internal planar elliptiec crack in a
plate under uniform bending M.

a/Lo—av 0.5 2.0 3.0 4.0 5.0 10.0 Plane
0.1 .050 .050 .050 .050 .050 .050 050
0.2 .099 .099 .099 .099 .099  .099 .100
0.3 .148 L1489 149 . 149 . 149 . 149 151
0.4 . 165 199,199 .199 200 .200 .202
0.5 240 .250 .251 252 .253 .25 .257
0.6 .285 . 305 .308 310 .31 <313 .320
0.7 .332  .369 .37T5 .379 .38 .387 .399
0.8 .387 457 . 470 U478 483 A% .519
0.9 476 .619 .65%0 670 .683 LT17 778
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Table 21. Normalized stress intensity factors caleculated at the
midsection of an internal planar elliptic crack with
d/h=.05 in a plate under uniform tension N.

Ry /K,

a/Lo-a-O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane

L,/h Strain
.05 0.95% 0.975 0.987 0.990 0.992 0.9% 0.99 1.002
.15 0.887 0.944 0.976 0.988 0.994 1.001 1.004 1.015
.25 0.838 0.926 0.979 0.998 1.008 1.022 1.028 1.045
.35 0.804 0.921 0.9% 1.025 1.040 1.061 1.070 1.0%
45 0.782 0.931 1.032 1.073 1.0% 1.126 1.139 1.177
.55 0.775 0.959 1.09% 1.153 1,185 1.231 1.251 1.307
.65 0.78 1.018 1.204 1.288 1.336 1.407 1.439 1.529
.75 0.88 1.134 1.407 1.539 1.619 1.742 1.799 1.970
.85 0.994 1.479 1.987 2.268 2.452 2,761 2.921 3.481
Kp/K,

a/L 0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane

Lo/h Strain
.05 0.955 0.976 0.987 0.991 0.993 0.9% 0.996 1.002
.15 0.891 0.94 0.977 0.988 0.993 1.001 1.003 1.014
.25 0.8%7 0.929 0.978 0.99% 1.006 1.018 1.023 1.03¢9
.35 0.817 0.923 0.991 1.017 1.031 1.049 1.056 1.078
.45 0.798 0.928 1.017 1.051 1.070 1.095 1.105 1.134
.55 0.789 0.944 1.056 1.102 1.127 1.161 1.176 1.215
.65 0.788 0.972 1.115 1,176 1.210 1.257 1.277 1.333
.75 0.767 1.017 1.201 1.284% 1.332 1.401 1.432 1.517
.85 0.822 1.088 1.334 1.455 1.529 1.643 1.697 1.859
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Table 22. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.10 in a plate under uniform tension N.

Ky /K,

a/Lo--O.S 1.0 2.0 3.0 4,0 7.0 10.0 Plane

Lo/h Strain
.05 0.950 0.974 0.98 0.990 0.992 0.99% 0.99 1.002
.15 0.878 0.940 0.975 0.988 0.994 1.003 1.006 1.018
.25 0.85 0.921 0.98 1.002 1.013 1.029 1.036 1.0%
.35 0.789 0.919 1.004 1,037 1.055 1.081 1.092 1.12%4
45 0.770 0.937 1.05% 1.105 1.132 1.172 1.189% 1.240
.55 0.770 0.98 1t.152 1.226 1.268 1.331 1.360 1.444
.65 0.805 1.093 1.34%2 1.42 1.534 1.646 1.699 1.860
.75 0.9%1 1.426 1.900 2.159 2.329 2.615 2.764 3.291
v
KB/KO

a/Lo-O.B 1.0 2.0 3.0 4.0 7.0 10.0 Plane

L,/h Strain
.05 0.952 0.97% 0.98 0.9%0 0.993 0.99% 0.9% 1.002
.15 0.886 0.943 0.976 0.988 0.993 1.001 1.005 1.016
.25 0.843 0.927 0.979 0.998 1.007 1.021 1.026 1.043
.35 0.815 0,923 0.993 1.020 1.034 1.054 1.062 1.085
45 0.798 0.928 1.019 1.055 1.075 1.102 1.113 1,145
.55 . 0.789 0.94% 1,059 1.107 1.133 1.171 1.187 1.231
.65 0.788 0.970 1.116 1.181 1.218 1.272 1.2% 1.363
.75 0.795 1.010 1.203 1.297 1.355 1.445 1.488 1.625
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Table 23. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.15 in a plate under uniform tension N.

Ky /K,

a/Ls»0.5 1.0 2.0 3.0 4,0 7.0 10.0 Plane
Ly/h Strain
.05 0.944 0.971 0.985 0.989 0.992 0.99% 0.99 1.002
.15 0.664 0.934 0.974 0.988 0.9% 1.006 1.010 1.024
.25 0.808 0.916 0.98% 1.009 1.022 1.041 1.049 1.076
.35 0.773 0.921 1.020 1.060 1.083 1.115 1.129 1.173
.45 0.761 0.956 1.101 1.164 1.200 1.254 1.279 1.35%4
.55 0.78% 1.051 1.273 1.378 1.441 1.540 1.588 1.733
.65 0.926 1.362 1.78 2.021 2.172 2.427 2.560 3.033

Rg/K,

a/L;+0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.964 0.972 0.98% 0.99 0.992 0.995 0.99% 1.002
.15 0.876 0.939 0.975 0.988 0.994% 1.003 1.007 1.020
.25 0.833 0.923 0.979 1.000 1.012 1.027 1.033 1.054
.35 0,806 0.920 0.997 1.027 1.04% 1.067 1.077 1.106
.45 0.791 0.929 1.028 1.070 1.093 1.126 1.141 1.18
.55 0.784 0.947 1.076 1.134% 1.167 1.216 1.238 1.303
.65 0.783 0.976 1.152 1.239 1.293 1.379 1.822 1.561
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Table 24, Normalized stress intensity factors calculated at the

midsection of an internal planar elliptic crack with
d/h=0.20 in a plate under uniform tension N.
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Ky/K,
a/Ls+0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane
Ly/h Strain
.05 0.964 0.967 0.983 0.98 0.991 0.9% 0.99% 1.003
.15 0.848 0.928 0.974 0.990 0.999 1.011 1.016 1.033
25 0.790 0.914 0.992 1.022 1.039 1.062 1.073 1.107
.35 0.761 0.933 1,054 1.104 1.133 1.176 1.1% 1.258
.45 0.77¢ 1.019 1.202 1.289 1.342  1.424 1.463 1.587
+55 0.8% 1.293 1.666 1.83 1.990 2.204 2.316 2.710
Kp/K,
a/L»0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane
L,/h Strain
.05 0.939 0.968 0.98% 0.989 0.992 0.995 0.9% 1.003
.15 0.83 0.933 0.97% 0.988 0.9% 1.006 1.011 1.026
.25 0.818 0.918 0.98 1.006 1.020 1,038 1,046 1.072
+35 0.793 0.918 1.007 1.043 1.063 1.092 1.105 1.141
A5 0.779 0.931 1.049 1.102 1.132 1.178 1.199 1.263
.55 0.770 0.955 1.121 1,204 1.256 1.340 1.382 1.524



Table 25. Normalized stress intensity factors calculated at the
planar elliptic arack with
uniform tensicn N,

midsection of an internal
d/h=0.25 in a plate under

KA/Ko
a/LO-—O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lolh Strain
.05 0.927 0.962 0.98t 0.988 0.991 0.99% 0.997 1.005
.15 0.831 0.922 0.976 0.995 1.006 1.020 1.026 1.048
.25 0.776 0.9%19 1.013 1.051 1.071 1.101 1.115 1.161
.35 0.768 0.977 1.133 1.201 1.287 1.303 1.333 1.429
45 0.876 1.228 1.5480 1.698 1.798 1.964 2.051 2.3%53

KB/Ko
a/Loq-0.5 1.0 2.0 3.0 4,0 7.0 10.0 Plane
Lo/h Strain
.05 0.930 0©0.94 0.98 0.988 0.991 0.995 0.997 1.004
.15 0.847 0.926 0.973 0.991 1.000 1.012 1.017 1.036
.25 0.801 0.913 ©0.989 1,018 1.03% 1.057 1.068 1.102
.35 0.775 0.919 1.026 1.072 1.098 1.138 1.157 1.216
.45 0.758 0.938 1.09% 1.172 1.220 1,297 1.336 1.468
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Table 26. Normalized stress intensity factors calculated at the
planar elliptic crack with
uniform tension N.

midsection of an internal
d/h=0.30 in a plate under

KA/Ko
a/Lo-a-O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lolh Strain
.05 0.917 0.958 0.980 0.987 0.991 0.99% 0.998 1.007
.15 0.816 0.921 0.985 1.008 1.021 1.038 1.046 1.073
.25 0.78 0.951 1.070 1.119 1.146 1.187 1.207T 1.273
35 0.89 1.170 1.420 1.537 1.610 1.727 1.787T 1.9%
KB/Ko
a/Lo-a-O.S 1.0 2.0 3.0 §,0 7.0 10.0 Plans
Lo/h Strain
.05 0.919 0.959 0.98 0.987 0.991 0.99 0.997 1.006
.15 0.829 0.920 0.976 0.997 1.008 1.023 1.030 1.053
.25 0.783 0.914 1.005 1.0%2 1.063 1.093 1.108 1.1%
«35 0.753 0.927 1.071 1,138 1.178 1.243 1.276 1.387
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Table 27. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptice crack with
d/h=0.05 in a plate urder uniform bending M.

Ky/Ky

a/Ly—=1.0 2.0 3.0 4,0 7.0 10.0 Plane
Lo/h Strain
.05 6.118 0.119 0.120 0.120 0.120 0.120 0.121
.15 0.170 0.173 0.174 0,175 0.176 0.176 0.177
.25 0.217 0.222 0.224 0.225 0.227 0.228 0.230
.35 0.206 0.274 0.278 0.279 0.282 0.28 0.28
.45 0.316 0.329 0.335 0.338 0.34%2 0.34% 0.350
.55 0.371 0.391 0.400 0.405 0.412 0.416 0.426
.65 0.436 0.469 0.48 0.493 0.506 0.513 0.532
.75 0.528 0.58 0.61% 0.631 0.659 0.673 0.716
.85 0.753 0.889 0.963 1.013 1.099 1.144  1.313

Kp/X,

a/L,—~1.0 2.0 3.0 4,0 7.0 10.0 Plane
Lofh Strain
.05 0.073 0.074% 0.074 0.07% 0.0T4 0.075 0.075
5 6.020 0.023 0.024 0.025 0.025 0.026 0.026
.25 -0.032 -0.027 =-0.025 -0,024 =0.023 -0.022 -0.021
.35 -0.082 -0.075 =-0.073 -0.072 =0.070 -0.069 -0.068
.45 -0.130 -0.123 -0.120 ~0.118 =0.116 ~0.115 =0.113
.55 . -0.178 ~0.170 -0.167 =-0.165 -0.162 -0.161 =-0.159
.65 -0.226 =0.219 -0.215 =0.213 <0.210 «0.209 =~0.207
.75 -0.278 -0.272 -0.269 =0.267 =0.264 -0.262 -=0.259
.85 -0.339 -0.338 -0.33% -0.331 -0.325 -0.322 -0,311
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Table 28. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0,10 in a plate under uniform bending M.

Ky/K,

a/Lo_q-1.0 2.0 3.0 5.0 7.0 10.0 Plane
Ly/h Strain
.05 0.216 0.218 0.219 0.219 @¢.220 0.220 0.221
.15 0.263 0.270 0.273 0.274 0.276 0.276 0.279
25 0.308 0.321 0.325 0.328 0.331 0.332 0.337
«35 0.35T 0.376 0.383 0.387 0.393 0.395 0.403
45 0.%12  0.34%0  0.451 0.457 0.467 0.471 0.484
.55 0.477 0.520 0.538 0.549 0.56 0.574 0.598
.65 0.571 g.642 0.676 0.697 0.730 0.746 0.797
.75 0.84% 0.959 1.045 1,101 1.199  1.251 1.441

Kg/K,

a/Lo—a-1.0 2.0 3.0 5.0 7.0 10.0 Plane
Lo/h Strain
.05 0.170 0.172 0.173 0.173 0.174 0.174 0.175
.15 0.114 0.120 0.123 0.124 0.125 0.126 0.128
.25 0.061 0.071 0.075 0.077 0.080 0.081 0.084
.35 0.010 0.024 0.030 0.033 0.037 0.038 0.043
45 -0.038 -0.020 -0.013 -0.009 -0.004 -0.001 £.005
.55 -0.084 -0.062 -~0.053 -0.048 -0.040 -0.037 -0.028
.65 -0.128 =-0.102 -0.089 -0.082. -0.071 -0.066 -0.052
.75 -0.17t -0.137 -~0.117 -0.105 -=0.083 -0.073 -0.037
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Table 29. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.15 in a plate under wniform bending M.

KA/Ko

a/Lo—’ﬂ.O 2.0 3.0 ,0 7.0 10.0 Plane
Lolh Strain
.08 0.313 0.317 0.319 0.319 0.320 0.321 0.323
.15 0.355 0.36T7 0.37M 0.373 0.376 0.378 0.382
.25 0.39¢9 0,420 0.428 0.432 0.438 0.440 0.449
.35 0.450 0.482 0,495 0.502 0.512 0.517 0.532
i85 0.514 0.563 0.584 0.59 0.614  0.623 0.650
.55 0.610 0.689 0,727 0.750 0.7% 0.804% 0.80
.65 0. 846 1.0615  1.106 1.167 1.270 1.325 1.524

Kg/K,

a/Lo-g-l.O 2.0 3.0 4,0 7.0 10.0 Plane
Lolh Strain
.05 . 0.266 0.270 0.272 0.273 0.273 0.274 §.275
.15 0.207 0.218 0.221 0.223 0.226 0.227 0.231
.25 0,152 0.169 0.176 0.179 0.184 0.186 0.19
.35 0.101 0.125 0.134% 0.139 0.146 0.149 0.158
.45 0.055 0.085 0,098 0.105 0.116 0.120 0.133
.55 c.011 0.051 0.069 0.080 0.0% G.108 0.125
.65 - -0.028 0.028 0,058 0.077 0,108 o0.123 0.176
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Table 30. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic arack with
d/h=0.20 in a plate under uniform bending M.

Kp/K,
a/Ly ~>1.0 2.0 3.0 4,0 7.0 10.0 Plane
LO/h : Strain
.05 0.410 0.417 0,419 0.420 0.%21 0.422 0.42%
.15 0.445 0.464 0.471  0.474  0.479 0.481 0.488
.25 0.4%0 0.522 0,534 0.541 0.551 0.555 0.569
.35 0.549 0.600 0.621 0.633 0.651 0.660 0.687
45 0.6%2 0.725 0,764 0.787 0.823 0.841 0.897
.55 0.875 1.050 1.142 1,202 1.303 1.357 1.549
Kg/Kq
a/L,—=1.0 2.0 3.0 k.0 7.0 10.0 Plane
Lo/h Strain
.05 0.362 0.368 0.370 0.372 0.373 0.373 0.376
.15 0.298 0.315 0.321 0.324 0.328 0.329 0.336
.25 0.242 0,268 0.278 0.283 0.291 0.2  0.304
.35 0.193 0.229 0.244 0.252 0.264 0.269 0.28
45 0.148  0.197 0.219 0.232 0.25% 0.261 0.289
.55 0.109 0.18 0.218 0.2%2 0.28 0.299 0.365
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Table 31. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.25 in a plate under uniform bending M.

KA/KO
a/Lo-a-1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.506 0.516 0.519 0.520 0.523 0.523 0.527
.15 0.535 0.563 0.573 0.578 0.585 0.589 0.599
.25 0.58 0.633 0.652 0.662 0.677 0.685 0.708
«35 0.670 0.751 0.787 0.808 0.830 0.8% 0.907
A5 0.895 1.066 1.182 1.206 1.298  1.346 1.515

KB/KO
a/Lo-—»1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.457 0.466 0.469. 0.3471 0.473 0.473 0.477
.15 0.388 o0.412 0.421 0.4%25 0,431 0.434% 0.443
.25 0.332 0.370 0.38 0.393 0.305  0.41¢  Q.uz27
.35 0.285 0.340 0.363 0.377 0.398 0.407 0.438
.5 0.305 0.332 0.369 0.3% 0.437 ¢.459 0.513
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Table 32, Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0,.30 in a plate under uniform bending M.

KA/KO
a/Lo_.-T.O 2.0 3.0 5.0 7.0 10.0 Plane
Lolh | Strain
.05 0. 600 0.611 0.618 0.621 0.624 0.625 0.630
.15 0.627 0.666 0.680 0,688 0.698 0.703 0.720
.25 0.698 0.771 0. 801 0.817 0. 842 0.855 0.895
.35 0. 910 1. 067 1. 111 1,187 1. 261 1.300 1,432
KB/K0
a/Lo--1.0 2.0 3.0 4,0 7.0 10.0 Plane
Lo/h 1 Strain
.05 0.550 0.563 0.567 0.570 0.572 0.5T4 - 0.579
.15 a. 477 0.511 0.524 0.530 0.539 0.543  0.557
.25 0.4823 0.479 0.501 0.514 0.533 0.542 0.570
.35 0.381 0.4871 0.513 0.538 0.579 0. 600 0.669

Table 33. Normalized stress intensity factors calculated at the
midsection of two opposite planar elliptic edge cracks
in a plate under uniform tension N.

: a/Lo——T.O 2.0 3.0 4.0 10.0 100.0 Plane
LO/h Strain
0.1 1.060 1.089 1.009 1. 104 1.113 1.119 1.123
0.2 1.009 1.062 1. 081 1.091 1. 109 1. 121 t.125
0.3 0. 966 1.028 1.065 1.079 1.106 1.124 1.129
0.4 0. 929 1.019 1.053 1. 072 1.108 1.131 1. 137
0.5 0.902 1. 008 1.050 1.073 1,118 1.148 1. 155
0.6 0, 902 1,038 1.080 1.108 1. 165 1.203 1.212
0.7 0.929 1.082 1. 149 1.186 1.262 1.315 1.325
0.8 0.997 1.195 1.284 1.336 1. 445 1,524 1. 539
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Table 34. Maximum normalized stress intensity factors for

two planar elliptic edge cracks in a plate

under pure ftension N

20.0

b/a —= 0.1 1.0 5.0 Single
LO/h a/L0 Crack
0.1 2 0.99 0.986 0.98 0.981 0.981
0.1 4 1.072 1.065 1.062 1.062 1.062
G.1 10 1.127 1.122 1.121 1.120 1.120
0.2 2 0.979 0.959 0.951 0.949 0.9%9
0.2 L 1.107 1.090 1.084 1.082 1.08
0.2 10 1.221 1.210 1.207 1.206 1.206
0.3 2 1.007 0.975 0.963 0.961 0.961
0.3 b 1.189 1.160 1.151 1.149 t.149
0.3 10 1.38 1.364 1.359 1.358 1.358
0.4 2 1.051 1.006 0.991 0.989 0.989
0.4 y 1.299 1.255 1.243 1.240 1.240
0.4 10 1.600 1.571 1.563 1.562 1.562
0.5 2 1.106 1.048 1.032 1.030 1.03¢C
0.5 y 1.430 1.370 1.354 1.352 1.352
0.5 10 1.879 1.836 1.82% 1.822 1.821
0.6 2 1.230 1.066 1.080 1. 077 1. 077
0.6 y 1.568 1.4 1.472 1.469 1.469
0.6 10 2.208 2.1481 2.124 2.121 2.121
0.7 2 1.370 1.120 1,100 1.097 1.097
0.7 4 1.694 1. 575 1.553 1.550 1.550
0.7 10 2.532 2.434 2.409 2.405 2.405
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Table 35. Maximum normalized stress intensity factors for

two planar elliptic edge cracks in a plate
under uniform bending M.

b/a —= 0.1 1.0 4.0 20.0 Single
LO/h a/Lo Crack
0.1 2 0.874 0.864 0.861 0.860 0.860
0.1 ) 0.943 0. 936 0.934 0. 933 0,933
0.1 10 0.992 0.988 0.987 0.98 0.98
0.2 2 0.766 0.728 0.719 0.718 0.718
0.2 L 0. 847 0.830 0.825 0.824 0.824
0.2 10 0.940 0.930 0.927 0.927 0.927
0.3 2 0.751 0.665 0.651 5.650 0.650
0.3 4 g. 803 0.755 0.745 0.742% 0.744
0.3 10 0.915 0.900 0.8¢96 0.89 0.895
0.4 2 0.792 0.677 0.659 0.658 0.65%
.4 y 0.801 0.726 0.713 0.7H11 .71
0.4 10 0.923 0.902 0.8% 0.895 0.8495
0.5 2 0.826 0.684 0.663 0.661 0.659
0.5 s 0. 834 0.719 0.703 0.701 0.700
0.5 10 0.950 G.910 0.902 6. 901 0.801
0.6 2 0.855 0.68 0.662 0.660 0.659
0.6 4 0.90¢ 0.743 0.724 0.722 0.721
0.6 10 0.995 0.925 0.912 0.910 0.610
0.7 2 0.874 0.683 0.658 0.655 0.654
0.7 Y 0.989 0.784 0.761 8.759 0.757
c.7 10 1.064 0.956 0.939 0.937 0.936
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Table 36. Normalized stress intensity factors calculated at the
midsection of symmetrically located(d=0Q) two identical
planar internal elliptic cracks in a plate under
uniform tension N.

b/a —= 0,1 1.0 5,0 20.0 Single
Lo/h a/Lo ‘ Crack
0.1 2 0.977 0.976 0.976 0.976 0.967
0.1 4 0.987  0.987 0.987 0.98 0.987
0.1 10 0.9 0.993 0.993 0.993 0.993
0.2 2 ©0.975  0.972  0.971 0.971 0,971
0.2 Y 0.9 0.994 0.993 0.993 0.993
0.2 10 1.008  1.007 1.007 1.007 1.007
0.3 2 0.98 0.980 0.979  0.979  0.979
0.3 ] 1.015  1.013 1.012 1.012 1.012
0.3 10 1.035 1.03% 1.03% 1.034 1.034
0.4 2 1.007 1.002 1.000 1.000 1.000
0.4 3 1.051 1.048 1.047 1.047 1.047
0.4 10 1.080  1.078  1.078  1.078  1.078
0.5 2 1.046 1.036 1.037 1,036 1.036
0.5 4 1.106 1.102 1.101 1.101 1.101
0.5 10 1.147  1.135 1.145 1.145 1.145
0.6 2 1.108  1.098 1.095 1.095 1.095
0.6 4 1.190 1.185 1.183 1.183 1.183
0.6 10 1.248 1.246 1.245 1.245 1.245
0.7 2 1.205 1.192 1.188 1.187 1.187
0.7 4 1.321 1.313 1.311 1.310 1.310
0.7 10 1.407 1.404 1.403 1.403 1.403
0.8 2 1.367 1.348 1.342 1.341 1.341
0.8 4 1.541 1.529 1.526 1.525 1.525
0.8 | 10 1.681 1.676 1.674 1.674 1.674
0.9 | 2 1.703 1.672 1.662 1.661 1,661
0.9 4 2,007 1.988  1.982 1.981 1.981
0.9 10 2.285 2,275  2.272  2.272
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Table 37. Normalized stress intensity factors calculated at the
midsection of two identical planar internal elliptic
cracks in a plate under uniform tension N.

Ky /K,
b/a —a 0.1 1.0 4.0  20.0
d | Ly/h|. a/Lg
0.1 | 0.1 2 0.957  0.81 0.98t 0.979
0.1 | 0.1 4 1.002  0.9% 0.99%2 0.991
0.1 | 0.1 | 10 1.000  0.999 0.999 0.999
0.1 | 0.2 | 2 1.027  0.98 0.977 0.976
0.1 | 0.2 | 1.005  1.002  1.001 1.001
0.1 { 0.2 | 10 1.018  1.018 1,018 1.018
0.1 | 0.3 | 2 1,012 0.995 0.990 0.989
0.1 ] 0.3 [ & 1.03% 1,032 1.031 1,031
0.1 | 0.3 | 10
0.1 | 0.35| 2 1.021  1.010 1.005 1.004
0.1 | 0.35| & 1.058  1.05 1.055 1.055
0.1 | 0.35| 10
0.2 | 0.1 2 0.947  0.783  0.979 0.976
0.2 | 0.1 4 1.006  0.995 0.992 0.992
0.2 | 0.1 | 10 1.003  1.002 1.002 1.002
0.2 | 0.2 | 2 1.052  0.993 0.981  0.979
0.2 | 0.2 | 4 1,020 1.016  1.013  1.014
0.2 | 0.2 | 10 1.039  1.038 1,038 1.038
~0.2 | 0.25] 2 1.056  1.003 0.99%% 0.9%
0.2 | 0.25] 4 1.044  1.040 1.040 1.039
0.2 | 0.25| 10 1.073  1.073  1.073  1.073
0.3 | 0.1 2 0.933  0.760 0.98 0.975
0.3 | 0.1 4 1.018  1.003  0.999 0.998
0.3 | 0.1 | 10 1.014 1,013 1,013 1.013
0.3 | C.15| 2 0.814 0,98 0.988 0.98
0.3 | 0.15| 4 1.033 1,024 1.022  1.021
0.3 | 0.15] 10 1.047  1.046  1.046 1,046
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Table 37— Cont.

Kg/K,
b/a —am 0.1 1.0 4.0  20.0
Ly/h | a/L,

0.1 | o.1 2 0.959 0.830 0.982 0.979
0.1 | 0.1 4 1.002  0.993 0.991  0.997
0.1 | 0.1 | 10 0.999 0.999 0.999 0.999
0.1 | o.2 2 1.020  0.98 0.978 0.976
0.1 | 0.2 y 1.002 1,000 0.999 0.999
0.1 | 0.2 | 10 1.014  1.014  1.013  1.014
0.1 | 0.3 2 1.004 0.989 0.985 0.98Y4
0.1 | 0.3 y 1.021  1.020 1.019 1.019
0.1 | 0.3 | 10
0.1 | 0.35] 2 1.006 0.997 0.993 0.993
0.1 | 0.35| & 1.036 1,035 1.03% 1.03%
0.1 | 0.35 | 10
0.2 | 0.1 2 0.950 0.799 0.979 0.976
0.2 | 0.1 4 1.00%  0.9% 0,992 0.997
0.2 | o0.1 | 10 1.001  1.001  1.001 1.001
0.2 0.2 2 1.038 0.987 0.977 0.976
0.2 | 0.2 y 1.010  1.007 1.006 1.005
0.2 | 0.2 | 10 1.026  1.026  1.026  1.026
0.2 |o.25! 2 1.03%  0.990 0.983 0.982
0.2 |o0.25| 4 1.023  1.021  1.020 1.019
0.2 |o.251 10 1.046 1,046  1.046 1.045
0.3 | 0.1 2 0.935 0.778 0.578 0.974
0.3 0.1 y 1.013  0.999 0.99% 0.995
0.3 Jo.1 | 10 1.009 1.009 1.008 1.008
0.3 |o.15] 2 0.829 0.977 0.979 0.977
0.3 |0.15] & 1.019  1.011  1.008 1.008
0.3 |o.15] 10 1.030  1.030 1.030 1.030
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Table 38. Normalized stress intensity factars calculated at
the midsection of three identical planar internal
elliptic cracks in a plate under uniform tension N.

Kp/K, for the middle crack

b/a ——a 0.1 1.0 4.0 20.0

d Lolh a/Lo

0.1 0.1 2 0.983 0.981 0.979 0.979
0.1 0.1 4 0.994% 0.992 0.992 0.991
0.1 0.2 2 0.98 0,98 0.977 0.976
0.1 0.2 4 1.007 1.004 1.002 1.001
0.1 0.3 2 1.006 0.997 0.991 0.989
0.1 0.3 ) 1.040 1.035 1.032 1.031
0.2 0.1 2 0.981 0.978 0.976 .975
0.2 0.1 4 0.995 0.994% 0.992 (.99
0.2 0.2 2 0.993 0.98 0. 981 0.979
0.2 g.2 y . 1.023 1.018 1.015 1.014
0.3 0.1 2 0.983 0.979 0.976 0.975
0.3 g.1 4 1.003 1.001 0.999 0.998

KB/K0 for the middle erack

0.1 0.1 2 0.98F 0.981 0.980 0.979
G.1 0.1 4 0.993 0.992 0.991 0.991
0.1 0.2 2 0.984 0.980 0.977 0.976
0.1 0.2 4 1.003 1.001 0.999 0.999
0.1 0.3 2 0.997 0.960 0.98 0.984
0.1 0.3 y 1.026 1.022 1.020 1.019
0.2 0.1 2 0.981 0.978 0.¢77 0. 976
0.2 0.1 4 0.9, 0.993 0.992 0.99N
0.2 G.2 2 0.987 0.98 0.977 0.976
0.2 0.2 4 1.012 1.009 1.006 1.005
0.3 0.1 2 0.98 0. 977 0.975 0.574
0.3 0.1 4 0.999 0.997 0.996 0.995
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Table 38-Cont.

KA/Ko for outer crack

b/a w——= 0.1 1.0 4.0 20.0
LO/h a/Lo :
0.1 0.1 2 0.982 0.98 0.979 0.979
0.1 0.1 il 0.993 0.992 0.99 0.991
0.1 0.2 2 0.982 0.978 0.976 0.976
0.1 0.2 4 1.005 1.003 1.002 1.001
0.1 0.3 2 0.999 0.9% 0.991 0.989
0.1 .3 4 1.037 1.034 1.032 1.031
0.2 0.1 2 0.979 0.977 0.976 0.975
0.2 0.1 4 0.994 0.993 0.992 0.692
0.2 0.2 2 0.988 0.983 0.980 0.979
0.2 0.2 i 1.019 1.016 1.014 1.014
0.3 0.1 2 0.980 0,978 0.976 0.975
0.3 0.1 Yy 1.001 1.00¢  0.999 0.998
KB/KO for outer crack
0.1 0.1 2 0.982 0.980 0,98 0,979
0.1 0.1 4 0.993 0.992 0.99 0.991
0.1 0,2 2 0.981 0.978 0.976 0.976
0.1 0.2 4 1.002 1.000 0.999 0.999
0.1 0.3 2 0.992 0.G88 0.985 0.684
0.1 0.3 L 1.023 1.021 1.020 1.019
0.2 Q.1 2 0.979 0.978 0.976 0.976
0.2 0.1 b 0.963 0.992 0,99 0.991
0.2 0.2 2 0.983 £.979 0.977 0.976
0.2 0.2 4 1.010 1.007 1.006 1.005
0.3 0.1 2 0.978 0.976 0.974  0.974
0.3 0.1 4 0.998 0.9% 0.995 0.995
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Table 39. Normalized stress intensity factors on the crack front
for an internal elliptic crack with d/h=0.20, Lo/h=o.u5,

a/Lozu.

x (Rp/Ko)y  (Bp/Kgdy  (Kg/K))y  (Kg/K Dy
0.99 0.426 0. 411 0.186 0.151
0.90 0.723 0.707 0.357 0.218
0.80 0.865 0.831 0.452% 0.229
0.70 0. 974 0. 916 0.531 0.233
0.60 1.065 0.980 0.5% 0.233
0.50 1.143 1.028 0.649 0.233
0. 40 1.211 1.068 0.697 0.233
0.30 1.266 1.09% 0.735 0.233
0.20 1.307 1.116 0.763 0.233
0.10 1.333 1.128 0.781 0.233
0.00 1.342 1.132 0.T787 0.232
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Table 40. Normalized stress intensity factors on the crack front
for an internal elliptic crack with d/h=0.10, L,/ h=0.45,

a/Lozll.
0.99 0.411 0.393 G6.097 0.065
0.90 0.692 0.686 0.205 e.Q72
0. 80 0.816 0.804 0.269 0.057
0.70 0.902 0.883 0.318 0.041
0.60 0. 967 0. 941 0.357 0.028
0.50 1.018 0.984 0.388 0.016
0.40 1.061 1.019 0.414 0.007
0.30 1.092 1.044 0.433 0.000
0.20 1.114 1.061 0.446 -0.005
0.10 1.128 1.072 0.455 -0.008
0.00 1.132 1.075 0.457 ~-0.009
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Table 41. Normalized stress intensity factors on the crack front
for an elliptic edge crack with Ly/h=0.45, a/Lg=l.

0.99 0.762 0.6146
0.90 0,920 0.69
0.80 1.027 0.7T11
.70 1.084 0.701
0.60 1.130 0.695
0.50 1.166 0.689
0.540 1.197 0.68
0.30 1.214 0.680
0.20 1.227 0.676
0.10 1.237 0.675
0.00 1.240 0.675
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Figure 1. Notation for the part-tarough crack problem.
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Figure 2. Notation for the related plane strain problem,
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Figure 3. Geometry and notation for an internal crack.
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Figure %, Geometry and notation for two opposite elliptie
edge cracks.
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]
Figure 5. Geometry and notation for two identical cracks.
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Figure 6. Geometry and notation for three identical ecracks.
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1
2.01
1.8 1
1.61
1.4 -
1.2
1.0+
005 0 0.15
1: LO/h=0.65, a/Lo=7,
2: Lo/h=0.65, a/L =3,
3: Lo/h=0.55, a/Lo=7,
u: LO/h;O-SS, a/Lo=3’
5: LO/h=0.45’ a/Lor’Tj
- 6: LO/h=O.45, a/LO=3,
T Lolh:0.35, a/LO=7,
8: Lo/h=0-351 a/Lo=3,
g: Lo/h=0.25, a/LO=3.
Figure T. Effect of d/h ratio on the normalized stress intensity

factors calculated at the midsection of various
internal elliptic cracks under pure tension
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Kg/Ks
1.5;

Figure 8.

005  0f 015 0.2 025 03 d/h

1: L,/h=0.35,
2: Lg/h=0.35,
3: L./h=0.65,
4: L /h=0.55,
5: L./h=0.45,
6: L_/h=0.45,
T: L,/h=0.55,
8: L /b=0.65,
9: L,/h=0.25,

a/Lo=3,
a/LO=7,
a/LO=3,
a/Lo=3,
a/L0=3,
a/Lo=7,
a/L°=7,
a’/L_=T,

o)
a/L0=3.

Effect of d/h ratio on the normalized stress intensity
factors calculated at the midsection of various
internal elliptie cracks under pure tension.
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KA /K

0.05 01 015 0.2

1: LO/h=O.25, a/Lo=3,

2: L0/h=0.25, a/Lo=7,

3: Lo/h=0.35, a/L0=3,

4: LO/h=0.35, a/L°=7,

5: Lo/h=o.n5, a/Lo=3,

- 6: Loih-O.HS, a/Lo=7,
' LQ/h,O.SS, a/Lo=3,

8: Lo/h=0.55, a/Lo=7,

9: L°/h=0.65, a/Lo=3,

10: Lolh:0.65, a/LO=7,

113 Lo/h:0.15, a/Lo=3,

12: Lo/h=0.15, a/Lo=7.

Figure 9. Effect of d/h ratio on the normalized stress intensity

factors calculated at the midsection of various
internal elliptic cracks under pure bending.
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KB/KO

0.61
0.4 -
0.2
!
0.07 2
3
54
- 0.2
0.05 0.1 0.15 03 d/h
1 o/h—O 15, a/L =3,
2: o/h.O 25, a/L =3,
3: o/h-O .35, a/L =3,
R 4: o/h.O.ll5, a/L =3,
5: o/h-0.55, a/L =3,
6: /h_0.65, a/L =3,
Figure 10. Effect of d/h ratio on the normalized stress intensity

factors caleulated at the midsection of various
internal elliptiec cracks under pure bending.
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Kn/ Ko

Figure 11.

5
Ld

0.05

1.8

1.4

1.0

005 025 045 065 085 Ly/h

Effect of L /h ratio on the normalized stress
intensity factors calculated at the midsection of
internal elliptic oracks with a/Lo=4 and
different d/h ratios under pure tension.
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Kg/Ko 1

Figure 12.

1.4 1

12 -

1.0 1

'
U Y T T * y rd

005 025 045 065 085
Ly/h

Effect of Lo/h ratic on the normalized stress
intensity factors calculated at the midsection of
internal elliptie¢ cracks with a/LO=M and
different d/h ratios under pwe tension.
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Ka/ Ko 1

Figure 13.

7

0.25

d/h=0.3

005 025 045 065 085
Lo/ h
Effect of Lo/h ratio on the normalized stress

intensity factors calculated at the midsection of
internal elliptic cracks with a/L°=14 and

different d/h ratios under pure bending.
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KB/KO

| d/h=0.3
0.5— \/
1 0.15
-01
-0.4

LN
L T ?

0.05 0.25 045 065 O-BSLO/h

Figure 14. Effeect of LO/h ratio on the normalized stress
intensity factors calculated at the midsection of
internal elliptic cracks with a/Lo=4 and
different d/h ratios under pure bending.
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KA/ KO

Lo/ h=.65
1.3 1 '
1.1
0.9 -
55
e —
0.7
. 45
05 /,/””’—fﬂﬂﬂﬂ———_ 35
0.3 05
2 4 6 8 0
a/Lg
Figure 15. Effect of a/Lo ratio on the normalized stress

intensity factors calculated at the midsection of
internal elliptic cracks with d/h=0.15 and
different Lo/h ratics under pure bending.
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Figure 16. Effect of a/L, ratio on the normalized stress
intensity factors caleculated at the midsecticn of
internal elliptic ecracks with d/h=0.15 and
different Lolh ratios under pure bending.

-278-



Lo /D =.65

2.4

Figure 17. Effect of a/Lo ratio on the normalized stress

intensity factors calculated at the midsection of
internal elliptic cracks with d/h=0.15 and
different Lo/h ratios under pure tension.
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Kg/Ko Lo / h= .65

]
1.3 1
.55
.45
1.1 -
: 35
25
. —
15
0.9 1
|
| 3 5 7 9 a/L
Figure 18. Effect of a/L, ratio on the normalized stress

intensity factors calculated at the midsection of
internal elliptic cracks with d/h=0.15 and
different L, /h ratios under pure tension.
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K/ Ko

0.9 ;

0.7 {

Figure 10.

>
- r'd

1

1 3 9 7 9 a/l,
———— Line spring
————— Ref. [19]

Comparison of the normalized stress intensity

factors calculated in this study at x=0 for an
internal planar elliptic crack in a plate under
uniform tension and with the corresponding

“values given in Ref.[13].
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K/Ko

Figure 20.

1.8

1.6

1.4

1.2

1.0

, =——————— Line spring
—————— Ref. [19]

Comparison of the normalized stress intensity
factors calculated irn this study at x=0 for an
internal planar elliptic crack in a plate under
uniform tension and with the corresponding
values given in Ref.[15].
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K/Kg

Figure

2t.

3 5 7 9 ‘a/Lo

Normalized stress intensity fators calculated at
the midsection of a symmetrically located {(d/h=0)

‘internal planar elliptic crack in a plate under

uniform bending,
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5 8 10 ally

B -
I~

Figure 22, Normalized stress intensity factors calculated at
the midsection of two opposite planar elliptic
edge cracks in a plate under uniform tension.

K/K, 4
| line spring
1.0 1
Ref.[20]
0.8 1

407 60" = 0° -

Figure 23. Comparison of the stress intensity factors calculated
' in this study at the midsecticn of a symmetrically
located internal(d/h=0) planar elliptic crack in a

plate under uniform tension with the corresponding
results given in [20].L0/h=.57, a/Lb=1.25, X=Cos @,
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APPENDIX I

The dimensionless quantities used in the formulation:

X-; x2 x3

X = H] y= r Z = — ’
u1 u2 U.3

u = — ’ v = F W = ]
ai al ai

2 2
" 2, % n
AT =12(1 =¥} — K = 3
e 5 (1 - 9) a
2 1/2
p=£ 1 I
K(1-8)
ai(1-l-‘2) 3""’
R, = R~ =
= oY ’ 2 1 +¥% '
4 (1 - v) 4
Ry 2 —mm— Rll' .
3 (1 +#) ’ 1T + ¥
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APPENDIX II

Procedure for finding coefficients of the shape functions (gt
and gb) are as follows. Loading should be seperated as pure tension

and pwe bending. For pure tension case

By using (8), (9) and (10a)

K(s) =Vh &g, (s) |,

by .
k(s) =Vh & Vs ) b, (s)2(1-1)
isi _
K(s) = 6 VEL(x,) 2 b, (s)2(i~1)
ixl
K(s)

hi .
:Zbi(3)2(1-1) .

C \/ﬂL(x1) it

Values of the left handside can easily be found for a wide range of
s values in related literature, which enables us to oreate n
equations with b;'s as the n unknowns. Solution of this system is

the coefficient of corresponding shape function.
Same procedure is followed under pure bending to find ey's .
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APPENDIX III

Solution of the Integral Equations

i~ Gauss-Chebyshev Closed Type Integration Formula
The solution of the integral equation which only has the Cauchy

type singularity

[
| $(t)

© t-x

dt +J’k(x,t) () dt = f(x) , -1<x<1 ,

may be expressed as

S(t) = (1 - t2)"V2(¢)

1 1.
K(x,t) = — mm—+ kix,t)

w t-x
T 1 nel 1
— [ — K(Xj,t1 )g(ti) +'Z K(Xj,ti)g(ti) + —K(Xj,tn)g(tn) 1
n-1 2 imdd 2
= f(xj) 9 - j = 1’ L ) ,(n"'1)
i-1
ti=cos['—— ] i= 1, s e v ,n
=1
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23-1
xJ-:coS[ n y j= 1’ LRI I ,(n-1)
2n=2

and the additional condition

J'qr(t) it = A ,
-1

becomes
L 1 i 1
— [—glty) +) glty) + — gty 1=
n-1 2 F - 2

One may find the detailed derivation of the formula in [4].

When there is a system of integral equations with more than one
unknown functions to be solved, the above procedure can be used by

applying the formula to each integration seperately. For example

!

o1ct)
t-x |

o |
+ f k12(x,t)°2(t) dt = f.](X) ’
-]
| 1
fk21 (x, t)¢1(t} dt +j’ kzz(x, t)@z(t) dt
- -Il
| T,
+ o
n t~x
|

dt = f‘2(x)
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! I

. -l

can be solved as

¢, (t) = (1 - 27V (1)

(1 - 32)-1/2

Qa(s) 82(3) ’

s has been introduced to define different collocation points for

each functions,

1 1
K.”(x,t) o — k11(x!t) H
T t-x
Kio(x,8) = kqo(x,s) ’
- K21 (X,S) = k21 (x’s) ?
1 1
Kop(x,8) = — ——+ kyo(x,8)
M 3-X
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1 -l ' 1
[— Kyq(xptydeg(ty) + ZK11<xj,tiJg1 (t5) +=Kqq(R5by0)8¢(t,)]

n

1 hz-l
[-—K12(Xj,31 )g2(81) +.z K12(Xj,si)g2(si)
nz""l 2 Ang,

«
+

1 )
+‘-K12(Xj:3n2)82(3n2) ] = f2(xj) )
2

23=1 '
X. = ODS[ ‘ﬂ] , J= 1y veeee (n1-1)

J
2n1"2
n 1 n,-1| 1
[— K21 (let‘l )31 (t1) +'z K21 (xj’ti)g'l (ti) +—K21 (Xj;tn-[ )81 (tn1 )]

n1~1 2 =2 2

o 1 nz-

+ [— K22(XJ,S1)82(S1) +ZK22(Xj,Si)g2(Sl)
n2-1 2 “uld

1
+ — K22(x3,3n2)82(8n2) ] = fz(XJ)

2
X-=OOS “ 1 j= 1, . L ,(n -1)
J 2n,-2 2
T 1 ™~-1 1
[““81(t1) ‘*‘Z 81(ti) i S1(tn1) ] = A1 )
™ 1 .l 1
—— [—gy(sq) +) 8p(s;) +—go(s) 1= Ay ,
n-1 2 i=2 2
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-1_1 -

ti= coSsS 1 ¥ i= 1, LI I ,n1
-1’11"‘1 J
ri=-1 4

S; = cos ®| , i=1) veeene 2 By
..n2-‘l -

Above solution can also be used for any number of unknown functions

in the same manner.

ii=- Order of Singularity in the Integral Equation

At first glance, it seems that (31) has singularities other
than Cauchy type. But if we take a closer look to the equation, we
will see that modified Bessel function of the second kind has the

following property for relatively small values of the argument.
Kplx) = 2™ (r-)1x7?
~ -2
Kz(x) 2 x .
By using above property, we can say that

2 K(‘]-p)
lin K (plt—x[) = =
(tx)=0 2 p2(t=x)2  (t-x)2
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which gives

N LK (1-9) 1
lim [—— — Ky (plt-x|) - ] =0 .
(tmx)==0 L 140 t-x 140 (t=x)3

This proves that (31) has only Cauchy type singularity and can be

solved by Gauss-Chebyshev closed type integration formula.

Integrals on the interval (-1 , x) can be written on (-1 , +1)
by redifining the kernels by the use of a step function H(y) as

follows:

x |

jf(t) dt ::I H(x-t) £(t) dt

-1 -1

where,

H

. | H(y)
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APPENDIX IV

Numerical Integration
Gauss~Chebyshev closed type integration formula is used for
numerical integration purposes. Any integral in the interval

(~1 , +1) can be expressed as,

I
£z) dx @ 1 n-l 1

Tz = — [—f(x1) ) £(xy) +-; f(xn)]

2 =2

If an infegration in the interval (-1 , x) is desired, above
formula can again be used by multiplying the integrand with the H

function defined in Appendix IIZL.

Number of points (n)} in the integration should be much higher
than the number of points used in the solution of integral equations
if one desires to evaluate the stress intensity factor or the crack
front at any point accurately. V3lues of the functions to be
integrated at any poirit can be found by interpolating the function
between the two surrounding known values found from the solution of

integral equations.
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APPENDIX C

THE CRACK~INCLUSION INTERACTION PROBLEM

by
Liu Xue-Hui and F. Erdogan

Lehigh University, Bethlehem, PA

ABSTRACT

In this study the general plane elastostatic problem of interaction
between a crack and an inclusion is considered. The Green's functions for
a pair of dislocations and a pair of concentrated body forces are used to
generate the crack and the inclusion. The integral equations of the problem
is obtained for a Tine crack and an elastic Iine inclusion having an arbi-
trary relative orientation and size. The nature of stress singuiarity
around the end points of rigid and elastic inclusions is described. A ques-
tion of specific interest which is studied is the nature of stress singu-
larity around the point of intersection of the crack and the inclusion.
Three special cases of this intersection problem which have been studied
are a crack and an inclusion which are collinear and have a common end point,
a crack perpendicular to an inctusion with a common end point (the L con-
figuration), and a crack perpendicular to an inclusion terminating at its
midpoint (the T configuration). The problem is solved for an arbitrary
uniform stress state away from the crack-inclusion region., First, the non-
intersecting crack-inclusion problem is considered for various relative size,
orientation, and stiffness parameters and the stress intensity factors at
the ends of the inclusion and the crack are calculated. Then for the crack-
‘inclusion intersection case special stress intensity factors are defined
and are calculated again for various values of the parameters defining the
relative size and orientation of the crack and the inclusion and the stiff-
ness of the inclusion.
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1. Introduction

In studying the fracture of multi-phase materials, structures composed
of bonded dissimilar solids, and welded joints it is necessary to take into
account the effect of the imperfections in the medium. Generally such imper-
fections are in the form of either geometric discontinuities or material
inhomogeneities. For example, in welded joints various shapes of voids,
cracks, notches and regions of lack of fusion may be mentioned as examples
for the former and variety of inclusions for the latter. From the viewpoint
of fracture mechanics two important classes of imperfections are the planar
flaws which may be idealized as cracks and relatively thin inhomogeneities
which may be idealized as flat inclusions with "sharp" boundaries. In both
cases the edges of the defects are lines of stress singularity and, conse-
quently, regions of potential crack initiation and propagation.

The technical literature on cracks, voids and inclusions which exist
in the material separately is quite extensive. However, the problems con-
cerning the interaction of cracks, voids and inclusions do not seem to be
as widely studied (see, for example, [1] for the results of crack-circular
inclusion or void interaction problem and for some references). In this
paper the relatively simple problem of an elastic plane containing a crack
and an arbitrarily oriented flat elastic inclusion js considered. Of special
interest is the examination of the asymptotic stress field in the neighborhood
of inclusion ends and the problems of intersecting cracks and inclusions.

The basic dislocation and concentrated force solutions are used to formulate
the problem [2]. Hence, the formulation can easily be extended to study prob-
Tems involving multiple cracks and inclusions.

2. Integral Equations of the Problem

The geometry of the crack-inclusion interaction problem under considera-
tion is shown in Figure 1. It is assumed that the medium is under a state of
plane strain or generalized plane stress and the in-plane dimensions of the
medium are large compared to the lengths of and the distance between the
crack and the inclusion so that the effect of the remote boundaries on the
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perturbed stress state may be neglected. Thus, the Green's functions for
the concentrated forces and dislocations in an infinite plane may be used to
formulate the problem. It is further assumed that the inclusion is suffi-
ciently "thin" so that its bending stiffness may also be neglected.

Referring to Figure 1 we consider the stresses and displacements due to
a pair of edge dislocations on the x axis, a pair of concentrated forces on
the 1ine e=constant and the applied loads acting on the medium away from the
crack-inciusion region. Let the subscripts d, p and a designate these three
oij 2nd ogq5s (1:3) = (x.y)
or (i,j) = (r,8), be the stress components due to dislocations, concentrated
forces, and applied loads, respectively. The total stress state in the elas-
tic plane may, therefore, be expressed as

stress and deformation states, i.e., let Udij’ o and o

035(%¥} = 045500y # opis(xy) + 045 00y), (1,3 = xuy) (1)

Let us now assume that the dislocations are distributed along a<x<b,
y=0 forming a crack. If g(x) and h(x) refer to the dislocation densities
defined by '

33; [ug(x,40) - u (x,-0)] = g(x) , a<x<b ,

Yy
(2a,b)

g%-[ux(x,+0) -u (x,-0)] = h(x) , a<x<b ,

the corresponding stress components at a point {x,y) in the plane may be

expressed as b

%) = | [ (X )5(E) + K (xayst)h(e)Jet
a

(xa3) = [ L8,y (xayitdg(t) + K (xay,t)n(e)1dt (32-c)

“dyy vy vy

a
b

Ty = [ Ta, (xy,8)9(8) + o (v tdn(e)Tee
a

where
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6 = 2u__, (t-x)lgt-xzz - y2]
xx  w(x+l) t-x)= +y ?

-2 C(e-x)[3y2% + (t-x)2
ny T (k) t-x}Z + y

g = 2u . 2 - (t~x)2
xy  w(x+l) t=x) + y ?

__2 %!zz + 3§t—x52| (4a-f)
Hex = (1) t-x} + ¥y ’

__ 2 ) 2 - {t-x)2
Hyy T (k) igt-sz + yglJ >

.2 §t-x1[€t-x12 - y2]
ny T oalt ) t-x)e +y ’

In (4} u and « are the elastic constants of the medium, u the shear modulus,
k = 3=4y for plane strain and « = {3-v)/(1+v) for plane stress v being the
Poisson's ratio.

Similarly, from the concentrated force solution as given, for example,
in [2] the stress components 013 = Sij due to a pair of forces Px and P
acting at the point (xo, yo) may be written as

(A+A, )Py + (B,+B,)P
S (X,y,x sy ) = L ] 2 xZ. L 2 Zy2 2
XX 0’70’ = Zm(ktl)  L{x=x )% + (y-y )<]

(A,-A,)P_ + (By-B,)P
.1 1% 175
Syy{Xa¥2%ga¥0) = 7ty [(x-x0)2x+ (y-yo)zlzy ’

Y

(5a-c)

S, (XsYaX_s¥y.) = ] P Sy
xy' 772 %0 Yol T Zn{ietT) Tlx-x,)2 + (y-y, )27

1 = ~2{x=x ) T{x-x,)2 + (y-y,)?]

Ay = —elx=x J[(x-x,)2 + (y-y )2] = (x-x )[(x-x,)2 = (y-y,)2] + 2(y-y,)2(x-x,)
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By = -2(y-y Jl{x-x)% + (y-y )?]

o
~N
1

= #ely-y ) x=x )2+ (y=¥)21-(y-y Y x=x) 2= (y-y)21-2(x-%, )2 (y-y, )
Ay = melyy o N0xexg ) 24y -y, )2 1-(y=y ) [(x=x ) 2= (y-y ) )21-2(x-x) 2 (y-y )
By = =k(x=Xg ) L(x-X,)24(y=y 2T (x=x ) [{x-x ) 2=(y=y ) 21-2(y-y )2 x-x, )

(6a-F)

If the inclusion is located along the line ¢ < r < d, 6 = constant, and
if its bending stiffness is neglected, then the following conditions are
valid:

ur(r,e+0) = ur(r,e~0), ue(r,e+0) = ue(r,e~0) .
-Pe(r,e) = cee(r,e+0) - cee(r,e-O) =0, (7a~d)
'Pr(r:e) = -p(r) = cre(r,e+0) - Gra(r’e'o) , {cer<d).

Thus, to formulate the problem it is sufficient to consider only the radial
component Pr=p of the concentrated force. For Pe=0 and Pr=p observing that

Px = D COSH , Py =p sine , (8a,b)
and substituting Xq = TCOS8, Yo = rosine, by using the kernels Sij given
by (5) the stress components 90ij are found to be

: Jd (B ' +A," Jcose+(B, " +B, " )sine

prx(x’y) ) [(x-rccose)2+(y-rosine)2]2 p(ro)drO ?

c
d (A]'-AZ')cosa+(B1‘-Bz’)sine

= 1
opyy(Xs¥) = 2n{k+T) I [(x-,c056)ZH(y-r _57n8) 212 pryddry - (9a-c)
c

. d A;'cose + B,'sins
(x,y) = -
“pxy 2r{k+1) J [(x-rocose)2+(y-ros1ne)2]2
c

p(ro)dro R
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where the functions A;', B;', (i=1,2,3) are obtained from (6) by substituting
X, = r,cose and Yo = ToSing, e.g.,

A}'(x,y,ro) = -2(x-r0cose)[(x-rocose)2 + (y—rosine)zj . (10)
Since the stresses %aij due to the applied Toads are known, from (1),
(3) and (9) it is seen that once the functions g(x}, h(x) and p(r) are deter-
mined the problem is solved. These unknown functions may be determined by
expressing the stress boundary conditions on the crack surfaces and the
displacement compatibility condition along the inclusion, namely

cyy(x,o) = (x,0) + o 0, (a<x<b),

®dyy

+
oyy($:0) + 0 (%,0)

i

cxy(x,O) = cdxy(x,o) + cpxy(x,o) + caxy(x,o) 0, {(a<x<b), (11a-c)

(rse) = (Y,e) + (P,G) + € (r,e) = Ei(r), (C<P<d)

€pp Sdrr “orr arr

where Ei(r) is the (longitudinal) strain in the inclusion. If, for example,
the stress state away from the crack inclusion region is given by o?-,
(1,3) = (x,y)}, then the applied quantities in (11) may be expressed as

cayy(x,O) = oy qaxy(xaﬂ) = Oy
+ © - .
carp(758) = 55 [og, (cos2s - 3£ sing)
+ o (sin2e - i’y cos?g) + 2 sin2o] (12a-c)
Yy T+k T4k Txy *

We now note that if p(r) is the body force acting on the elastic medium
then -p{r) would be the force acting on the inclusion distributed along its
Tength. Thus, the strain in the inclusion may be obtained as

1+KS
Ei(r) = - §EFE* f p(ro)dro _ (13)
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where B and k, are the elastic constants, and AS is the cross-~sectional
area of the inclusion corresponding to unit thickness of the medium in z-
direction. From the expression of Epp given by the Hooke's law

3~k

_ 1+
“rr = B Orr " Tie Yoo (14)

from {9) and the corresponding stress transformation it can be shown that

d
p(r,)
eppr(18) = ZW(TEK)U f r0-3 g - (15)

C

Similarly, from (3), (4) and (14) we find

b

carr(r9) = B [ [6,(r)g(t) + H_(r,t)n(t) Tt (16)
d
where

G (r,t) = ;T%%Ey-gg'{cosze- %ig-sinze)(t-r €0s8) x

x[(t-rcose)2~-r2sin2g] + (sin2e- %if cos2e) x

x{t-rcose)[3r2sin2e + (t-rcose)2]

4

L T sin28 r sine{r2sin2e-(t-rcoss)2]; , (17)
H {r,t) = 2y Jq5{(cosze- 3k sin?s)r sine[r2sin2e
£ m{1+k) R T+
+ 3(t-rcose)}2] + (sin2¢- %ﬁf-cosze)r sing x
x[r2sin2g~{t-r2cos26)2] + T%E sin2eo x
x(t-rcose)[(t-rcoss)? - r2sin2e] , (18)
R2 = (t-r cos8)2 + r2sin2s . (19)
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Finally, by substituting from (3), (4), (9), (12}, (13), (15) and
(16) into (11), the integral equations of the problem may be obtained as

follows:
b d (A,'-A," )coso+(B,'-B,' )sin®
1( glt)dt , 1 1% 1702 (r Ydr = - L =
T t-x 4yp [(x-rocose)2+(rosiné)2]2 Piryidry 2u Jyy ?
a c
(a<x<b) ,
b d (A,'cose+B,'sing)p(r )
1( hit)dt . 1 3 3 o) oo _ Ik =
™ t-x 4wy [(x-rc0s8) 7+ (r 5Tn6) 21 o 20 xy
a c
(a<x<b) ,
b
o o ° 1 ‘ p(ro)
‘-,rf 6_(r,t)g(t)dt + =2 f H_(r,t)h(E)dt + '-;f L
a a c
+ Lo dH(r -r)p(r Ydr_ = - Eg-[(cosze- 2K in2g)o”
m o MIRIT, /AT, w T+ Txx
c
+ (sin2e- §15-cosze)c“ P sin2e], (c<r<d) (20a-c)
T+x : yy 1+x “xy i :
where ( )
T+x
- r{1+c)2 - 4 S
o e s Y W . (21a,b)
From the definition of g and h given by (2) it follows that
f g(t)dt = 0 , J h(t)dt = 0 . (222,b)
a a
Also, the static equilibrium of the inclusion requires that
d
f p(r)dr = 0 . (23)
c
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Thus, the system of singular integral equations must be solved under the
conditions (22} and (23). From the function-theoretic examination of the
integral equations (20) it can be shown that the unknown functions g, h and
p are of the following form [2]:

F,(t) Fy(t) Falr)

(t) = 2 h(t) 1 1 2 ( ) = 1 1
T o) ()t bt - O (dr)E(ro)?

(24a-c)

where F1, F2 and F3 are bounded functions, The solution of (20) subject to
(22) and (23) may easily be obtained by using the numerical method described
in [3].

3. Stress Singularities

After solving (20) the Modes I and II stress intensity factors k} and
k2 at the crack tips x=a and x=b, y=0 which are defined by

Tim V?TE_BT'U ( 0) ,

k1(a) = Tim v2(a-x) o..{x,0) , k](b)
X4 Yy X-b

kz(a) = 1im vZ{a-x) Oy ,0) kz(b) = Tim v2{x-b) T, ( ,

X4 X->b
, (25a~-d)
may be obtained as follows:
k,(a) = -Ji-]1m 2Tx=al g(x)  ki(b) = - 2 Tim /Z(b=X) g(x) ,
1 T+ 1 T4k b
= 2u _ 21 g
k,(a) = 11m vZ2(x-a) h(x) , k,{(b) = = 5E- 1im v2(B-x) h(x) .
2 T+« 2 T+¢ b :
(26a-d)

The constants k] and kp are related to the asymptotic stress fields near
the crack tips through the well-known expressions (see, for example, [4]
and [5]). However, not so well-known is the asymptotic behavior of the
stress fields near the inclusions having sharp edges. From (24c) and (7d)
it is seen that the shear stress T g has a square-root singularity at the .
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tip of the inclusion. However, if one is interested in crack initiation
around such singular points, one needs to know the direction and the magni-
tude of the maximum local cleavage stress. This, in turn, requires the
investigation of the complete asymptotic stress field near the singular
points. By using the basic form of the solution of the related density
functions given by (24) and going back to the original stress expressions,
the asymptotic stress fields may be developed by following the general
techniques described in, for example, [6] or [7].

In an elastic medium containing an elastic line inclusion under plane
strain or generalized plane stress conditions, the asymptotic analysis gives
the near tip stress field as follows [7](*):

o,.(r,8) = JiL—cos s
AR

k

2. 3 1 8

cyXX(V‘:’B) - k=1 }[z_r_COS 2°

k
oxy(r,e) = - %72]: sin -g- R (27a-c)

r

where X,y and r,8 are the standard rectanguilar and polar coordinates, the
origin of coordinate axes is at the inclusion tip and the inclusion lies
along the negative x axis or along 8=v, r>0. Equations (27) suggest that
similar to crack problems one may define a (Mode I) "stress intensity factor”
in terms of the (tensile) cleavage stress as follows:

ke = lim v2r o_ (r,0) . (28)
1 r-0 ¥y

From (7) by observing that (at the right end of the inclusion)

cxy(rs+ﬂ) - cxy(rs~w) = -p(r) , (29)

(*) Note the misprints in (4.6) of [7].
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in terms of the function p(x) ky may be expressed as

ky = -Tim %—% /7 plr) . (30)
r-{

It should be noted that in the case of flexible elastic Tine inclusians
there is no antisymmetric singular stress field. For example, in a plane
under pure shear (c:y) parallel to the inclusion, the perturbed stress field
is zero. Physically this of course follows from the fact that the normal
strain (exx) parallel to the plane of shear is zero.

Similarly, for a rigid line inclusion (i.e., for an inclusion having
infinite bending as well as tensile stiffness) it can be shown that for
small values of r the asymptotic stress field is given by

= 1 .5_ kT] . i

s 3+l< 3 3=k .9

~ 1 - K+] _6_
oxy(r',e) = ——sz( T Kq sin 2 + k, cos 2)

Again, the stress intensity factors k] and k2 are defined in terms of the
tensile and shear cleavage stresses at 6=0 plane as follows:

ke = 1im V?n'c (r 0) ,

= 1im v2v o_ (r,0) . (32a,b)
r-0 Xy

1 0

K

As in the crack problems, the antiplane shear component of the asymp-
totic stress field around flat elastic and rigid inclusions is uncoupled.
Defining a Mode III stress intensity factor by

kg = 1im V2F o (r,0) , . (33)
r-{0 '

the asymptotic stress field may be expressed as
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k

~ 3 8
o, (r,e) = ——cos = ,
X2 2
yer (34a,b)
k
=_3 a8

where again the inclusion lies along e=n p]ane(*).

4, Crack-Inclusion Intersection

Analytically as well as from a practical viewpoint intersection of
cracks and inclusions presents some interesting problems. In these problems
the point of intersection is a point of irregular singularity with a power
other than 1/2. Even though the general intersection problems for an arbi-
trary value of 6 may be treated in a relatively strajghtforward manner, in
this paper only some special cases will be considered.

4.1 The case of 8 = %-, a=0,¢c=0

In this case the system of singular integral equations (20) becomes

b 2
1 t 1 ¢t Cotx
;‘J %é;g‘dt + %‘[ Iz - (x2+t2)2]P(t)dt = fi(x) , (0<x<b) ,

0 0
b d .,

'I hgt) '] C X C-IX

;’f g 9t * ;‘f [(x§+t2)z" cZrezip(tldt = £,(x) , (O<wx<b) ,
0 0

(*)Note that in this case if the remote stress is decomposed into o§, and
G;z’ the perturbed stress field due to G;z would be zero, For the cleavage
plane & the shear cleavage stress may be written as ceo(r,e)=cxzsinewcyzcose=
-(k3/¢§F)sin(e/2), 8, = &+x/2, indicating that 6=Fr/2 is the maximum cleavage

planes.
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b

1 c3t c4tr2 1 C,r c4rt2
F’f Lgzirz * (t4+r4)2]g(t)dt ¥ E’J [tz57 - Ezrrryzin(t)dt
o} Q
d . d
+ 1 B8 gt + 3 [eorip(e)de = f5(r) , (0crea), (35a-c)
o} 0
where
= 3t =1 = ulx-d
S T Pl BRI PR
(36)
oot o r() (Theg)u
4 k * b 4Asl<us

and f1, f2 and f3 are known input functions (see, for example, the right
hand side of (20)). Note that aside from the simple Cauchy kernels, (35)
has kernels which become unbounded as the variables (t,x,r) approach the
point of irregular singularity (x=0=t=r). Thus, defining the unknown func-
tions by

() = =L () = 2 iy = )
] £%(b-t) } bet) P2 " t%(c-t)®3 ’
0<Re(a,ek)<1, (k=1,2,3) , (37a-c)

and by using the function-theoretic technique described in [3], the charac-
teristic equations for 81s Bys B4 and o may be obtained as follows:

cotmgy, =0, {(k = 1,2,3) (38)
by cos?na - (b2+8u-b3a2)cos2 %%
~(bg-bgotbya?)sin? =0 , (39)

where
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o
I

1= 8/ {1+x) , b2 = 2(3+c) (k=1)/{x*1) ,
(40)

by = 8/(xt+1) b4 = 2(3-«} , br = 16/(1+k)

5
Note that the properties of the inclusion (as expressed by the constant Cg
in (36)) enter the integral equations (35) only through a Fredholim kernel
and, therefore, have no influence on the singular behavior of the solution,
and o is dependent on « or on the Poisson's ratio of the medium only. From
(38) it is seen that the acceptable roots are B = 0.5, (k = 1,2,3). The

numerical examination of (39) indicates that in this special case of 8 = &

2
we have 0.5<a<1, meaning that the stress state at r=0=x has a stronger singu-

larity than the conventional crack tip singularity of 1/v/r. This may be

due to the fact that in this problem two singular stress fields are combined
at r=0. Also, it turns out that for O<v<5 the characteristic equation (39)
has two roots in O<Re(a)<1 and both are real. These roots are given in
Table 1 for various values of the Poisson's ratio.

TabTe 1. Powers of stress singularity « for a crack and
an inclusion: a =0, ¢ =0, ¢ = «/2 (Fig. 1).
plane strain plane stress
’ *1 %2 “ %2
0.0 0.63627093 0 0.63627093 0
0.1 0.64489401 | 0.09571474 0.64408581 0.08990596
0.2 0.65405762 0.74825371 0.65095281 0.13243000
0.3 0.66352760 0.18953334 0.65695651 0.16176440
0.4 0.67270080 0.22567265 0.66217253 0.18404447
0.5 0.67996342 0.26027940 0.66666667 0.20796313

The stress intensity factors at the crack tip x=b, y=0 and at the end
of the inclusion x=0, y=d may be obtained by using the relations (26} and
(30). At the singular point x=0, y=0 the following useful stress intensity
factors are defined;
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k. (0) = 1im vZ x* ¢ (-0,0) ,

1 x>0 'yy (41a,b)
ko(0) = Tim v2 x* o_ (-0,0) ,

2 X0 Xy

for the crack, and

(0) = Tin 22 y® p(0,+0) (42)
y>+0

for the inclusion.

4.2 The Special Case of 8 = 32’- ,c=-d, a=0.

In this case the problem is further simplified by assuming "symmetric"
external loads (for example, c:y=0 in (20)). Thus, the plane of the crack
is a plane of symmetry, h(x) = 0, and (20) would reduce to

b
1 g(t) 2 cq.t Cotx
_[ £-x dt +'_j [t"’:l+x2 - (t§+x2)2]p(t)dt = f1(x), (O<x<b) ,

T kL
0 0
b 2 d
1f oS3t | G 1 (1 .1
- J [t2+y2'+ (t2+y2)2]9(t)dt + ;‘f =y ¥ty
o} 0
+ cgh(t-y)Ip(t)dt = fa(y) , (O<y<d) ., (43a,b)

where, again the input functions f1 and f3 are known and, for example, are
= 0) and the constants Cya-eesCg are defined by (36).

=]

given in (20) (with Oy

Y
By defining
() = —1 (t) —-—-g-Gz(t)l 0<Re( )<1 (44)
g =T, P = s U<he(asBysBs)<
£%(b-t)P1 t%(d-t)"2 B2
from (43) it may be shown that
cotg, = 0 , (k=1,2) , (45)
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c05wa-(c3 + %-843)(C] - §-c2a) =0 . (46)

From (45) it is seen that 8k = 0.5. A close examination of (46) shows that
it has only one root for which O<Re(a)<l. Furthermore, this root turns out
to be real and highly dependent on the Poisson's ratio (see Table 2). The
characteristic equation (46) and the roots given in Table 2 are identical
to those found in [8] where an infinitely long stringer in cracked plate
was considered.

Table 2. Power of stress singularity o at the crack-inclusion
intersection for 6=n/2, c=-d, a=0 and for symmetric

loading.
o
v plane strain plane stress

0 0 0
0.1 (.10964561 0.10263043
0.2 0.17432137 0.15468088
0.3 0.22678790 0.19132495
0.4 0.27392547 0.21972274
0.5 0.31955800 0.24288552

In this problem, too, the stress intensity factors for the crack and
the inclusion may be defined as in (41) and (42).

4.3 The Special Case of e=r, a=0, ¢c=0

In this case the crack and the inclusion are on the x axis and occupy
(y=0, O<x<b) and (y=0, -d<x<0), respectively. Restricting our attention
again to the symmetric loading for which h(x) = 0 and observing that for
the variables along the inclusion r = -x, re = -ts p(ro) = -px(t), the
integral equations of the problem may be expressed as
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] ° t 1 k-1 ° px(t)
;-f L) g . 1 f dt = £,(x) » (0<x<b)
0 -d

b 0
c p.(t) c
__QJS_(L)_dt-i-lJ _X___dt____f’_[
™ t-x T T

0 ~d -d

p (t)dt = fa(x)s (-d<x<0) (47a,b)

where the constants €3 and cg are defined by (36) and the known functions
fi and f; are given by the right hand sides of (20a) and (20c) (with a:y=0).
If we now let

(t) = —1® (t) = — 2t 0<Re( )<1 (48)
g ta(b-t)sl pX (-t)a(t-{-d)az » a 0’-981:32 s

from (47) the characteristic equations for «, 8, and B, may be obtained as
follows:

cotwsk =0 , (k=1,2), (49}
1.2

cos2wa = - (5—1) . (50)
2V

Equation (49) again gives By = 8, = 0.5. From (50) it may easily be seen
that o is complex and its value for which O<Re(a)<1 is found to be

o= 1eidegs | (51)

This value of o turns out to be identical to the power of singularity for a
perfectly rough rigid stamp with a sharp corner pressed against an elastic
half plane having « as an elastic constant [2] (e.g., « = 3~4v for the plane
strain case). At first this result may be somewhat unexpected. However,
upon closer examination of the problem first, from (47b) it may be seen
that the elasticity of the inclusion (i.e., the term containing the constant
c5) has no effect on the nature of the stress singularity. Thus, if one
assumes the inclusion to be inextensible, for the symmetric problem under
consideration it can be shown that the conditions in the neighborhood of the
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crack tip x=0, y=0, for example, for y<0Q, are identical to the conditions
around the corner of the stamp in the elastic half plane occupying y<O0.

It, therefore, appears that for the elastic inclusion collinear with a
crack, the stress state around the common end point would have the standard
complex singularity found in the rigid stamp problem.

5. The Results

The crack-inclusion problem described in previous sections is solved
for a uniform stress state o.., (i,j=x,y), away from the crack-inclusion

i3 .
region. For simplicity the results are obtained by assuming one stress com-
ponent (cxx Iy or o y) to be nonzero at a time. The solution for a

more general Toading may then be cbtained by superposition. Even though

the stress state everywhere in the plane can be calculated after solving the
integral equations (e.g., {20)) and determining the density functions g,

h, and p, only the stress intensity factors are given in this section. For
nonintersecting cracks and inclusions the stress intensity factors defined
by (26) and (28) are normalized as follows:

' K. {x:
ki(xj)=_*—l-(f§—)— (1=(1,2)5 x;=(a:b); o3=(d}

oy (B-al/2Z Yyt

a

o)) (52)

“

for the crack and

1 k (r-)

=30 = 1x ® &SNz
k1(rj) ko . s kO ETszy ca c ’
(rj = (C,d) s Ga = (ny: UXX’ ny)) (53)

for the inclusion.

Referring to Figure 1, for c=a, d=b, and (b/a)=5 the effect of the angle
8 on the stress intensity factors is shown in Table 3. These results are
given for two values of the stiffness parameter vy defined by (21), namely
v=0 (the inextensible inclusion) and vy=10.
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Table 3. Normalized stress intensity factors in a plane containing a
crack and an inclusion subjected to a uniform stress state c?-
away from the crack-inclusion region (c=a,d=b,a=b/5,Fig. 1). J

8

v | k' 1° 30° 60° 90° 120° 150° 180°

(a) c;y F0, c:x =0, O:y =0
k{(a) .8905 | 1.0083 | 1.0298 | 1.0049 .9912¢ 1.0001 1.0076
ky(a) | -.2152 | -.0098 | -.0661 | -.0830| -.0367| .0004 | .0000
0 k;(b} | 1.0221 .9967 .9570 .9617. .9857| 1.0001 1.0033

ky(b) | .4327 | -.0065 | -.0002 | .0007| -.0001| .0001 | .0000
kye) | .9570 | -.3273 [-1.1324 |-1.3970| -.8879| -.0310 | .3850
ki(d) | .8012 | .1552 | -.6989 [-1.1134]| -.7336] -.0428 | .4320

k,(a) .9691 .9999 | 1.0016 .9988 .9978| 1.0000 | 1.0014
ké(a) -.0517 .0047 | -.0136 | ~.0153}{ -.0066f .0001 .0000
10 ki(b) .9862 . 9997 .9919 .9928 .9973¢ 1.0000 | 1.0006
ka(b) .0742 | -.0020 .0001 .0005 .0002| .0000 .0000
ky(c) 2619 | -.1277 | -.3979 | -.4735] -.2989} -.0220 .1106

et

ki(d) | -.0269 1001 | -.1848 | -.3269| -.2177] .0171 .1354

(b) cxx#osc =0,0'xy=0

ki(a) 1237 .0704 | ~-.0034 | -.0034 .0008} -.0117 | -.0203
ky(a) .2355 .0122 .0062 .0310 .0036] -.0161 .0000
ki{b) | -.0806 .0365 .0036 .0142 .0014} -.0072 | -.0086
ko{b) | -.5321 .0140 .0001 .0001 .0000} -.0003 .0000
ki(c) -1.1068 .6949 .0766 . 4620 .0774} -.6988 |[-1.0877
ky(d) {-1.4785 6841 | - .0772 | .4644} ..0776| -.6994 | -.0884

ki(a) | .0385 | .0106 | -.0005 | -.0001| .0002| -.0023 | -.0038
ki(a) | .0587 | .0004 | .00%0 | .0056| .0006| .0029 | .0000
k!(b) | -.0252 | -.0068 | .0007 | .0026| .0003( -.0013 | -.0016
10 les(b) | -.1128 | -.0030 | .0000 | .0000| .0000| .0000 | .0000
ki(c) | -.3440 | -.2152 | .0239 | .1432| -.0239| -.2151 | -.3346
ki(d) | -.3885 | -.2154 | .0239 | .1434| .0239| -.2151 | -.3347
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Table 3 - cont.

vy | k' i° 30° 60° 90° 120° 150° 180°

() Syy 0,0, =0,0., =20

-.6916 | -.5492 | -.3731 | .0557 .4513 | -.4316 | .0000
1.1639 | -.4179 | -.4533 }|~-.0342 .3912 | -.4029 | .0000

ki(a) .1289 .1428 .0669 | .0028 .0134 .0223 {0.0000
ks(a)| 1.0849 | 1.0180 .9054 | .9950 | 1.0599 | 1.0304 {1.0000
0 ki (b) .1641 | -.0754 | -.0670 {-.0021 | 0.0231 .0136 {0.0000
ks(b)| 1.4055 .9685 .9974 | .9995 | 1.0005 | 1.0005 |1.0000
ki(c)| -1.0246 |-1.6348 |-1.3085 | .0533 | 1.3767 { 1.3606 }0.0000
ki(d)| 2.0539 [-1.3808 |-1.4661 [-.1076 | 1.2735 3117 | .00G0
ki(a) .0858 .0198 .0100 | .0010 .0032 .0043 | .0000
ky(a)| 1.0527 .9967 .9826 | .9992 ! 1.0108 | 1.0054 |1.0000
10 ki(b) .1044 | -.0140 | -.0121 |-.0003 .0043 .0025 | .000C
ko(b)| 1.1662 .9929 .9994 | .9998 .9999 { 1.0000 {1.0000

)

)
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Some sample results for an inclusion coTlinear with a crack (i.e,
for 8=0) are given in Table 4. Note that for this configuration under the

Table 4. Normalized stress intensity factors for an inclusion
collinear with a crack. Relative dimensions: =0,
d-c = b-a, ¢ = b+s. Applied loads: o%., (i,j=x,y)
(Fig. 1). H

o ! s = {b-a)/100 s = (b-a)/2
i
y=20 y = 10 y=90 y =10
ki(a) | -0.0202 | -0.0040 | -0.0019 | -0.0004
. ki(b) | -0.1338 | -0.0300 | -0.0027 | -0.0005
X ki(e) -1.0482 -0.3296 -1.0889 -0.3347
ki{d) | -1.0845 | -0.3345 | -1.0889 | -0.3347
ki(a) 1.0047 1.0006 1.0008 1.0002
. k!(b) 1.0200 0.9987 1.0011 1.0002
%y | kifc) | -0.0861 | -0.1571 0.4559 0.1397
k{(d) 0.3841 0.1273 0.4590 0.1413

loads shown in the table, that is, for ¢ and c:x, because of symmetry
the Mode II stress intensity factors kz(a) and kz(b) are zero. Also, for
the shear loading c:y it is found that kj(a) = 1, ky(b) = 1 and k,(a) =
k1(b) = k1(c) = kl(d) = 0. This follows from the fact that in the cracked
plane under pure shear c:& the strain component sxx(x,O) is zero and

hence an inextensible inclusion on the x axis would have no effect on the
stress distribution.

Another special configuration is an inclusion parallel to the crack
for which Table 5 shows some sample results. In the two special con-
figurations considered in Tables 4 and 5 the effect of the crack-inclusion
interaction on the stress intensity factors does not seem to be very sig-
nificant.

The results for an elastic medium for which xz plane is a plane of

symmetry with respect to the crack-inclusion geometry as well as the
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Table 5. Normalized stress intensity factors in a plane containing an
inclusion parallel and equal in length to a crack, both symmetri-
cally located with respect to the y axis. The crack is along the
x axis and H is the distance between the crack and the inclu-
sion in y direction (Fig. 1).

o2, " H = b-a H = 10(b-2)
3o Y =0 ¥ = 10 Y = 0 Y = 10
ki(a)=k}(b) -0.0182 -0.0070 -0.0007 -0,0002
O ks(a)=-kj(b) 0.0281 -0.0011 0.0006 0.0000
ki{c)=ki(d) -1.0834 -1.0887 -0.0683 -0.0683
ki (a)=ki(b) 1.0063 1.0028 1.0004 1.0007
o;y ki{a)==k5(b) | -0.0060 0.0004 -0.0001 0.0000
ki(c)=k}(d) 0.3917 | = 0.4387 0.0411 0.0276
ki(a)=-kj(b) | -0.0042 0.0000 -0.0002 0.0000
c:y ki{a)=ki(b) 0.9965 1.0000 0.9998 1.0000
ki(c) -0.1131 0.0033 -0.0123 0.0004
k;(d) 0.1129 -0.0052 0.0123 -0.0006
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applied loads are given in Figures 2-12. In this example the crack is per;
pendicular to the inclusion and the external Toad is a uniform tension par-
allel or perpendicular to the crack and away from the crack-inclusion region
(see the insert in the figures). The results shown in the fiqures are self-
explanatory. However, the solution also has some unusual features among
which, for example, one may mention the tendency of the crack tip stress
intensity factors k'(a) and k'(b) to "peaking" as v decreases and as d/2
increases (where 2d and 22 are the lengths of the inclusion and the crack,
respectively and vy = 0 corresponds to an inextensible inclusion).

The results for the limiting case of the crack touching the inclusion
are given in Figures 8-12. In this case at the singular point x=0, y=0
the stress intensity factor k1(a) and the normalized stress intensity factor
ki(a) are defined by

k}(a) = lig_/?-xa?yy(xso) ] (X < 0) ] (54)
j(a) = K(a) /0Ty /T (i=(x,y)3 27b/2) | (55)

where the power of singularity « is given in Table 2. The results shown
in Figures 8-12 are obtained for v = 0.3.

The stress intensity factors for the other symmetric crack inclusion
problem, namely for the problem in which y axis is the Tine of symmetry
with regard to loading and geometry are given in Figures 13-28. In this
problem a=-%, b=2, d>c>0 and the external load is either c;y or G:x (see the
insert in Figure 13). Note that the figures show the crack tip stress
intensity factors at x=a=-2 and k1(b)=k1(a), k2(b)=-k2(a). Generally the
magnitude of k](a) and kz(a) seem to increase with increasing length and
stiffness of the inclusion (i.e., with increasing (d-c)/22 and decreasing
vy = p(1+KS)/ASuS(1+K), where B is the shear modulus of the inclusion).
Also, as expected, k1(c) and k](d) describing the intensity of the stress
field at inclusion ends tend to increase as the stiffness of the inclusion
increases. However, their dependence on the relative length parameters is
somewhat more complicated (see, for example, Figure 16 for change in beha-
vior of the variation of k1(d) at (d-c)/22=5). Figures 13-20 show the effect
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of the inclusion length for constant crack length 22 and constant distance
¢ (Figure 13). The effect of the distance ¢ for constant inclusion and
crack lengths is shown in Figures 13-28.

The results of the nonsymmetric problem showing the effect of the rela-
tive Tocation of the inclusion are shown in Table 6. Referring to Figure 1,
in these calculations it is assumed that o = %—, d-¢ = 2¢, ¢/22 = 0.1 and
a/2e is variable.

Finally, the stress intensity factors for the crack-inclusion inter-
section problem considered in Section 4.7 are given in Figures 29-43.
The normalized stress intensity factors shown in these figures are defined
by (see (41), (52) and (53))

Kep = Tim ) .c (x,0) ,
18 R o4
13
v ]
kZB = — — 11m v2(x-b) o (x 0) ,
T: 74
1]
1 1 . o
Kyp = Tim V2 x* ¢, (-0,0) ,
1A as VL X+=0 Yy
1]
| . o (56)
Koyp = Tim V2 x (-0,0) ,
2A c?j/f X+=0 XY

kg g—- lim 27d) o (0.y)
o y-~d

ko:é%%ﬁ"::i 77z

In this case too, generally the magnitude of the stress intensity factors
increases with increasing length and stiffness of the inclusion. However,
since the crack and the inclusion are located in each other's "shadow",
the relative dimensions seem to have considerable influence on the vari-
ation as well as the magnitude of the stress intensity factors.
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Table 6. The effect of the relative Tocation of inclusion on the stress
intensity factors; & = #/2, (d-c)/22 = T, ¢/22 = 0.1 (Figure 1).

ij g%- k{(a) ky(a) k1(b) ky(b) ki(e) ks (d)
0.1 | -0.0202 | 0.0490 | 0.0167 | 0.0003 | 0.4450 | 0.4471
0.0 { -0.1033 | 0.0425 | 0.0133 | 0.0039 | 0.4192 | 0.4402
oy |-0.1 | -0.0849 | -0.0044 | 0.0076 | 0.0081 | 0.3538 | 0.4285
-0.3 | -0.0349 | -0.0308 | 0.0023 | 0.0060 | 0.3348 | 0.4163
-0.5 | -0.0363 | -0.0114 | -0.0363 | 0.0114 | 0.3195 | 0.4709
+0.1 1.0458 | -0.1396 | 0.9545 | 0.0012 | -1.5217 | -1.0543
0.0 1.2652 | -0.1090 | 0.9667 | -0.0078 | -1.2922 | -0.9497
a;y -0.1 1.1548 | 0.0064 | 0.9865 | -0.0150 | -0.5345 | -0.8136
-0.3 1.0448 | 0.0294 | 1.0013 | -0.0102 | ~0.2308 | -0.6378
-0.5 1.0313 | 0.0129 | 1.0313 | -0.0129 | -0.1959 | -0.580]
0.1 0.0098 | 0.9905 | -0.0033 | 0.9992 | 0.1050 | -0.1338
0.0 0.0493 | 0.9796 | -0.0065 | 0.9983 | -0.1734 | -0.1675
c:y -0.1 0.0463 | 1.0019 | -0.0041 | 0.9960 | -0.1054 | -0.1648
-0.3 0.0123 | 1.0066 | -0.0007 | 0.9971 | -0.0236 | -0.0977
-0.5 0 1 0 1 0 0
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Figure 2. The effect of the stiffness and the relative length of the
inclusion on the normalized stress intensity factor ky(a);

Syy # 0, Tyx = 0, G;y =0; a/2 = 0.5, v = 0.3.
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Figure 4. Normalized stress intensity factor at the inclusion end y=d;
§;y # 0, G;X = G:y = 0, a/g = 0.5, v = 0.3.
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Figure 5. Normahzed stress 1ntens1ty factor at the crack tip x=a; Gxx 70,

yy = xy =0, a/¢2 = 0.5, v = 0.3.
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Figlia;e 7. Normalized stress intensity factor at the inclusion end y=d;
U;x # 0, O';y = O';'y =0, a/¢ = 0.5, v = 0.3.
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Figure 8. Normahzed stress mtens1ty factor at the crack tip x=a=0,
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Figure 9. Normalized stress intensity factor at the crack tip x=b,
U;y # 0, c;x = o;y =0, v=20.3,a =0,
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Figure 10. Normalized stress intensity factor at the inclusion end y=d,

cyyiﬁO,cxx=cxy=O,\)=0.3,a=0.
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Figure 12. ‘ﬂbfméffzedéfre§sﬂintensity facfor at the inclusion end y=d;

Tix #0, ny = UXY =0, a=90, v=0.3.
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‘Figure 14. Mode II stress intensity factor at the crack tip x=a=-1; U°°y #
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Stress 1ntens1ty factor at the inclusion end y=¢; o # 0,
Tex = Oxy =05 0 =1/2, c=0.22, v=0.3, b=qe. ¥
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Stress intensity factor at the inclusion end y=d; c“y # 0,

c:x=c;y=0,u=0.3, 8 =nf2, c =0.29,b=4g =713
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Figure 17. Mode I stress intensity factor at the crack tip x=a=-1;

Tux # 0, cyy = c&y =0,8=qx/2, v=0.3,c=0.22, b= zf
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Figure 18.. Mode II stress intensity factor at the crack tip x=a=-g;

c;x 0, cyy = ny =0, v=0.3,06=a/2, c=0.22,b = 2.
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Figure 19.

Stress intensity factor at the inclusion endy = ¢c; oF # 0,
G‘cyay=0‘°x°y=03\)=0-3ac=o.2£’8=1T/2’b=2____a’
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Figure 20. Stress intensity factor at the inclusion end
c;& = U;& =0, v=0.3,8=x/2,c=0.2%, b

0
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FiguréﬁléI. ModeIstress 7iﬁ£éns1'ty factor af the crack tip x = a = -¢;
o;y #0, o;x = ny =0,8=n/2, v=0.3, dc=22,b=23.
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Figure 22. ModeII stress1ntens1tyfactor at the crack tip x = a = -3

cyy#(}, cr;’x=cr;’y =0, v=20,3, 6 = /2, d=c = 22, b = 2.
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Stress intensity factor at the inclusion end y = ¢; o=, # 0,

® w LT = = -C = = = g0y
Sxx = Oxy = 0»v=20.3, 8 =n/2, dc=2¢, b=g=-al
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Figure 24.  Stress intensity factor at the inclusion end y=d; U?g # 0,
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Figure 25. Mode I stress intensity factor at the crack tip x = a = -p;
c;’x;ﬁO, c;y=cr;y=0,v=0.3,e=7r/2,b=2, d-c = 2 g
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Figure 27.  Stress intensity factor at the inclusion end y = ¢; ¢ # 0,
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Figure 28.  Stress intensity factor at the inclusion end y =d; a7 #0,
Oyy = Oy S0 v =0.3, 6 =1/2, d-c =2z, b=y = -3
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Figure 29. Normalized stress intensity factor for the inclusion-crack
intersection problem for'which 8 =4/2,a=0,b=22,c¢c=0,

d/22 and vy variables. Kip for op, # 0, U;y = 0, c;y = 0.
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Figure 30. Normalized stress-intensity factor for the inclusion-crack
intersection problem for which L8 /2, a = 0 b =22, ¢ = 0,
d/2% and vy variables. 2A’ o 0, ¢ = = 0.
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Figure 31. Normahzed stress 1ntens1ty factor for' the inclusion-crack
intersection problem for wh1ch e =n/2,a=0,b=22,¢c=0,
d/2% and vy variables. kTB s 7! 0.
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Figure 32. Normalized stress intensity factor for the inclusion-crack

intersection problem for which § = w/2, a=0,b=28 c=0,
d/22 and v variab1es. k2B s G;x # 0.
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Figure 33. Normalized stress inténsity factor for the inclusion-crack
intersection problem for which 6 = #/2, a =0, b =22, c = 0,
d/2% and vy variables. k1D s c;x =
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Figure 34. Normalized stress intensity factor for the inclusion-crack

intersection problem for which ¢ = n/2, a =0, b =22, c = 0,
d/22 and v variables. k1A s c;y # 0.
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Figure 35. Normalized stress intensity factor for the inclusion-crack
‘ intersection problem for which o = n/2, a = 0, b=22c=0,
d/2% and v variables. kZA s c;’y £ 0.
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Figure 36. Normalized stress intensity factor for the inclusion-crack
intersection problem for which 6 = /2, a =0, b = 2¢, ¢ = 0,
d/2% and y variables. k'IB s o;y # 0.
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Figure 37 Norma]uiuzvéd:-t:.r.'éss fntensi'ty rfactor:- for the inclusion-crack
intersection problem for which 6 = n/2, a =0, b =2z, c = 0,
d/22 and y variables. kZB s c;y # 0.
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Figure 38. Normalized stress intené{ty-faétdr fof fhe inclusion-crack
intersection problem for which ¢ = /2, 2 =0, b =22, ¢ = 0,

-]

d/2% and y variables. k1D > Oy # 0.
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Figure 39. Normalized stress intensity factor for the inclusion-crack
intersection problem for which e = «/2, a=0,b =22, ¢ = 0,
d/22 and y variables. k]A ’ c;y £ 0.
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“I;"ihgu-i"e 40. Normalized stress intensi ty factor for the inclusion-crack
intersection problem for which 8 = »/2, a = 0, b =22, ¢ = 0,
d/22 and vy variables. kZA s c;y # 0.
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Fiéure 41. Normalized stress intensity factor for the inclusion-crack
intersection problem for which ¢ = #/2, a =0, b = 22, ¢ = 0,
d/2% and vy variables. k.IB s c;:y # 0.
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Figure 42. Normalized stress intensity factor for the inclusion-crack
intersection problem for which 6 = 7/2, a = 0, b = 22, ¢ =0,

d/2s and vy variables. kZB ) °xy # 0.
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Figure 43. Normalized stress intensity factor for the inclusion-crack
intersection problem for which 5 = »/2, a =0, b = 22, ¢ = 0,
d/22 and v variables. k1D , c;y £ 0.
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APPENDIX D

FURTHER RESULTS ON CRACK~-INCLUSION
INTERACTION PROBLEM

Liu Xue-Hui and F. Erdogan

1. Introduction

The general formulation of the crack-inclusion interaction problem was
given in Appendix C of this report. The general problem considered in
Appendix C is described in Fig. 1. The inclusion-crack intersection
problems studied in Appendix C included the cases of the common end points
(i.e., a=0, ¢=0, Fig. 1) and the crack terminating at the inclusion.

The intersection prdblem in which the inclusion end terminates at the
crack was not studied. The special case of 90 degree angle of intersection
is shown in Fig. 2 and is studied in this report.

2. The Formulation

The formulation of the problem is identical to that given in [1], except
that in this case we have to consider two separate cracks along (-a<x<0, y=0)
and (O<x<b, y=0). The reason for this is that at (x=0, y=+0) the stress state
is expected to be singular with a power different than 1/2 and (-a,0), (0,b)
and (0,d) must be treated as three separate 1ines of displacement or stress
discontinuity. To formulate the problem we define the following unknown func-
tions:

ax Ly (6:40)-u (x,-0)] = g;(x) , O<xeb

% [ux(X,+0)'uX(x,‘0)] = h.l(x) R O<x<b )
(Ta-e)
o Ly (x:40)-u, (x,-0)1 = gy(x) , -a<x<0 ,

3% LU (2 %0)-Uy (x,-0)T = hy(x) , -a<x<0

p(y): distributed body force simulating the inclusion, O<y<d .
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The Green's functions for the dislocations g and h and the concentrated body
force p were given in [1]. The integral equations for the unknown functions
defined in (1) are obtained from the boundary conditions on the crack surfaces
and the displacement compatibility condition atong the stiffener. These con-
ditions may be expressed as (Fig. 2)

c1dyy(x,0) + szyy(X,O) + cpyy(x,O) + Uayy(x’o) = 0, O<x<b ,
Udey(x’O) + Udey(X,O) + pry(X,O) + caxy(x,O) = 0, Owx<b ,
Ty (X200 + 954, (%,0) + 0,0 (x,0) + Tayy(X:0) = 0, -a<x<0 , (2a-e)
G]dxy(x’o) + Udey(X,O) + cpxy(x,O) + caxy(x,O) = 0, -a<x<0 ,

1y (0¥) * 340 (0] + e (0y) * €, (0.9) = e (y), Oey<d,
where Gidyy’ Uidxy and ®idyy are the relevant stress and strain components due
to the dislocation pairs g; and h, (i=1,2), %oyy® Opxy and Spyy 2T€ due to the
concentrated body force p, Cayy? Gaxy and any are the applied stress and strain
components and es(y) is the strain in the inclusion. If the stress state away
from the crack-inclusion region is given by c?}, (1,3=x,y), then the applied

stress and strain components are

(5] [=.)

cayy(x,O) = oy caxy(x,O) = Iy

T

Cayy(0s¥) = 5= [- 50 o, + oyyd s (3a-c)

where u is the shear modulus and «=3-4v for plane strain and «=(3-v)/{1+v)
for plane stress. By observing that the inclusion is under a Tongitudinal dis-
tributed force -p(y), the strain in the inclusion may be expressed as

1+KS
) = - g | p (e (4)
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where Kg and ug are the elastic constants and AS is the cross-sectional area
of the inclusion per unit thickness in z direction. The expressions for all
the remaining terms are given in [1]. Thus, by using the kernels developed in

[1]1, the system of equations (2) may be expressed as follows:

b 0 d
2 g (t)dt gp(t)dt 1 24)t t(3x2-t
ﬂ(KiH f t-x +J t-x )“ZTT(.H'K‘) [ I:'§:2+X‘g ('E‘.‘ixz)‘)] p(t)dt
-3 o]

= -q;y s, O<x<b , (5)

b 0
2 ([ Mit)t RN Lt X3
oy s T-x T 2r (1% c) 2+><2 tZHX P
0 ‘a 0

d

+

= -c:y s O<x<b , (6)
b d
24 (J’ g'!(t)dt . JO Qz(t)dt 1 J [(2+K)t £(3x2-t2)

w{k+T) t-x t-x ) - 2n{1+kc) tZexZ - (t24x2)2 Ip(t)dt
0 -a 0

= —q;y , —a<x<0 , (7)
b 0 d
2 hy(t)de ALLN [ X(3E) e
T(k+1) t-x otex 2m{ TH«) to+xs T (t5x P
0 -a 0

= -c:y s ~a<x<0 (8)
1 H(ERH3y?) - gt t(t2-y2) L ylye-t2) - FE y(3t24y2)
}'J (tz+yz)z 1Ct)dt'*;'J (tz+yz)z h}(t)dt
0 o]

© t(t23y2)~ F55 t(t2-y2) 1[0 YRR) - y(3toye)
(t4+y2)4 gp(t)dt + f (E24y2)? hy(t)dt

+
31—

=-a

d
|<+3+ (K 1)
11 plt)dt_  (I+)E T+e &> _g®
* 4u wJ o .rmt”t+ 2u H+ %y) >
0

o t-y ZuAs Txx vy

O<y<d , (9)
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The integral equations (5)-(9) must be solved under the following singie-
valuedness and equilibrium conditions: o

[ sptiae + [ gtiee =0, (10)
-a o]
0 b
hy(t)dt + f h](t)dt =0, (11)
-a o
d
[ i)t =0 . (12)
J0

From Fig. 2 it is clear that the end points x=b, x=-a and y=d are points of
stress singularity with standard 1/2 power [1]. However, the nature of the
singularity at x=y=0 is not known and does not appear to have been studied
before. To study this and to solve the problem described by equations (5)-(12)
we express the unknown functions as follows:

(t) = —~—B-F‘(t) hy(t) = 2 (0<t<b)
g.] tu(b_t) 1 ? -l tot(b_t)BZ * 2
(t) 5(®) h,(t) o) (-a<t<0)
= ’ = s (-a<i< Y
AT TP P AT
st(t)
p(t) = TR (0<t<d) . _ ' (13a-e)
t*(d-t)Ps

where F1,...,F5 are unknown bounded functions and
O<Re(a,p, )<t , (k = 1,...,5) . - (14)
By substituting now from (13) into (5)-(9) and by using the function
theoretic method (see, for example, [28])to perform the asymptotic analysis

near the crack and inclusion tips (x=b, y=0), (x=-a, y=0) and {(y=d, x=0) we
first obtain the following standard characteristic equations:
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cotng, = 0 , (k=1,2,3,4,5) (15)

giving By = 1/2, (k=1,...,5), Similarly, the asymptotic analysis around the
singular point (x=0, y=0) yields

F1(0) cotma _ F3(0) 1 + FS(O) C1-u/2 = R, (x)
pB1 o a%3 ®sinme  d®S 2x%in %% 1
20 ot Fal®) 1 B0 epli-alz ”
pB2 o a®*  x%sinm d®5  2x%cos %% 2
PO 1 RSO oty F5(O) ogmar2 Ro(x)
6Pl Psinme  af3  x® d®5  2x%in %%- 3
FZ(O) 1 _ F4(0) cotra _ FS(O) C2-(1-a)/2 = R, (x)
522 x%sinm afu @ a5 2x%cos T 4

2

F1(0) C3+C4a/2 . FZ(O) c3—c4(1-a)/2 ) F3(0) c3+c4a/2

bP1  2y%sin %§' 82 2y%cos %% aP3  2y%sin %%

+ F4(O) c3-c4(1—a)/2 . FS(O) cgcotme

a®%  2y%cos %% 4Bs y

= Rs(x) . (16a-e)

4

where the functions R1,...,R5 represent all the bounded terms near and at
(x=0,y=0) and the constants ¢c; are given by

]

C'l (‘C+3)/4 Y C2 (K'])/‘q' s C3 = Z(K'-I)/(K'i-]) 2

Cp = 8/(xtl) , cp = 2e/(t1) . (17)
4 5

If we now multiply both sides of (16a-d) by x* and (16e) by y* and let
x=0, y=0 we obtain a system of five linear homogeneous algebraic equations in
FI(O),...,F (0). Since F1(O),...,F5(O) are nonzero, the determinant of the
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coefficients of this algebraic system must be zero, giving the following char-
acteristic equation to determine the power of singularity o

{cg(2cos? %%—-1) + [cz-(l-a)/zj[c3~c4(1-a)/2]

- - -cng2 IS 2 7o o
(c1 a/Z)(03+C4a/2)}(1 cos 2)cos 5 =0 . (18)
From (18) and (17) it may be observed that « is a function of « and hence,
for a given value of the Poisson's ratio v, would have slightly different
values for plane strain and plane stress cases, The values of o obtained from
(18) are given in Table B1. Around the point (x=0, y=+0) the stress state has
the behavior
S s (r2 = x%+y2) , (19)

i
Joe

Table 1. The power o of stress singularity at (x=0, y=+0).

o

v PTane Strain. PTane Stress

0 0 ¢

0.1 0.1329561 0.1237571
0.2 (.2189266 0.1926872
0.3 0.2888271 0.2416508
0.4 0.3500900 0.2794708
0.5 0.4053884 0.3100165

From Table 1 it may be seen that the stress singularity for the plane strain
case is somewhat stronger than that for the plane stress case.

=370~



3. The Stress Intensity Factors

The system of singular integral equations (5)-(9) is solved by normalizing
the intervals (0,b), (-a,0) and (0,d) and by using Gauss-Jacobi integration
formulas [2 ]J. The normalization is accomplished by defining

t = % (r‘+]) s X = % (S'f’.l) . (0<(th)<b: ~1<(l",5)<]) >
t = % (r-1) , x = -g- (s-1) » (-a<(x,t)<0, -T<(r,s)<1) ;
t= 4 (1) Ly = S (s+1) , (0<(y,t)<d, ~1<(r,s)<1);

91(t) = Gy(rhwy(r) 4 hy(t) = Gy(rhwy(r) 5 wylr) = (14r) % (1-r) V2 |

9p(t) = G3(rhwy(r) 5 hy(t) = G4 (rhun(r) , wylr) = (1-r)"*(14r)"1/2 |

p(t) = G5(rwg(r) , wylr) = (1+r) (1= V2, (L1cpar) | (20)

With (20) the stress intensity factors at the singular points may be defined
and evaluated as follows:

2u /b

k](b) = Tim v2({x-b) cyy(x,O) S Fevds G1(1) , {21)
X~b 2=
ky(b) = Tim V2(xB) o, (x,0) = - 24 B o 1) (22)
2 sy X2 T+ o G2(1)
X>a 2
k.(-a) = 1im /~2(x¥a) o, (x,0) = —ZL—/—a—G (-1) (23)
1 wo=b yyr©? T+k o 3 ?
ky(-a) = llr—nb /20x53) o, (x,0) = 1—2,;%{-53 6,(-1) , (24)
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kp(d) = Yim  2(7=a) o, (0.y) = -Tim L &L arayypgy)

y=d+0 y-+d-0
- *
ST é%E%TT gg'GS(T) . (25)

At the singular point (x=0, y=+0) we define the stress intensity factors
in terms of the tensile and shear cleavage stresses as follows:

- . O

XX(O) = ;lrg ‘/2- Y GXX(Osy) s (26)
e as o

kxy(o) = ;lg V2 ¥ cxy(+0,y) . (27)

-From (26) and the solution of the problem k1 may be found as follows:

(1-a)a“61(~1) , (2-a)aa62(~]) (1-a)b“ea(1)

XX Kt o . TG e s 7O
2 2sin 5 2C0s > 2sin >
(2-a)b%6,(1) 1 1 d76s5(-1)
+ - — . (28)
2¢cos T& 2(|<+1) 0 S1nTa
2
Also, from the general Tocal equilibrium condition
ny(+03y) - ny('oay) + p(y) =0 (29)
+ - .
and from [cxy] = ]cxyl we obtain
a Go(-1) |
iy 0) = <1im F v - 5 : (30)

(*) :
See Appendix C
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4. The Results

The only solution which was not discussed in [1] is the crack-inclusion
intersection problem shown in Fig. 2. Particularly important in this case is
the stress state around the point of intersection (x=0, y=+0) as it relates to
the initiation of a branching crack at this point. In calculating the results
it is assumed that away from the crack inclusion region the medium is subjected
to a uniform stress state given by c:x, c;y, c:y. Since the superposition is
valid, the problem is solved by taking one of these three stress components
nonzero at'a time. The results are shown in Figures 3- 12. At the crack tips
the figures show the normalized Mode I and Mode II stress intensity factors
defined by

ki(a) ko(a) . ky(b)
k'} (a) = T ké(a) = T 9 k'l(b) i e———
oij¢a72 oij¢a72 cijVE/Z
; k,(b)
kp(b) = —5—, (i.i=x.y) . (312-q)
UijVB/z : ’

At the inclusion tip (x=0, y=d) we define [1]

i _ _ Tek o o s oa
k'](d) ~ k"(d)/ko » kO = m 0'1de_/2 ’ (1’J"Xs.y) . (323"b)

The tensile and shear stress intensity factors at (x=0, y=+0) are normalized
as folliows:

kex(0) = ko OV (T3T2) 4 K (0) = 2k, (0)/(63 /A7), (ivgonny). )
(33a,b)

Figure 3 shows the normalized Mode I stress intensity factors at the
crack tips for a uniform stress o;y away from the crack-inclusion region. Note

*) Note the factor of 2 in (33b); kl is the "stress intensity factor" cor-
responding to p(y) at y=0 (see Egs. 29 and 30).
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that as the crack tip approaches the crack-inclusion intersection point (x=0,
y=0) the corresponding stress 1ntensity‘fact0r becomes unbounded (see, also,

the results given in [1]}. For this loading condition the Mode II stress inten-
sity factors are very small and, hence, are not presented. Figure 4 shows

the Mode II stress intensity factors at the crack tip for the pure shear load-
ing Giy which are nearly identical to those shown in Fig. 3. Similarly, for
the shear Toading the Mode I stress intensity factors are very small and,
therefore, are not presented. The normalized stress intensity factor at the
inciusion tip (x=0, y=d) is shown in Fig, 5 for the three uniform applied
stresses o:x, c;y
assumed that the medium is under plane strain condition, the Poisson's ratio
of the plane is 0.3 and, unless stated otherwise, the stiffness parameter

and c:y. In the results shown in figures 3- 12 it is

(e, )

Y= AS'L[S("‘-I-K; (34)

has a value of 0.1. The effect of v on k](d) is shown in Fig. 6.

The effect of the relative Tocation (a/b) of the inclusion on the stress
intensity factors kxx(o) and kxy(O) at crack-inclusion intersection point
(x=0, y=+0) is shown in Figures 7 and 8. Figures 9 and 10 show the effect
of the stiffness parameter y on kxx(O) and kxy(o)' The effect of the inclusion
length d on the stress intensity factors is shown in Figures 11 and 12.
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Figure 1. The geometry and notation for the crack-inclusion problem.
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Figure 3. Normalized Mode I stress intensity factors at the crack tip,
v=0.3, +=0.1.
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Figure 6. The effect of the stiffness parameter y on the stress intensity
factor at the inclusion end, v=0, b=a,
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Figure 7. "Tensile" component kyy(0) of the stress intensity factor at the
crack-inclusion intersection point, v=0.3, v=0.1.
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Figure 8. "Shear" component kxy(0) of the stress intensity factor at the

crack-inclusion intersection point, v=0.3, v=0
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Figure 9. The effect of stiffness ratio v on kyy(0), v=0.3, a=b=2d.
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Figure 10. The effect of v on kyy(0), v=0.3, a=b=2d.
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Figure 11. The effect of the inclusion length d on kyy(0), v=0.3, v=0.1,
a=b.
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Figure 12. The effect of the inclusion length d on the stress intensity
factors at the inclusion ends (x=0, y=d) and (x=0, y=+0)
v=0.3, v=0.1.
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APPENDIX E

A CYLINDRICAL SHELL WITH AN ARBITRARILY
ORTENTED CRACK

0.S. Yahsi and F. Erdogan
Lehigh University, Bethlehem, PA.

ABSTRACT

In this paper the general problem of a shallow shell with constant
curvatures is considered, It is assumed that the shell contains an arbi-
trailiy oriented through crack and the material is specially orthotropic.

The nonsymmetric problem is solved for arbitrary self-equilibrating crack
surface tractions, which, added to an appropriate solution for an uncracked
shell, would give the result for a cracked shell under most general loading
conditions. The problem is reduced to a system of five singular integral
equations in a set of unknown functions representing relative displacements
and rotations on the crack surfaces, The stress state around the crack tip
is asymptoticaily analyzed and it is shown that the results are identical

to those obtained from the two-dimensional in-plane and anti-plane elasticity
solutions, The numerical results are given for a cylindrical shell contain-
ing an arbitrarily oriented through crack. Some sample results showing the
effect of the Poisson's ratio and the material orthotropy are also presented.

1. Infroduction

Because of their potential applications to the strength and failure
analysis of such structurally important elements as pressure vessels, pipes,
and a great variety of aerospace and hydrospace components, in recent past
the crack problems in shells have attracted considerable attention. Typi-
cal solutions obtained by using the classical shallow shell theory may be
found, for example, in [1]-[4]. In a Mode I type of shell problem {that is,
in a shell for which the geometry and the loading are symmetric with respect
to the plane of the crack), particularly for membrane loading, the solution
based on the classical theory seems to be adequate. However, in skewsymmetric
or nonsymmetric problems, because of the Kirchhoff assumption regarding the
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transverse shear and the twisting moment, in the classical solution it is
not possible to separate Mode II and Mode III (i.e., respectively in-plane
and anti-plane shear) stress states around the crack tips. In this case a
singularity of the form r'"?'5 in Mode II stress state automatically implies
r"'?"’2 singularity in Mode IlI. For flat plates such drawbacks of the classi-
cal theory was pointed out in [5] where it was found that the asymptotic
results obtained from plate bending and two-dimensional elasticity could

be brought in agreement provided one uses a sixth order plate theory (e.q.,
that of Reissner's [6]).

In the crack problems for shells even though the membrane and bending
results are coupled, the asymptotic behavior of the membrane and bending
stresses around the crack tips should be identical to those given by respec-
tively the plane stress and plate bending solutions. This was shown to be
the case for the classical shell results (see, for example, the review
article [7]). Recent studies using a Reissner-type shell theory [8], [9]
shows that similar agreement is also obtained between shell results and
those given by the plane elasticity and a sixth order plate bending theory
[103-[13].

Because of the high Tikelihood of Mode I type fracture most of the pre-
vious studies of crack problems in shells were on the symmetrically loaded
structures in which the crack is located in one of the principal planes
of curvature. The advantage of this crack geometry is that one can always
formulate the problem for one half of the shell only as a symmetric or an
antisymmetric problem and reduce the number of unknowns. However, in such
structural components as pipes and pipe eibows, if, in addition to internal
pressure and bending the external loads include also torsion, then the
most likely orientation of the crack initiation and propagation would be
along a helix rather than a principal plane of curvature. In this case,
the problem would have no symmetry and all five stress intensity factors
associated with the five membrane, bending, and transverse shear resultants
on the crack surfaces would be coupled. Consequently, the related mixed
boundary value problem would reduce to a system of five pairs of dual inte-
gral equations or five singular integral equations.
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~In this paper we consider the simplest and yet, from a practical view-
point, perhaps the most important such problem, namely a cylindrical shell
containing a through crack along an arbitrary direction with respect to the
axis of the cylinder. In formulating the problem it is assumed that the
regular solution of the shell without the crack for the given applied loads
is obtained and the problem is reduced to a perturbation problem in which
the self-equilibrating crack surface tractions are the only external loads.

2. The Basic Equations

The problem under consideration is described in Fig. 1, As in [11]-
[13] the material is assumed to be specially orthotropic, that is the elas-
tic constants defined by

erp = o (077-919p9) = = (0ppmvp077)
noE nTN%22) ¢ f22 T E, 22TV e
e12 = °12/%6qp » vi/Eq = %/E, (2.1)

satisfy the following factorization condition(*) [12]

'EIEZ
G_lz T —— e (2-2)
2(]"'1‘\)1\)2)
Defining the following "effective" material constants
E = /E,E =/ B = ] G = 5t c = (E,/E )1:i {2.3)
172 » Y 7 "V e 6 ° Z{T+) ° 152/ .

(*)The results given in [12] show that the effect of material orthotropy
on the stress intensity factors can be quite significant. In practice
the material may be orthotropic because it is either a composite laminate
or a rolled sheet metal alloy. " Orthotropic materials are also anisotropic
with regard to their resistance to fracture and crack propagation. Hence,
in a cylindrical shell if the axes of orthotropy do not coincide with
the axial and circumferential directions, the solution of the general
inclined crack problem becomes all the more important, The solution is
also necessary to analyze the weld defects and cracks initiated in the
weak cleavage plane of the rolled sheet in spirally welded pipes.
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equations (2.1) may be written as

g

1,11 "12
o1 = F (g2 - o) 5 egp = f (Pogpmvoqy) 4 eqp = o2 -

(2.4)
The derivation of the differential equations for a specially orthotropic
shallow shell based on a transverse shear theory [8], [9] may be found in
[11]-[13] and will not be repeated in this paper. Referring to Appendix A
for notation and to [11]-[13] for details, in terms of a stress function ¢

and the z-component of the displacement w the problem may be formulated as
follows:

74 -Iig-(xf §§2-~ 2A§2 3%%7 | 2 gﬁ;aw =0, (2.5)
vHw + A2(1- nvz)(x1 %f 2x§2 aigy + A§-£;ﬂ¢

= A+ (1-er2)(FD) (2.6)
kY2 - ¢ - W= 0o, | (2.7)
£=v) g2q.9= 0 . | (2.8)

2

The shell parameters Ay, Az, Ays, As and x are defined in Appendix A,
q(x.y) is the transverse loading, and the curvatures are given by

LT T g A (2.9)

where Z = Z(x], xz) is the equation of the middle surface of the sheil.
The functions y and o are related to the components of the rotation vector

by

=, I-v 3o =% 1-v 39
By " T Ty By Ty TN 5 - (2.10)
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The normalized membrane, moment, and transverse shear resultants are given
by

Wﬁ%ﬂyﬁgi ’ny='38>%; (2.11)
Mex = Fa® (iif Ty iZf) > My (v iif ¥ iif) ,

My = R T (aa?( ' aa?) ? (2.12)
bt B Yy Tay Ty (2.13)

3. General Solution of Differential Fquations

Eliminating ¢ in (2.5) and (2.6) one obtains an eighth order differen-
tial equation for w(x,y). If the solution of this differential equation is
expressed as

-

w(x,y) = é%-J f(x,a)e"iy“da . F(x,a) = R(a)e™ , | (3.1)

Bl

the characteristic equation for m is found to be

2 2 .
D{m) ms-(4a2+r1;)m5 - 4:11212a1m5

u 2 4
[sa“+n(4x12+21§A2+13)q2+12]m%

+

+

2 .2 2 2 .
Axy oI te(A ¥4, a2 Jaim?
2.2 4 4 2 2
- bpo 204} 202
[dat+xa (4A12+211A2+Al)f4112+2l1A2]a m
2 2 b I
- 4A1A12(1+Ka2)331m + at(at+ch a242,) = 0 . (3.2)

In (3.2), by substituting m=is it may be seen that
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o(is) = 2 a(a)s* = 0, (3.3)

where the coefficients a, are real and, hence, the complex roots are in
conjugate form. Since Re(mj) = Im(sj), (j=1,...,8), by ordering the roots
ms of (3.2) properly it may be shown that they have the following property:

Re(mj+4) = -Re(mj) . Re(mj) <0, {j=1,...,4) . (3.4)

Considering now the regularity conditions at x=*~ from (3.1) and (3.4) it
follows that

b M3 X
ZRj(a)eJ » X >0
f(x,a) = < (3.5)
8 X
[ T Rj(a)e s, X <0 .
5
Similarly, if we let
#(x,y) = @1,; f g(x,a)e”¥* da, (3.6)
from (2.5), (3.1) and (3.5) we obtain
b miX
: R;(a)ks(a)e T, x>0,
glxsa) = < . msx (3.7)
z Rj(a)Kj((})e Fl X < 0 .
5
where 5
2 2
(A=A )e2 + A,p5 + 22] ami 2
Kj(a) = A2 pJé J J 3 Pj = mj - (12 . (3.8)

Also, by assuming that
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[

é%‘f h(x,a)e” * da , (3.9)

-l

Q(x,y)

= | stxa)e™ g, - (3.10)

-0

1

P(X,¥)

from (2.7), (2.8), {3.1) and (3.5) we find

h{x,a) =

|
A,

(3.11)

- _ 2
ry = =r, = -[a2 + ETT:;TJ R (3.12)

N
z

o(x,a) = <; R. (a) | (3.13)
z
s

The expressions for the stress, moment, and transverse shear resultants
may be obtained by substituting from the solution given above into (2.10)-
(2.13). The results are given in Appendix B. '

Since the problem has no symmetry, the preceding analysis would give
its solution for the half regions x>0 and x<0 separately, and since each
half would have five boundary conditions at x=0, ten unknown functions are
‘needed to account for these conditions. Quite apart from the crack prob-
lem, RT""’RB’ A1; and A2 are the ten unknowns which may be used to solve
the two half shell problems. In the crack problem following are the con-
tinuity and boundary conditions which must be satisfied at x=0:

Nxx(+osy) ('OsY) y —o<Y<m , (3.14)

NXX

MXX(+0’y) = MXX(—O’y) y —oLY<m ' . (30]5)
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N (+0:y) = ny(‘Osy) y TECYy<o (3.16)

Xy
Mxy(+0,y) = Mxy(-O,y) y mO<y<o (3.17)
Vx(+09y) = Vx(“oay) s =mcy<e (3-18)

NXX(+0'y) = F}(Y) s |yl< c ., ]

J> (3.19)

u(+0,y) - u(-0,y) = 0 , |y]>/& ,

M (+0.¥) = Foly), ly|</ , ]> (3.20)

B, (+0,y) - 8,(-0,y) =0, |y[>/, J

Ny (+0.¥) = Faly) & [yl , L (3.21)

(50) - V(-0) = 0, ly]-E L )

Moy (F0sY) = Foly) 5 lyle, L (3.22)

By (+0,y) - 8,(-0.y) = 0, |y[>/C J |

V,(+0,y) = Fely) 5 lyjfe, | (3.23)
)

W(+09y) - W('OsY) =0, Iy]> C

where FI,...,F5 are the known crack surface loads in the perturbation problem
under consideration.

From the expressions of the stress, moment, and the transverse shear
resultants given in Appendix B, it may be seen that the homogeneous relations
(3.14)-(3.18) can be used to eliminate five of the ten unknown functions
RT""’R8’ A}, and A2. The remaining five may then be obtained from the
mixed boundary conditions (3.19)-(3.23). The problem may be reduced to a
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system of five dual integral equations by obtaining expressions for the
displacements and rotations similar to that given in Appendix B and then

by substituting into (3.19)-(3.13). However, in the problem under con-
sideration this procedure would be extremely lengthy. A somewhat more con-
venient approach is the reduction of the mixed boundary conditions directly
to a system of integral equations. From the nature of the mixed conditions
it is clear that the integral equations will be singular. In order to avoid
strong singularities in the resuylting integral equations it is necessary
that the new unknown functions be selected as the derivatives of the "dis-
placement” quantities rather than the displacements and rotations. Of the
"displacements" which appear in the mixed boundary conditions By sy, and
w may readily be expressed in terms of R:j and Ao (j=1,..3,8; k=1,2) by
using the solution given in this section. To find u and v we use the basic
strain-displacement relations for the shallow shells, namely -

_ 1
a..—'E[U

i3 U - + Z,i U3 ; + Z,j u3’i], (1,3=1,2) . (3.24)

. o F
1sd Jsl

From (3.24) it can be shown that

. 2
ou, ) dej, d,, 57 U3 427 3, (3.25)
z " = - Z " gx2 ' .
ax2 8x2 Bx1 ax1 3x2 axz axl

By substituting from (2.4), (2.9} and Appendix B into (3,25) we obtain

aN aN
U Sy Zxx
Sy 2(1+v)ny j ol dy + v j o dy
Ay 2 A A, 2
+ j[(wh) x + (=) vl -——rayw dy + (57 f—% dy . (3.26)

From (3.79)-(3.23) it is seen that the y-derivatives of the relative crack
-surface displacements and rotations are the natural choice for the new
unknown functions. However, {3.26) suggests that for the in-plane displace-
ments u and v such a choice would require very complicated analysis. In
fact, in the present problem it is not feasible to express the functions

-395-



R‘j and Ak in terms of the new unknowns in the desired form if they are

selected as the derivatives of u™-u~ and v*-v~.

unknown functions as follows:

G(y) = i

- lin 5 - [y P,
W0l
Gy(y) = Tin (37 - By 3 - i
WLyl
W, §ol §

A, 2
. M2
1im [%ﬁ'“ ) J Y 352

We thus define the new

(3.27)
(3.28)
Loy - -};—2)23/%3— : (3.29)
(3.30)
(3.31)

By using now the solution given in this section and the results of
Appendix B, the auxiliary functions G],...,G5 may be expressed in terms

of RI"“’RB’ Ai’ ;nd AZ as follows:

1 2

G] (y) = T J '3; [ % ('i!' = ijj)ijj(a)

-

2

8 A B,
" § (7\% - K:pomR.(a)le” ' do

J7J°J 3

(3.32)



o

1 [ . b ijj(a) 8 ijj(C’v)
G [ - -
o(¥) = o Im{ tal § =T 7 5 kPl
2 - —.
-'2—5§1—2l [A;(a)-Ay(a)I3e™'™ da , (3.33)
1 [ gy 8 pqn-iay
G3(.V) = EE'J { E KjRj[Pj"'(.{'*'\J)a 1- g KjRj[Pj'*'(]"'V)G 1re da ,
- (3.34)
- R, R.
= _ L o & 3 8
34(Y) = - 5= f [«?( E ;EE:T'- g ;Ej:j')
- 0 o g (e Aprphy) 1Y da (3.35)
= - ._]._ i : - 2 ""iO'.y :
GS(Y) | wa ial ? Rj E Rj]e da . (3.36)

-

Also, by substituting from Appendix B into (3,14)-(3.18) and inverting
the Fourier integrals we find

1} 8 .
y PiH(1-v) o2 g p.+{1-v)a?
P ST
£ 2§ A-r.As) = 0 (3.38)
- z—_ ~v} i a.(r1 172 2) = . ]
¥ MKR. - 2 mK.R. =0 (3.39)
ZmiRiRy T BN R0 | .

-397-



L m.R. B m-R.

1o ? e i Ta Z E%T%T

J 5
+ 5 (1-9)(24r) (Ag-Ay) = 0, (3.40)
u m.p.R; g m.p.R; .
33N 3G i ALY =
: EBE:TJ' z E%EITQ' 7 a({1-9)(A;-A,) = 0 . (3.41)
From {3.32)-{3.41) it then follows that
L F mpKRe - 3 mpeKoR) = qala) - (D) qula) 42
*E(ﬁmeJJJ-ngpJJJ ‘“q]a)"i‘&" G,lal , (3.42)
(A-A5)/2 = q,(a) (3.43)
7 pKRs = 3 pokiR: = (
P PRy - L RgKRy = asle) (3.44)
5 PsiR; 8 PiR;
I = (1-
o ;%;}T (1-v)g, () (3.45)
ia(3 R, - 2 R.) = q.( 46
=1a f J- - § j ."" qs 0!.) s ) (3‘ )
where Je
a(e) = J 65(0)e’®t dt , (3=1,...,5) . (3.47)
-/c

In defining e by (3.47) it is assumed that Gj(y) = 0 for |y| > Y. From
(3.37)-(3.46) the unknown functions R1""’R8’ Ays and A2 may be obtained
as follows:

5 = -
Rilad = 1 Byla)a(e) o (=1..08) (3.48)

Aj(e) = E Coladaga) » (371,2) 3 (3.49)

k=1

where Bjk and Cjk are known functions of «.
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4, The Integral Equations

The relations to determine the functions G]""’GS necessary to com-
plete the solution of the problem are obtained by substituting from (3.47)-
(3.49) and Appendix B into the mixed boundary conditions (3.19)-(3.23).

From the definitions of G],...,Gs as given by (3.27)-(3.31) it is seen
that they are related to the derivatives of the crack surface displacements
and rotations. Thus, in addition to requiring that Gj(y) =0 for |yl > /o,
(j=1,...,5), further conditions must be imposed on these functions in order
to insure the continuity of displacements and rotations in the shell for
x=0, |y| > /C (see (3.19)-(3.23)). That is, Gj,...,G5 must be such that

e 3

[ & fy0.) - wjl-0Iey = 0, (4.1)
-/C

where W (j=1,...,5) represents the displacements and rotations u, v, w,

By and By‘ From (3.27)-(3.31) the single-valuedness conditions of the form
(4.1) may now be expressed as

g RITR: Aip 2 e t _

[6 (142 teg(t)1dt - () [ dt | Gslnay = 0, (4.2)
-/t =/ e
/e
J 6,(t)dt =0 , (4.3)
2
/C

Ay 2

| a0 + (P tenle=o , (4.4)
-vc
/c
J G (t)dt =0 , (4.5)
-/C
3
[ egierae =0 . (4.6)
-/c
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With the requirements that Gj(y) be zero for [y] > /¢ and the conditions
(4.2)-(4.6) be satisfied, the second part of the mixed boundary conditions
(3.19)-(3.23) relating to the displacements and rotations has thus been
taken care of. The first part of (3.19)-(3.23) relating to crack surface
Toading would then give the integral equations to determine G],...,G5 which
may be expressed as

o0

. ] mJX 1Ct_y
lim - 2—-[ ol z K R e do = Fy (¥), ly|l < &, (4.7)
s>+0 " -
= A{1~v)a? m.x
1 a [ y Pt ;
lim »— pX —J-———j———- R; e
x++02'ﬂ' EF-ml Kpj"' J
2 raX .
- 5 (1) daAyrie | 1T Wda = Fy(y), Iyl < /&, (4.8)
- m.X-fay, _
lim z‘f“mKReJ da = Foly), ly] <c, (4.9)
X+0 b

%>+0 2n
K 2 rex -iay
é-(T-u)(a2+r )A ]e da = “F4(y)s lyl < v, {(4.10)
= 4 Kp.m.R. m.X
Tim 2—1— f [z —J——J—TJ— e
x»+0 %1 71 KPyT :
- 5 (1-v)ai, N ]e ‘“yda = Fgly)s [yl < /<. (4.71)

By substituting now from (3.47)-(3.49) into (4.7)-(4.11) and by changing
the order of integrations we obtain a system of integral equations for
G],...,G5 of the following form:
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i -

tin [ 650t [ vgloade Ve = ) (ke1,..08), Tyl
*%>++0 e 1

-

(4.12)

where ij(x,a), (ksj=1,...,5) are known functions. The dependence of Vis

on a is primarily through rl(“)? ry(a) and the roots mj(a), (i=1,...,8) of
the characteristic equation (3.2) and is therefore very complicated. How-
ever, the functions ij depend on x only through the exponential damping
terms exp(mjx), (3=1,...,4) and exp(rlx) which simplifies the asymptotic
analysis of the kernels in (4.12) quite considerably. To examine the singu-
lar behavior of the kernels given by the inner integrals in (4.12) the
asymptotic analysis of the functions ij(x,a) for large values of |a| is
needed. First, from (31 )hand (3.12) it can be shown that for large values

of |a| the characteristic roots my and rj have theufo110wing asymptotic
values: :

P;  P;2
mi(a) = -[a](1 + =7 - gt .en) s (371,e08) (4.13)
p;  p;? ,
m;(a) = o] (1 todr -t ), (§25,....8) , (4.14)
rifa) = -lal(1 + orbomz - .0 | (4.15)
PZ(G) = |af(1 + ;(15%752 - e ) s (4.16)

where pj = m? - o2, Then, observing that the coefficients Bk and Cjk
which appear in the expressions of Rj and Aj (see (3.48) and (3.49)) depend
on o through mss (i=1,...,8), and rio (k=1,2) only, the asymptotic expansion
of ij(x,a) for large values of {«| may be obtained by using (4.13)-(4.14).
Consider, for example, the integral equation (4.7)}. By using the asymptotic
values found for mj(a) and (3.37), (3.39), and (3.42) it can be shown that
for large values of |a| we have

¥ -~ sign(a
L KRs(a) = - Si8a) q (o) (4.17)

I
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By adding and subtracting the asymptotic value to and from the integrand,
(4.7) may be written as

= 4 MaX 2 _ s
tin (- L [ L2 £ krge S+ Slg0a) g g)enlelxgerter g,
x—)--[-o T ‘e 1 J ] 1
o ] /E’ '
+ E‘l;r—[ 5194?!012 e-lalx duJ G-I(t)e1a(t-y)dt}=F'{(y)’ Iyl</€ . (4-]8)
-0 _JE

By changing the order of integration, evaluating the resulting inner inte-
gral, and then going to 1imit, the second integral in (4.18) may be expressed
as

YC o
. 1 J 1 -0X s
lim =— G,(t)dt f e sina(t-y)da
2r 1 2
*%+0 _/'C- o
lim J/E Y& (e) e &0 dt (4.19)
4 (T-y)Z+xZ 4 J t-y ' ’
xrt0 7T ] e "lE

The first integral in (4.18) is uniformly convergent, and hence, the limit
can be put under the integral sign. By substituting now from (3.47), (3.48)
and (4.19) into (4.18) we obtain '

/E G'{(t) S

[ + 3 ke (v,1)6, (£)1dt = 4nFy(y), |y|</& (4.20)

. t-y 1 W J 1

-/c

where the kernels k1j(y’t) are known functions which are bounded for all
values y and t in the closed interval [-vc, v/c].
Similarly, the integral equations (4.8)-(4.11) can be reduced to

/E 1-v2 Gz(t) 5 h

f [ g * T Ky (yst)Gy(t)]dt = 4n 3 Fo(y), [yl</c ,  (4.21)
/e 1

gy (1)

J L T z k3j(y,t)Gj(t)]dt = 4nF4(y), ly|</c , (4.22)
-vc
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6,(t)
j = ﬁ_y ¥ § ky3 (158085 (£) et = 4 —-F4(y lyl</C ,  (4.23)
-/
< Gs(t)
j [+ z kg3 (1) (t)]dt 4n Fg(y), lyl<® . (4.24)
>3

The expressions of the Fredholm kernels, kij(y,t), (i,3=1,...,5), are given
in Appendix C. The details of the analysis may be found in [14]. The system
of singular integral equations (4.20)-(4.24) must be solved under the addi-
tional conditions (4.2)-(4.6). They may be solved in a straightforward
manner by using the Gaussian integration technique (see, for example, [15]).
The major work in this problem is the evaluation of the Fredholm kernels
kij(y,t)a (1,3=1,...,5) which are given in terms of Fourier integrals. To
improve the accuracy the asymptotic parts of all integrands are separated

and the related integrals are evaluated in closed form. The details of this
analysis may also be found in [14].

5. Asymptotic Stress Field Around the Crack Tips. Stress Intensity Factors

For the numerical solution of the system of singular integral equations
(4.20}-(4.24) the interval (-¥€, /C) is normalized by defining

=t/‘/63n=y/‘/c—s £=X/l/-,
Hj(r) = Gj(rJE),(j = TaueesB) o =1<t<l | (5.1)

We now observe that the index of the system of singular integral equations
is +1 and its solution is of the following form:

Hy(e) = hy(2)/(1-2)7 | (<lexdl) L (3=1,..05) (5.2)

where h1,...,h5 are unknown bounded functions. The membrane, bending, and
transverse shear resultants may be obtained by substituting from (5.1),
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(5.2), and {4.47)-(4.49) into the expressions given in Appendix B. The
asymptotic behavior of the stress field around the crack tip could then be
obtained by using the asymptotic expansions of m; and Fio (i=1,....8;
k=1,2) given in (4,13)-(4.16) and the following asymptotic relation [16]

1

f _Blzl_eiat dr = (Ef%T)%'{h(1)exp[i(a - E%%T )]

-] vitT
+ h(-T)exp[-i(a - 77201 + O‘ﬁ” , (Jals) (5.3)
giving
(1) .
NXX 2 g 4‘3/2? J /Ee-algl cosfa(l=-9) = %]da
h (1) *
+ 4}2}. j -/l-;(m]g])e'“‘al sinfa(1-n) - Tda, (5.4)
ha(1) = _~alg]
~ 3 ™
Ny v j e%; cos[a(1-n) - 7lda
(8]
ha(1)
1 ] —alz| .
" s L + (1-alee 18] sinfa(1-n) - Hda | (5.5)
ha(1) ¢
M 1 ene el sinfa(ion) - Tde
w | = (eefee™El sinfa(im) - e
hy (1 * '
RSN Js o e lel cos[a(i-n) - da . (5.6)
M

0
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I:r
vy
-

Ny
L]
—
Sz
g

-alg] ) o T
e e f Yo e cos[a(1-n) 4]da

[s)

h,(1) [~
*‘1%3'45;-? J-fz (14a]g])e el sinfa(1-n) - Flda,
T [+

o

he(1)  -alg]
h "4 J e

M cos[a(1-n) - Tlde
wola,5m ) g 4

ho(1) °
h 2 1 (e ~algf . -n) - M4
+ T?E'4 = J; /E'(1 alg])e sinfa{1-n) 4] o,
h,(1) ¢
=1 h'4 1 ~0{E o
My P23 g | o (nelehe™ Elsinta(ion) - Flea
o]
h,(1) ° .
e 2 [ el e lcosat1on - Fee

~ h5(1) r” e-algl
X 2/ b

-
it

sinfa(1-n) - %Jdu .

h5(1) ° e-alﬁ[
¥
Y 2/7s ) va

ne

cos[a(1-n) - %ﬂda .

Defining the new coordinates r, 8 in n, £ plane by

g=1r sine , n-1 = r cose ,
and using the relation [16]

-]

=1 _-sz-  sin - r - sin -lr
f Z e {Cos}(Y‘Z)dZ (—2—_1-;(2-];-372— {COS} (‘u tan S)

0 s

(5>0 s U>O) >
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(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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equations (5.4)-(5.11) can be reduced to the following form

h,{1) h. (1)
s 1 e 1 ser M) s e 1 sen
Ny = - = [ 7z Sinz + 7 sin 2] e [ F C0s 5 - gcos 5],
(5.14)
h,(1) h.{1)
.3 7 s 8 1 58 T 3 8 .1 58
Nyy = py— [ zsing -7 s1n7?ﬂ v [4 cos 7 + 7 cos 2],
_ (5.15)
h,(1) h. (1)
~ 3 3 g , 1 58 1 1 g , 1 58
N, == Co0s 5 + 7 €0S 5]~ ——f -+ sin = + 5 sin 3], (5.16)
Xy 4,97 4 2 4 2 497 4 2 4 2
h,(1) ho(1)
=_ 4 hpe T 9.1 b4 2 hr5. .8 1. 58
Hex™ aor T2a 3 SN T sin gl o 12314087 = 799571
(5.17)
h, (1) h,(1)
= 4 hr o 7.:.8 1. 589 2 hr3 . .8_ 1 58
W e TEL TN - asingl- o rplgcosy + gos ], (5.18)
h,(1) h,(1)
=4 h r3.068 4 LooeB07 - 12 h o 1iin® 4 Lin88
xy- 407 12a ECOSZ-'-ECOSZJ 4/2¢ 12a Es.lnf‘l-ESTn_Z-J’ (5 ]9)
h-(1)
v, ¥ - =— cos x (5.20)
2/2r
g =5t e (5.21)
. 2 .
Y oavzr

By observing that the membrane and bending components of the stresses are
given by (see Appendix A)

m_ b _ 12az . ol
O'.ij - N,i‘]-,o.ij h M_ij ('{,J“X,y) (5-22)

from equations (5.14)-(5.19) for the leading terms of the combined in-
m

_ b s sl :
plane stresses 933 T %45 * 955 s {(i,j=x,y) one obtains
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n?

yy T

Q
i

Xy

Similarly,

iz

we obtain

Xz

i

O'yz

hg(Thzh, (1) q 6,1 56
- gsinz+7 sin 2]
4y2v

h](1)+zh2(1)'[ 5

g 1 58
7 COs 5 - 7 cos -2——] R

4/2r

h,(1)42h, (1)
3 i - %-sin %— 1 sin if ]
4v2r
8,1

hy(1)4zh,(1) : ]
- CO0S + — CO0S s
s 15777 2

h3(1)+zh4(1)
4Y2r

for the transverse shear stresses from

g [1 (hlz) ] » (1= xs.Y) ’

he(1)
35 8 az
REY A T
he(1)
5 8 az 2
-5 sin 5 [1 - (&) ]
20 Szt R

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Note that for the isotropic materials c=1 and the asymptotic stress

fields (5.23)-(5.25) and (5.27)}-(5.28) found from the shell solution are
identical to those given by respectively the in-plane and the anti-plane

elasticity solution of a two-dimensional crack problem.

If we now define

the Modes I, II, and III stress intensity factors (for a crack along x]=0,
-a<x2<a) by
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kj(x3) 1im /2!x2 -a) ;3 (0,x2,x3) » (j=1,2,3) , (5.29)

x2—>a

from (5.23)-(5.25) and (5.27) and Appendix A we obtain

X
kixg) = = S5 /& [0y (1) + 2 h,(1)1 (5.30)
X
kylxg) = - 2 [hy(1) + 2 b, (1T (5.31)
3 *3,2
k3(x3) = - EB»/E/E hs(])[] - ('[;,72-) ] . (5.32)

6. The Results and Discussion

The main interest in this study is in evaluating the stress intensity
factors in shells for various crack geometries and loading conditions. For
each crack geometry the problem is solved by assuming only one of the five
possible crack surface loadings to be nonzero at a time. For a general
loading the result may then be obtained by superposition. From (5,30) and
(5.31) it is seen that the in-plane stress intensity factors ky and k2
have a "membrane" and a "bending" component, and h1 and h3 are related to
the membrane and h2 and h4 are related to the bending stresses. For sim-
plicity, the related stress intensity factors are defined separately. The
calculated results are normalized with kespect to a standard stress inten-
sity factor oj/E'where o5 stands for any one of the following five nominal
("membrane", "bending”, in-plane "shear", "twisting", and “transverse shear")
stresses:

= E 2 =
op = 6M12/h2 > Oy = (3/2)V1/h . (6.1 a-e)

where crack 1ies in XgX3 plane and N]1, M]?’ N12’ M]Z’ and V1 are (a measure
or amplitude of) the crack surface tractions.
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The normalized stress intensity factors are then defined and calculated
in terms of h1(1), (i=1,...,5) as follows:

K =%§?—=-4—%%h1(1) , | (6.2)

(s - k1(:;j;fk1(0) _ ﬁ%%‘%%‘h2(1) ’ | (6.3)

kej = ;2‘(/;) - - E%‘ hs(1) (6.4)

eg = kz(:{zi-kz(o.) = . E?E'J“% ha(1) (6.5)
J

Kyj = :i(;) - - %% /S hg(1) 5 (d=m.b,s,t,v) (6.6)

where for each individual loading o5 is given by (6.1). In the case of
uniform crack surface Toads Nyj, Myys Nyps Myps and Vys referring to (3.19)-
(3.23), Appendix A, and (6.1) the input functions of the system of integral
equations (4.20)-(4.24) are given by

v o m _ % _ Y% _ %t
Fily) = E o Foly) = geE » B3 =&, Fgly) = gF >
2 %
Fely) = 5 —. . (6.7)

Even though the formulation given in this paper is valid for any shell
with constant curvatures I/RI, I/RZ, and I/R]Z, the results are obtained for
the practical problem of a cylindrical shell containing an arbitrarily
oriented crack only (Fig. 1). The crack is assumed to be in a plane defined
by the angle 8 shown in Fig. 1. For the shallow cylindrical shell the
curvatures referred to X1» Xo @Xes shown in the figure and defined by (2.9)
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Table 1.  Stress intensity factor ratios in.an isotropic
cylindrical shell containing an inclined crack under
uniform membrane loading Nyj, v = 0.3, g = 45°.

a/n
hye 1 2 3 5 10
1/5 1.097 1.302 1.844 2.030 . 4864
1710 1.049 | 1.167 | 1.321 | 1.665 2.516
ke L1715 1.033 | 1.116 | 1.230 | 1.501 2.199
1/25 1.020 | 1.072 | 1.148 | 1.341 1.886
1750 1.010 | 1.037 | 1.079 | 1.194 1.563
1/100 1.005 | 1.019 | 1.041 | 1.106 1.337
1/200 7.002 | 1.010 | 1.021 | 1.056 1.192
1/5 0.084 | 0.122 | 0.100 | -0.069 | -0.761
/10 0.058 | 0.108 | 0.126 | 0.079 1-0.299
1/15 0.046 | 0.093 | 0.121 | 0.118 1-0.125
kpm | _1/25 0.032 | 0.073 | 0.104 | 0.132 0.023
/50 0.020 | 0.049 | 0.076 | 0.117 0.120
17100 0.012 | 0.031 | 0.051 [ 0.089 0.139
177200 0.007 | 0.019 | 0.033 | 0.062 0.120
1/5 -0.036 | -0.108 | -0.190 [-0.333 {-0.517
1/10 -0.018 | -0.060 | -0,113 [-0.227 |-0.424
ksm |_1/15 -0.012 | -0.041 [-0.081 |-0.173 |-0,365
| 1/25 -0.007_1 -0.025 | -0.052 |-0.119 _|-0.289
1/50 -0.004 | -0.013 | -0.028 | -0.068 [-0.192
17100 | -0.002 | -0.007 | -0.014 | -0.037 | -0.117
1/200 | -0.001 | -0.003 [ -0.007 | -0.019 | -0.067
1/5 0.012 [ -0.029 | -0.119 | -0.432 [-4.232
1710 0.010 | -0.008 | -0.053 | -0.219_ |-1.853
Km | 1/15 0.008 | -0.002 | -0.031 | -0.144 _|-1.744
1/25 0.006 | 0.002 | -0.015_ | -0.082 _1-0.757
1/50 0.004 | 0.003 | -0.004 | -0.036__ |-0.379
1/100 0.003 | 0.003 | 0.000 {-0.015 {-0.186
1/200 0.002 | 0.002 | 0.001 | -0.006 _1-0.090
1/5 -0.051 | -0.139 | -0.261 | -0.609 | -2.630
1/10 | -0.026 | -0.070 | -0.131 | -0.302 [-1.117
Kym L_1/15 -0.018 | -0.047 | -0.088 | -0.201 1-0.736
171725 -0.011 [ -0.029 | -0.053 | -0.121 1 -0.441
1/50 -0.005 | -0.015 | -0.028 [ -0.062 |-0.221
1/100 | -0.003 | -0.008 | -0.014 | -0.032 |-0.111
1/200 | -0.001 | -0.004 | -0.008 | -0.017 | -0.056
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may be expressed as

cos?g 1 singcoss -
RR-"R °R,C R =-=7x (6.8)

Some numerical results obtained for an isotropic cylinder are shown
in Figures 2-11. Figures 2-6 show the primary stress intensity factor ratios
kmm’ kbb’ kss’ ktt’ and kW for a cylinder having a crack inclinced 45?
with respect to the axis. The unusual results here are those found for
ktt and kvv' Under a twisting moment Mo uniformly distributed along the
crack, the Mode II stress intensity factor ratio ktt appears to be nearly
independent of the shell curvature 1/R but highly dependent on a/h, Fig. &
shows that the monotonic variation of the stress intensity factor ratios
with a/h and h/R observed in Figures 2-5 and in previous shell solutions
is not valid for kvv' This seems to be the case for all values of g
varying from zero to ninety degrees.

The effect of 8 on the primary stress intensity ratios kmm’ kbb’ kss’
ktt’ and kvv is shown in Figures 7-11. Extensive results giving all stress
intensity ratios kij (i,j=m.b,s,t,v) for g=0, 15°, 30°, 45°, 60°, 75°,
90° and for varying h/R and a/h may be found in [14]. Table 1 shows some
sample results regarding the secondary stress intensity ratios in a
cylinder with a 45° crack under torsion (i.e., N11 = constant and all other
crack surface tractions zero).

The stress intensity factors given in Figures 2-11 and in Table 1 are
obtained for the Poisson's ratio v = 0.3. Some sample results showing
the effect of v on the stress intensity factors are given in Table 2.

It is seen that this effect is not really significant.

It should be noted that the Poisson's ratio v in isotropic shells and
v = JS;GE'and the stiffness ratio ¢ = (E]/Ez)% in specially orthotropic
shells appear in the expressions of the kernels of the integral equations.
Thus, to investigate the effect of the material orthotropy on the stress
intensity factors both v and ¢ must be varied. However, as seen from
Table 2 the influence of v is rather insignificant. Therefore, to study
the effect of the material orthotropy it may be sufficient to vary c only.
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Table 2. The effect of Poisson's ratio on the stress inten-
sity factor ratios in an isotropic cylindrical shell
containing an inclined crack, g=45°, a/h=2, h/R=1/10.

;\\:i 0.0 0.1 0.2 0.3 0.4 0.5
1.166 1.167 1.167 1.167 1.166 1.164
kbm 0.063 0.077 0.092 ¢.108 0.124 0.140
Kerm -0.058 ~0.059 -0.059 -0.060 -0.060 -0.058
ktm -0,009 -0.008 -0.008 -0.008 -0.008 -0.008
kvm -0.075 -0.073 -0.072 -0.070 -0.069 -0.067
Kb 0.018 0.023 0.028 C.034 0.039 0.045
Ko 0.605 0.617 0.626 0.632 0.634 0.631
Ksp -0.016 -0.018 -0.019 -0.021 -0.024 -0.026
ktb -0.005 -0.005 -0,006 -0.006 -0.006 -0.006
kvb 0.004 0.003 0.003 0.003 0.003 0.003
kmS -0.058 -0.059 { -0.059. | -0.060 -0.060 -0.060
Ky -0.054 -0.059 -0.064 -0.069 -0.074 -0.080
kSS 1.059 1.059 | T1.059 1.059 1.058 1.057
kts 0.007 0.007 0.008 0.008 0.009 0.010
kVs 0.133 0.131 0.129 0.128 - 0.126 0.124
Kot 0.005 0.005 0.005 0.004 0.004 0.003
kbt ~(0.005 -0.005 -0.006- | -0.006 -0.006 -0.006
kst -0.007 -0.007 | -0.007 -0.006 -0.006 -0.005
ktt 0.309 0.325 0.339 0.353 0.366 0.379
Kyt -0.095 -0.094 -0.093 -0.091 -0.090 -0.088
- Koy -0.223 -0.244 -0.266 -0.287 -0.308 -0.330
kbv -0.004 0.001 0.007 0.014. 0.022 0.032
ksv -0.174 -0.187 -0.200 -0.213 -0.226 -0.238
ktv 1.138 1.166 1.191 1.213 1.233 1.250
Kyy 2.304 2.287 2.272 2.258 2.244 2.231
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Table 3. The effect of material orthotropy on the stress
intensity factor ratios in a cylindrical shell
containing an inclined c¢rack; g=45, a/h-3,

h/r=1/10,

E]/E ,

K 0.037 1.000 26.667
kmm 1.127 1.321 1.984
kbm 0.078 0.726 0.125
ksm' -0.056 | -0.713 | -0.181
ktm" -0,010 | -0.053 -0.179
kvm -0.074 | -0.131 -0.263
kmb . 0.024 0.044 0.050
kbb 0.569 0.567 0.534
kSb -0.011 } -0.026 -0.028
ktb -0.004 | -0.005 -0.002
kvb 0.004 0.007 0.012
kms -0.057 | -0.115 -0.189
kbs -0.031 | -0.073 -0.079
kss 1.082 1.1 1.205
kts 0.019 0.068 0.179
kVS 0.238 0.228 0.331
kmt 0.005 0.004 0.003
kbt -0.004 | -0.006 -0.005
kst -0.010 | -0.006 -0.005
ktt 0.314 0.273 0.189
kVt -0.095 | -0.093 —0.087
kmv -0.166 | -0.577 -1.100
kbv -0.009 0.030 0.090
ksv ~0.277 | -0.491 -0.872
ktv 1.033 1.838 2.724
Kyy 2.089 2.671 3.573
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For a strongly orthotropic material (graphite-epoxy composite) this effect
is shown in Table 3. The axes of material orthotropy are along 45° direc-
tions with respect to the cylinder axis and the crack is located along one
or the other axis of orthotropy. ThePoisson's ratiois v = JGTGE = (0,037
for the orthotropic shells and v = 0.3 for the isotropic results included
for the purpose of comparison. The table shows that the effect of material
orthotropy on the stress intensity factors could be very significant.

The quantity which is of some interest in certain fracture studies is
the rate of internally released or externally added energy per unit fracture
area created as a result of crack propagation. If U is the work of the
external loads, V the total strain energy, and A the fracture surface,
then in a quasistatic problem the rate of energy available for fracture
would be d(U-V)/dA. For elastic problems this energy rate is known to be
the same for "fixed grip" and "fixed Toad" conditions. It can therefore be
calculated as the crack closure energy under fixed grip conditions, Under
these conditions, dU = 0 and for a crack going from Xo=a to x2=a+da, dV may
be expressed as

h/2 da

dv = - 5

-hj2 o 37

[ I e J41)

(6.9)

where the minus sign is due to the fact that during the "release® of the
crack surfaces in a<x2<a+da, -h/2<x3<h/2 the tractions and displacements
are in opposite directions (consequently, the total strain energy of the
shell decrease). For small values of da we now observe that

k:{xs5)
U]j(osx2:x3) = "'"'J—B_ ’ (.}:152:3) (6.10)
I'Z(XZ-aj
4kj(x3)
u3(+0,xp-da,x3)-us(-0,xp-da,x3) = —g— ¢§za+aa-x2)f (j=1,2) (6.11)
k3(x3)
u3(+0,x2—da,x3)-u3(-0,x2-da,x3) = =z ¢21a+aa-x25 , (6.12)
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where kT’ k2, and k3 are the Modes I, II, and III stress intensity factors
around the crack border X5=2,

Referring to the definitions of the stress intensity ratios kij
(i,j=m,b,s,t,v), given by (6.2)-(6.6) we can define the “membrane",
"bending", "shear", "twisting" and the "transverse shear" components of
the stress intensity factors at the crack tip Xp=a as follows:

ki = ? kijajVE', (i,d = m,b,s,t,v) . (6,13)

From (5.30)-(5.32), (6.2)-(6.6), and (6.13) the stress intensity factors
may then be expressed as

X
kq(x3) = Ky + ky (55 (6.14)
X3
k2(X3) = kS + kt (W) N (6.15)
X3 2 .
k3(X3) = kV[1 - (m} ] . ‘ (6.]5)
By substituting from (6.10)-(6.12) and (6.14)-(6.16) into (6.9) we obtain
2
k k.2 .
. 2. 2 t 4(1+v) , 2
v =- ¢ [km t -t kg gk Ihda. (6.17)

Observing that hda = dA, for the rate of externally added or internaily
released energy (at one crack tip X,=2, per unit shell thickness, per unit
crack extension in the plane of the original crack) we find

k, 2 k, 2 |
g = g lgE Bk e Ml (19

Finally it is again worthwhile to remember that all shell theories
are, to varying degrees, approximations of the three dimensional elasticity.
Therefore, even if the "shallowness" assumption is satisfied, the theory
used in this paper and the results given are only approximate. Strictly
speaking, the crack problems considered in plates and shells are three-
dimensional elasticity problems. Such problems in their simplest form do
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not seem to be as yet analytically tractable. However, from a structural
viewpoint, the shell solutions can be useful in the sense that the "plane
stress" crack solutions are, that is, the results should be interpreted and
used in a certain thickness-average sense. Since the shell theories are
quite numerous, there is always the question as to what theory to use in
the crack problem. Clearly there is no unique answer for this question.
However, one could try to establish some guidelines and set certain mini-
mum requirements. In crack problems the most important information (from
an application viewpoint) is imbedded in the asymptotic solution of the
problem around the crack tips. The first requirement then is that the
asymptotic results found from the shell solution must be compatible with
that of the in~plane and anti-plane elasticity solutions of the crack probiem.
This means that the stresses around the crack tips must have the standard
square root singularity and their angular distribution must be identical

to that given by the related two-dimensional elasticity solutions.

In crack problems since one is interested in the behavior of the solu-
tion very near the crack tip, it is natural to assume that all local length
parameters would have some infliuence on the results which are of interest.
In a general shallow shell there are five local length parameters, namely
three radii of curvature, R1, RZ’ R12, the crack length 2a, and the thick-
ness h. A particular shell theory to be suitabie for crack problems should
therefore contain four dimensionless (independent) length parameters.

Again, since it is desired that the shell theory give a reasonably
accurate solution near the crack tip, it would be necessary that the theory
should accommodate all the stress boundary conditions on the crack surfaces
separately.

Reissner's transverse shear theory, which has been used in this paper,
seems to be the simplest theory which satisfy all these requirements.

Aside from a certain degree of confidence one may have in its results,an
advantage of such a compatible theory, is that it makes it possible to carry
out calculations such as that of energy release rate (see (6.18)) routinely.
This, of course, is primarily due to the fact that the asymptotic results
(5.23)~(5.25) and (5.27)-(5.28) are identical to that of the corresponding
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elasticity solutions, However, since a higher order shell theory does

not necessarily imply higher accuracy in (certain calculated) results,

there are still unresolved questions, Are the results of the crack problems
obtained from the Reissner's shell theory, for example, more reliable than
that given by the classical shell theory? For the stress intensity factors
we think the answer is yes, The reason for this is largely the fact that
the classical theory satisfies none of the requirements listed above. Could
one improve the solution further by considering "higher order" theories
which may take into account additional features of deformations and stresses
(such as, for example, the stretch in thickness direction}? Even if one

can solve such problems with the same degree of numerical accuracy as the
probiems based on simpler shell theories, it would be difficult to know
which solution is more reliable. In our view, therefore, it would be very
difficult to justify the use of a more complex theory than Reissner's in
solving the crack problem in shells unless one has a demonstrable reason

for it.
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Appendix A

Dimensionless and normalized quantities used in the analysis,

X = x1/a/E', y = xz/EYa » 2= X3/a 3 (A1)
u = u1/57a » V = u2/aJE', W = Us/a ; (A.2)
By = By /T B, = By/YC 3 (A.3)
${x,¥) = F(xy,x,)/Eha?; | (A.4)
T%x EE% * Tyy N C°E22 * Oxy - igi—z' > Oz © :1_)/; > yz N /EBUZB » (A5)
Nxx = N1]/Ehc s Nyy = CNZZ/Eh 3 ny = N12/Eh H (A.6)
My = Mﬂ/Ech2 R 1‘-‘Iy‘y = cM22/Eh2 . Mxy = M12/Eh2 ; (A.7)
Vx = Vi/Bh/E', Vy = Vz/Eth ; (A.8)
A = 12(1-02) %é%% LAl = 12(1-v2) ﬁ”Rz

A%, = 12(1-02) Hf;-%; b= 12(1-2) 87, k= E/BA (A.9)

Ey 5

E = m—z., v=W, (v-I/E-I =v2/E2) . c‘*=§, B=ﬁﬁ+—vj-.(A.10)
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Appendix B

The stress, moment, and transverse shear resultants.

4 mx
[ - g];f o? I KiRy(ade e gy x > 0,
NP b
Ny (Xoy) = 5 - mx (B.1)
- E;'f a2 E K R (a)e e-Tdea X < 0,
R b
(1 a " (-viaap, mgx s
Z—T-;W .E K—p. R (Cﬁ) ayda
e 471 j=1
-y X -3
- éL'—%q'hi———lh ITA](a)ar1e e %4y x>0,
Mxx(xsy) = J
'l < g (]-v)az-f-p
w 479 J
1 (1-v)2 7, X .4
- EE'Eﬁﬁ-Eilﬁxl-'J i Az(u)arze 2 e 1Y, |
‘ - x<0 . (B.2)

r i ” % mjx -iay
o J ) jEI Rj(a)ijje e da x>0 ,
- <
ny(x:y) =
i [F e 3% miay
| 5o j @ jES RJ( a)K, mJe de x 0. (B.3)
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Moy (53] =

Vo (xy) =

A

A

0 R.
1 (d-v)a Jia ; m,[ E @) e J e TOt.Yd
j=1 P57

_uY2 [~ r.X _:
1 ax _('I_\’)_ J‘(02+Y'12)A1(a)e 1 e 'layda,

2r A"~ &

x>0,
1 (I1-v)a {% g MRy (o) % iay
1 O-vja 7, 3 L Ty ey,
2'” h)\ j=5 Kpj-]

w2 = . PaX s
Lok (Tov)® [(azwzz)Az(a)e 2g-1ayy,

x<0 .

1 ® g kP :R; (o )m, emjxe'iayd
1 ey )

i rX =
lﬁ(%}—ljiAl(a)a e ! e 45, x>0 s

-0

o R,
—T—f 7 J——-———-J—Kp (a)n eJe' ay 4y
je5 <Py

b raX =
L glloy f 'iAz(a)a e 2 e” 1% dq X<0

o
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A

Nyy(xs.Y) =

A

Myy(x,y) =

Vy(x,y) = <

o Y e 2
a y vPi=(1-v)a MX _i4y
27 EXE'J Gy TReT Ryete T

a x(1-v)2 [% rX e*iayda, x>0
ol YO [‘ Aq(a)arse
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~ APPENDIX C

The Kernels of Integral Equations:

® 8
keiy(vC ts/c n) = | [2a2Re( ¢ K-B..I)-'l]sina\/c(r-n)da
1 je1 99 |

C

® 8
+ 2 J' o?Im ( ¢ KB.Jcosarc(z-n)da ,
j=1 JBJ])

o]

* 8
k'IZ(‘/E T,¥C n) = 2 J a2Re[ 'E'I KijgS'inoc/E(r-n)da

Q

+ 2 J a2lml % K.BjQCOSa/EIr-n)da ’
=1 9 |

o

w

. 8 : :
G308 @/ n) = 2 | oRel 7 K PygsinesElon)ds

- v

o

8
+ 2 J clem['z Kj%z']COSa/E(r-n)da ’

0 3=

o

. 8
]

[--]

8 .
2 " -
+2[a Inl 2 Kffgleoss/Elemn)de

o]

-423-

(C.1)

(C.2)

(C.3)

(C.4)



L]

1508 T/ n) = 2 [ a2Rel I Kpiglsinare(e-n)da
j=1

O

+ J 2Im[ z K, %5]c05a/’1r -n)da (C.5)
]
- _ 2 [® 8 il"'“'“)
k21( C T,YC n) = - FJ Re[jz] KI-?T_-——B ]]S‘ma/-('r—-n)

o

T8 P AH{(1=v}a?

y TZ!F'J Im{ Z —1—BJ]]COSO'.'I/_(T-T1)dCt R (C.6)

o

: o g Pi;t(1-v)a2 2k(1-v)2ar
kpp(V/C 7,/c n) = J - 3% Rel L JKpj'-l Bp1r ——— - 15
0
X ‘S‘ina/c?(r-n)da
2 ® g8 P +(-I‘V
- 3F J Im[ >: —1—BJz]c05a/“ T-n)da , (c.?)
o]
| ® g pyt(l-v)a?
k23('/E T,'/E T}) = "‘ ‘XZI;“ J' Re[ji:.t -JW—Bjs]sinafE(r-n)da
o]
2 Jm. g Pst(T=v)a?
- ) : . .
b ] m[JE_I AK;F)JT_ 33]COSGH/_(T T])dct s (C 8).

~424-



. 2 = g P -+(A‘I“‘V)012 ‘
k24(1/6 T,\/E n) SRS 'X:I:;'J' RF.‘[ Iy —J——_-_T—B.4]Sina/6(r-n)du
. j=1 K Pj J

0

°° P.+(1-v)a2 .
_ 2 8 . Vid
& P L)

o

2 « 8 p +(1-v)a
o5 (/8 7€ n) = - & | el ~——1—335]smf(-r-n

o]

2 % 8 p+(1 v)a?
- & 2 g deosellenn, (©10)

o]

=<3

g1 (7 </ n) = 2 [ o Rel I K;ng, ]]cos,ar(f -n)da

0 3=1

o

8 -
+ 2 J a Im[jz'l ijijﬂs1na/E(T-n)da s (C.11)

o]

k3a(/E 7,/ n) = 2 | Rel% Kyn iy TeosaElz-n)da

v}

-]

+2 [ o Inlf KB, lsinarE(ron)das (c.12)

(o]
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o

k33(/E.r,/E n} = =2 J o Re[ 2 K. mBj3]c05af(t-n)

o) J-

o

¢ [ etnl T Kn@sI-DsinaElenldes  (C 13)

o} J—.

k34(/<? T,7/C n) = =2 J o Re[JE K. m3%4]c05a/_(r-n)da
Q

o

8
+ 2 J o Im[_z] K.m, 84]S‘Ina/_('r -n)de , (C. 14)
Jﬁ
o

-]

k35(/<? T,¥VC r?) = =2 J a Re[JE K. mJBjSJCOSa/_(r n)
Q

w0

+ 2 I a III'I[JEZ.I KJITIJJ5]S'ITIOLI/_(T -n}da , (C.15)

0

km(fc- T,/C n) = QL}}Y-)-[ o Re[ g

J=1

Mma
—EJ_'I- 1 Jeosave(t-n}da
o

) g m
- 2_(%“11.J a Im[}} -T)J-_—-I-Bﬂ]sinm/a('r-n)da,
‘ J= J
o

(C.16)
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%ZJCOSa/Etf-n)da

gp (7E 74V n) =?-(}n1lj Re[ :

l¢]

oo

m.
- g&%&&l j o Im[ Z ~ BZ]S1na/_(T-n)da, (c.17)
o J=1 p

. R 8 M .
k43(/E-T,VE'n) = ;%;—l-I o Re[jzl-E?;?r%3]COSa/E(T-n)da

o]

- z—(lallj LS z —J—T Jsineve(z-n)de s ( C.18)

M.
k44(\/6 T,VC n) = g-g-i—a-y_)_.[ Rel Z.[ _IiJ__TJq']COSG/_(T -n)da

° J=

1 -y -v2 T+a2c (- 2

o}

x(1-v)}sinavc{t~n)da , ( C.19)

m.
ke (V€ 7,72 n) = i(l;ll o Re[ & ——B ;Jcosare(t-n)da
45 A o j= p 135

o

2 g My
- J%%)—I o Im[Jz] -—JT J5]smaf“(r-n)
o]

al4r 2
+ (lqv) J r11 cosavc{t-n)da , ( c.20)
0 .

-427-



) - g kp.m, .
km(u/c_ T,/C n) = —f'Re[jE] Ep_j__.\%.%1 Isinavc{r-n)da

o g Kpsn, .
J m[ 8, JeoserE(<-n)de (¢.21)
j=1 “P§”

g Kps;M. .
K58 o8 ) = = Rel 2 —lda, IsinasE(e-n)da

i= p
5 J=1 7N

JIm[ )X J—%—%ZJCOSaf(T -n)da (c.22)

o)

® 8 KpsM;
k53(\/5 T,7C 1) = -J RE[jE'I K—p‘Jj—_‘JrBj3]S‘inaf6('r-n)da

0

(-]

g Kpasm.
-f Im[ = ]COSO'.I/‘(T n)da , (C.23)
. 3=1 FPy”

-~

<psm
ke (7 T2/ n) = f Re[ z]

By 8.4]51na/_(-r -n)da

g Kp:ms
-J Im[_z —%%—B-Jq_]COSa/E(T-n)da

o J=1%P;
- J 1o2e(1-v) ¢osave(t-n)da » (c .24)
o 1
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f”’ g -KPp.M, '
kg (Ve ©,/C n) = -J {Re[j__Z_] ﬁjL_JrB‘jsh (o7 * NIsinarCle-n)da
)
@ g kp.m :
-J Im[ji1 Eaif%%SJCOSa/E(T-n)da . ( c.25)

o]

In the ekpressions given above Bjk(“)’ (3=1,....8; k=1,...,5)

are the coefficients given in (3,48) which are obtained by solving
the Tinear algebraic equations (3.37)-(3.46) for the unknowns
R1,...,R8, A1, and Az.
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1

Figure 1. Geometry of a cylindrica

1 shell containing
- an inclined crack.
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Figure 2.

Stress intensity factor ratio kpyy in an
isotropic cylindrical shell containing an
inclined crack under uniform membrane
loading Nyy; 8=45°, v=0.3.
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Figure 3. Stress intensity factor ratio kyp in an

isotropic cylindrical shell containing an
incTlined crack under uniform bending
moment Myy; 8=45°, v=0.3.
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Figure 4. Stress intensity factor ratio kgg in an
isotropic cylindrical shell containing an
inclined crack under uniform in-plane
shear loading Nyp; 8=45°, v=0.3.
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Figure 5, Stress intensity factor ratio k¢ in an
isotropic cylindrical shell containing an
inclined crack under uniform twisting
moment M]zi 8=45°, v=0.3.
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Figure 6. Stress intensity factor ratio kyy in an
isotropic cylindrical shell containing an
inclined crack under uniform transverse
shear loading Vi; 8=45°, v=0.3.
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Figure 7. Stress intensity factor ratio kpyy in an
isotropic cylindrical shell containing an
inclined crack under uniform membrane
Toading Ny7s v=0.3, h/R=1/5.
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Figure 8. Stress intensity factor ratio kyy in an
isotropic cylindrical shell containing an
inclined crack under uniform bending
moment My1; v=0.3, h/R=1/5.
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Figure 9. Stress intensity factor ratio kgg in an
isotropic cylindrical shell containing an
inclined crack under uniform in-plane
shear loading Nyp; v=0.3, h/R=1/5.
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Figure 10. Stress intensity factor ratio k¢t in an
jsotropic cylindrical shell containing an
inclined crack under uniform twisting
moment Myp; v=0.3, h/R=1/5.
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Figure 11. Stress intensity factor ratio kyy in an
isotropic cylindrical shell con%aining an
inclined crack under uniform transverse
shear loading Vy; v=0.3, h/R=1/5.
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