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ABSTRACT

Ensemble data assimilation methods assimilate observations using state-space estimation methods and low-
rank representations of forecast and analysis error covariances. A key element of such methods is the transfor-
mation of the forecast ensemble into an analysis ensemble with appropriate statistics. This transformation may
be performed stochastically by treating observations as random variables, or deterministically by requiring that
the updated analysis perturbations satisfy the Kalman filter analysis error covariance equation. Deterministic
analysis ensemble updates are implementations of Kalman square root filters. The nonuniqueness of the deter-
ministic transformation used in square root Kalman filters provides a framework to compare three recently
proposed ensemble data assimilation methods.

1. Introduction

Data assimilation addresses the problem of producing
useful analyses and forecasts given imperfect dynamical
models and observations. The Kalman filter is the op-
timal data assimilation method for linear dynamics with
additive, state-independent Gaussian model and obser-
vation errors (Cohn 1997). An attractive feature of the
Kalman filter is its calculation of forecast and analysis
error covariances, in addition to the forecasts and anal-
yses themselves. In this way, the Kalman filter produces
estimates of forecast and analysis uncertainty, consistent
with the dynamics and prescribed model and observa-
tion error statistics. However, the error covariance cal-
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culation components of the Kalman filter are difficult
to implement in realistic systems because of (i) their
computational cost, (ii) the nonlinearity of the dynamics,
and (iii) poorly characterized error sources.

The ensemble Kalman filter (EnKF), proposed by Ev-
ensen (1994), addresses the first two of these problems
by using ensemble representations for the forecast and
analysis error covariances. Ensemble size limits the
number of degrees of freedom used to represent forecast
and analysis errors, and Kalman filter error covariance
calculations are practical for modest-sized ensembles.
The EnKF algorithm begins with an analysis ensemble
whose mean is the current state estimate or analysis and
whose statistics reflect the analysis error. Applying the
full nonlinear dynamics to each analysis ensemble mem-
ber produces the forecast ensemble; tangent linear and
adjoint models of the dynamics are not required. Sta-
tistics of the forecast ensemble represent forecast errors;
in its simplest form, the EnKF only accounts for forecast
error due to uncertain initial conditions, neglecting fore-
cast error due to model deficiencies. The forecast en-
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semble mean and covariance are then used to assimilate
observations and compute a new analysis ensemble with
appropriate statistics, and the cycle is repeated. The new
analysis ensemble can be formed either stochastically
(Houtekamer and Mitchell 1998; Burgers et al. 1998)
or deterministically (Bishop et al. 2001; Anderson 2001;
Whitaker and Hamill 2002). Deterministic methods
were developed to address the adaptive observational
network design problem and to avoid sampling issues
associated with the use of ‘‘perturbed observations’’ in
stochastic analysis ensemble update methods.

The EnKF and other ensemble data assimilation meth-
ods belong to the family of square root filters (SRFs),
and a purpose of this paper is to demonstrate that de-
terministic analysis ensemble updates are implementa-
tions of Kalman SRFs (Bierman 1977; Maybeck 1982;
Heemink et al. 2001). An immediate benefit of this iden-
tification is a framework for understanding and com-
paring deterministic analysis ensemble update schemes
(Bishop et al. 2001; Anderson 2001; Whitaker and Ham-
ill 2002). SRFs, like ensemble representations of co-
variances, are not unique. We begin our discussion in
section 2 with a presentation of the Kalman SRF; issues
related to implementation of ensemble SRFs are pre-
sented in section 3; in section 4 we summarize our re-
sults.

2. The Kalman SRF

Kalman SRF algorithms, originally developed for
space-navigation systems with limited computational
word length, demonstrate superior numerical precision
and stability compared to the standard Kalman filter
algorithm (Bierman 1977; Maybeck 1982). SRFs by
construction avoid loss of positive definiteness of the
error covariance matrices. SRFs have been used in earth
science data assimilation methods where error covari-
ances are approximated by truncated eigenvector ex-
pansions (Verlaan and Heemink 1997).

The usual Kalman filter covariance evolution equa-
tions are

f a TP 5 M P M 1 Q , (1)k k k21 k k

a fP 5 (I 2 K H )P , (2)k k k k

where and are, respectively, the n 3 n forecastf aP Pk k

and analysis error covariance matrices at time tk; Mk is
the tangent linear dynamics; Hk is the p 3 n observation
operator; Rk is the p 3 p observation error covariance;
Qk is the n 3 n model error covariance matrix and Kk

[ (Hk 1 Rk)21 is the Kalman gain; n is thef fT TP H P Hk k k k

dimension of the system state; and p is the number of
observations. The error covariance evolution depends
on the state estimates and observations through the tan-
gent linear dynamics Mk. The propagation of analysis
errors by the dynamics with model error acting as a
forcing is described by Eq. (1). Equation (2) shows how
an optimal data assimilation scheme uses observations

to produce an analysis whose error covariance is less
than that of the forecast.

The forecast and analysis error covariance matrices
are symmetric positive-definite matrices and can be rep-
resented as 5 and 5 , where thef f Tf a a aTP Z Z P Z Zk k k kk k

matrices and are matrix square roots of andf a fZ Z Pk kk

, respectively; other matrix factorizations can be usedaPk

in filters as well (Bierman 1977; Pham et al. 1998). A
covariance matrix and its matrix square root have the
same rank or number of nonzero singular values. When
a covariance matrix P has rank m, there is an n 3 m
matrix square root Z satisfying P 5 ZZT; in low-rank
covariance representations the rank m is much less than
the state-space dimension n. This representation is not
unique; P can also be represented as P 5 (ZU)(ZU)T,
where the matrix U is any m 3 m orthogonal transfor-
mation UUT 5 UTU 5 I. The projection \xTZ\ 2 5 xTPx
of an arbitrary n-vector x onto the matrix square root
Z is uniquely determined, as is the subspace spanned
by the columns of Z.

Covariance matrix square roots are closely related to
ensemble representations. The sample covariance ofaPk

an m-member analysis ensemble is given by 5 SST/aPk

(m 2 1), where the columns of the n 3 m matrix S are
mean-zero analysis perturbations about the analysis en-
semble mean; the rank of is at most (m 2 1). AaPk

matrix square root of the analysis error covariance ma-
trix is the matrix of scaled analysis perturbation en-aPk

semble members 5 (m 2 1)21/2S.aZk

The Kalman SRF algorithm replaces error covariance
evolution equations (1) and (2) with equations for the
evolution of forecast and analysis error covariance
square roots and in a manner that avoids formingf aZ Zk k

the full error covariance matrices. If the model error
covariance Qk is neglected, (1) can be replaced by

f aZ 5 M Z .k k k21 (3)

In the ensemble context, (3) means to apply the tangent
linear dynamics to each column of the , that is, toaZk21

each scaled analysis perturbation ensemble member.
Practically, (3) can be implemented by applying the full
nonlinear dynamics to each analysis ensemble member.
For what follows, we only assume that the forecast error
covariance matrix square root is available and dofZk

not assume or restrict that it be calculated from (3).
Section 3b discusses more sophisticated methods of gen-
erating that can include estimates of model error andfZk

give a forecast error covariance matrix square root
whose rank is greater than the number of perturbations
evolved by the dynamical model.

Next, analysis error covariance equation (2) is replaced
with an equation for the analysis error covariance square
root . This equation determines how to form an analysisaZk

ensemble with appropriate statistics. Initial implementa-
tions of the EnKF formed the new analysis ensemble by
updating each forecast ensemble member using the same
analysis equations, equivalent to applying the linear op-
erator (I 2 KkHk) to the forecast perturbation ensemble
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. This procedure gives an analysis ensemble whose errorfZk

covariance is (I 2 KkHk) (I 2 KkHk)T and includes anal-fPk

ysis error due to forecast error; the Kalman gain Kk de-
pends on the relative size of forecast and observation error,
and the factor (I 2 KkHk) shows how much forecast errors
are reduced. However, in this procedure the analysis en-
semble does not include uncertainty due to observation
error and so underestimates analysis error. A stochastic
solution to this problem proposed independently by Hou-
tekamer and Mitchell (1998) and Burgers et al. (1998) is
to compute analyses using each forecast ensemble member
and, instead of using a single realization of the observa-
tions, to use an ensemble of simulated observations whose
statistics reflect the observation error. This method is
equivalent to the analysis perturbation ensemble update

a fZ 5 (I 2 K H )Z 1 K W ,k k k k k k (4)

where Wk is a p 3 m matrix whose m columns are
identically distributed, mean-zero, Gaussian random
vectors of length p with covariance Rk/m. The perturbed
observation analysis equation (4) gives an analysis per-
turbation ensemble with correct expected statistics:

a a f TT T^Z (Z ) & 5 (I 2 K H )P (I 2 K H ) 1 K R Kk k k k k k k k k k

a5 P . (5)k

However, the perturbed observation approach introduc-
es an additional source of sampling error that reduces
analysis error covariance accuracy and increases the
probability of underestimating analysis error covariance
(Whitaker and Hamill 2002). A Monte Carlo method
avoiding perturbed observations is described in Pham
(2001). The singular evolutive interpolate Kalman
(SEIK) filter uses both deterministic factorization and
stochastic approaches.

Kalman SRFs provide a deterministic algorithm for
transforming the forecast ensemble into an analysis en-
semble with consistent statistics. The ‘‘Potter method’’
for the Kalman SRF analysis update (Bierman 1977) is
obtained by rewriting (2) as

a a aT f T f T f21P 5 Z Z 5 [I 2 P H (H P H 1 R ) H ]Pk k k k k k k k k k k

f f T T f f T T f f T215 Z [I 2 Z H (H Z Z H 1 R ) H Z ]Zk k k k k k k k k k k

f T f T215 Z (I 2 V D V )Z , (6)k k k k k

where we define the m 3 p matrix Vk [ (Hk )T andfZk

the p 3 p innovation covariance matrix Dk [ Vk 1TV k

Rk. Then the analysis perturbation ensemble is calcu-
lated from

a fZ 5 Z X U ,k k k k (7)

where Xk 5 (I 2 V k ) and Uk is an arbitrary m21T TX D Vk kk

3 m orthogonal matrix. As formulated, the updated en-
semble is a linear combination of the columns ofaZk

and is obtained by inverting the p 3 p matrix Dk
fZk

and computing a matrix square root Xk of the m 3 m
matrix (I 2 V k ).21 TD Vkk

3. Ensemble SRFs

a. Analysis ensemble

In many typical earth science data assimilation ap-
plications the state-dimension n and the number of ob-
servations p are large, and the method for computing
the matrix square root of (I 2 V k ) and the updated21 TD Vkk

analysis perturbation ensemble must be chosen ac-aZk

cordingly. A direct approach is to solve first the linear
system DkYk 5 Hk for the p 3 m matrix Yk, that is,fZk

to solve
f fT(H P H 1 R )Y 5 H Z ,k k k k k k k (8)

as is done in the first step of the Physical-space Statis-
tical Analysis System (PSAS) algorithm (Cohn et al.
1998). Then, the m 3 m matrix I 2 Vk 5 I 221 TD Vkk

(Hk )TYk is formed, and its matrix square root Xk com-fZk

puted and applied to as in (7). Solution of (8), evenfZk

when p is large, is practical when the forecast error
covariance has a low-rank representation and the inverse
of the observation error covariance is available (see the
appendix). Iterative methods whose cost is on the order
of the cost of applying the innovation covariance matrix
are appropriate when the forecast error covariance is
represented by a correlation model.

When observation errors are uncorrelated, observa-
tions can be assimilated one at a time or serially (Hou-
tekamer and Mitchell 2001; Bishop et al. 2001). For a
single observation, p 5 1, Vk is a column vector, and
the innovation Dk is a scalar. In this case, a matrix square
root of (I 2 Vk ) can be computed in closed form21 TD Vkk

by taking the ansatz,

21 TT T TI 2 D V V 5 (I 2 b V V )(I 2 b V V ) ,k k k k k kk k k (9)

and solving for the scalar bk, which gives bk 5 [Dk 6
(RkDk)1/2]21. The analysis ensemble update for p 5 1 is

a f TZ 5 Z (I 2 b V V );k k k kk (10)

see Andrews (1968) for a general solution involving matrix
square roots of p 3 p matrices. At observation locations,
the analysis error ensemble is related to the forecast error
ensemble by Hk 5 (1 2 bk Vk)Hk . The scalar factora fTZ V Zk kk

(1 2 bk Vk) has an absolute value less than or equal toTVk

one and is positive when the plus sign is chosen in the
definition of bk.

In Whitaker and Hamill (2002) the analysis pertur-
bation ensemble is found from

a f˜Z 5 (I 2 K H )Z ,k k k k (11)

where the matrix K̃k is a solution of the nonlinear equa-
tion

f aT˜ ˜(I 2 K H )P (I 2 K H ) 5 P .k k k k k k (12)

In the case of a single observation, a solution of (12) is
f1/2 21K̃ 5 [1 1 (R /D ) ] K 5 b Z V ,k k k k k kk (13)

where the plus sign is chosen in the definition of bk.
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TABLE 1. Summary of analysis ensemble calculation computational
cost as a function of forecast ensemble size m, number of observations
p, and state dimension n.

Analysis method Cost

Direct
Serial
ETKF
EAKF

O(m2p 1 m3 1 m2n)
O(mp 1 mnp)
O(m2p 1 m3 1 m2n)
O(m2p 1 m3 1 m2n)

The corresponding analysis perturbation ensemble up-
date,

a f f f˜Z 5 (I 2 K H )Z 5 (I 2 b Z V H )Zk k k k k k k kk

f T5 Z (I 2 b V V ), (14)k k kk

is identical to (10). Observations with correlated errors,
for example, radiosonde height observations from the
same sounding, can be handled by applying the whit-
ening transformation to the observations to form21/2R k

a new observation set with uncorrelated errors.
Another method of computing the updated analysis

ensemble is to use the Sherman–Morrison–Woodbury
identity (Golub and Van Loan 1996) to show that

f T f21 21 21T TI 2 V D V 5 (I 1 Z H R H Z ) .k k k k k kk k (15)

The m 3 m matrix on the right-hand side of (15) is
practical to compute when the inverse observation error
covariance matrix is available. This approach21R k

avoids inverting the p 3 p matrix Dk and is used in the
ensemble transform Kalman filter (ETKF) where the
analysis update is (Bishop et al. 2001)

a f 21/2Z 5 Z C (G 1 I) ;k k k k (16)

CkGk is the eigenvalue decomposition of Hk .f T f21T TC Z H R Zk k k kk

Note that the matrix Ck of orthonormal eigenvectors is not
uniquely determined.1 Comparison with (15) shows that
Ck(Gk 1 I)21 is the eigenvalue decomposition of I 2TCk

Vk and thus that Ck(Gk 1 I)21/2 is a square root of (I21 TD Vkk

2 Vk ).21 TD Vkk

In the ensemble adjustment Kalman filter (EAKF) the
form of the analysis ensemble update is (Anderson
2001)

a fZ 5 A Z ;k k k (17)

the ensemble adjustment matrix Ak is defined by
21/2 21 T˜˜A [ F G C (I 1 G ) G F ,k k k k k k k (18)

where 5 F k is the eigenvalue decomposition off T2P G Fk k k

and the orthogonal matrix C̃k is chosen so thatfPk

Gk HkFkGkC̃k 5 k is diagonal.2 Choosing theT 21T T ˜C̃ F H R Gk kk k

orthogonal matrix C̃k to be C̃k 5 Ck gives thatf21 TG F Zkk k

k 5 Gk and that the ensemble adjustment matrix isG̃

f 21/2 21 TA 5 Z C (I 1 G ) G F .k k k k k k (19)

The EAKF analysis update (17) becomes
a f f21/2 21 TZ 5 Z C (I 1 G ) G F Z .k k k kk k k (20)

The EAKF analysis ensemble given by (20) is the same

1 For instance, the columns of Ck that span the (m 2 p)-dimensional
null space of Hk are determined only up to orthogonalf T f21TZ H R Zk k kk

transformations if the number of observations p is less than the en-
semble size m.

2 The appearance of in the definition of the ensemble adjust-21G k

ment matrix A seems to require the forecast error covariance tofPk

be invertible. However, the formulation is still correct when Gk is m9
3 m9 and Fk is n 3 m9 where m9 is the number of nonzero eigenvalues
of .fPk

as applying the transformation to the ETKFf21 TG F Zkk k

analysis ensemble. The matrix is orthogonalf21 TG F Zkk k

and is, in fact, the matrix of right singular vectors of
. Therefore, Ck(I 1 Gk)21/2 is a matrix squaref f21 TZ G F Zk kk k

root of (I 2 Vk ).21 TD Vkk

Beginning with the same forecast error covariance,
the direct, serial, ETKF, and EAKF methods produce
different analysis ensembles that span the same state-
space subspace and have the same covariance. Higher-
order statistical moments of the different models will
be different, a relevant issue for nonlinear dynamics.
The computation costs of the direct, ETKF, and EAKF
methods are seen in Table 1 to scale comparably (see
the appendix for details). There are differences in pre-
cise computational cost; for instance, the EAKF contains
an additional singular value decomposition (SVD) cal-
culation of the forecast with cost O(m3 1 m2). The
computational cost of the serial filter is less dependent
on the rank of the forecast error covariance and more
sensitive to the number of observations. This difference
is important when techniques to account for model error
and control filter divergence, as described in the next
section, result in an effective forecast error covariance
dimension m much larger than the dynamical forecast
ensemble dimension.

b. Forecast error statistics

In the previous section we examined methods of
forming the analysis ensemble given a matrix square
root of the forecast error covariance. There are two fun-
damental problems associated with directly using the
ensemble generated by (3). First, ensemble size is lim-
ited by the computational cost of applying the forecast
model to each ensemble member. Small ensembles have
few degrees of freedom available to represent errors and
suffer from sampling error that further degrades forecast
error covariance representation. Sampling error leads to
loss of accuracy and underestimation of error covari-
ances that can cause filter divergence. Techniques to deal
with this problem are distance-dependent covariance fil-
tering and covariance inflation (Whitaker and Hamill
2002). Covariance localization in the serial method con-
sists of adding a Schur product to the definition of K̃
(Whitaker and Hamill 2002). Similarly, observations ef-
fecting analysis grid points can be restricted to be nearby
in the EAKF (Anderson 2001).

The second and less easily resolved problem with
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using the ensemble generated by (3) is the neglect of
model error and resulting underestimation of the fore-
cast error covariance. Since there is little theoretical
knowledge of model error statistics in complex systems,
model error parameterizations combined with adaptive
methods are likely necessary (Dee 1995). When the
model error covariance Qk is taken to have large-scale
structure, a reasonable representation is an ensemble or
square root decomposition, Qk 5 , where is and dT dZ Z Zk k k

n 3 q matrix. Then, a square root of is the n 3 mfPk

matrix:
f a dZ 5 [MZ Z ],k k k (21)

where m 5 me 1 q and me is the number of dynamically
evolved forecast perturbations. With this model error
representation, ensemble size grows by q with each fore-
cast–analysis cycle. Ensemble size can be limited by
computing the singular value decomposition of the en-
semble and discarding components with small variance
(Heemink et al. 2001). A larger ensemble with evolved
analysis error and model error could be used in the
analysis step, and a smaller ensemble used in the dy-
namical forecast stage. When the model error covariance
Qk is approximated as an operator, for instance using a
correlation model, Lanczos methods can be used to com-
pute the leading eigenmodes of Mk (Mk )T 1 Qk

a aZ Zk21 k21

and form (Cohn and Todling 1996). Such a forecastfZk

error covariance model would resemble those used in
‘‘hybrid’’ methods (Hamill and Snyder 2000). In this
case, the rank of can be substantially larger than thefZk

forecast ensemble size, making the serial method at-
tractive. Monte Carlo solutions are another option as in
Mitchell and Houtekamer (2000), where model error
parameters were estimated from innovations and used
to generate realizations of model error. Perturbing model
physics, as done in system simulation, explicitly ac-
counts for some aspects of model uncertainty (Houtek-
amer et al. 1996).

4. Summary and discussion

Ensemble forecast/assimilation methods use low-rank
ensemble representations of forecast and analysis error
covariance matrices. These ensembles are scaled matrix
square roots of the error covariance matrices, and so
ensemble data assimilation methods can be viewed as
square root filters (SRFs; Bierman 1977). After assim-
ilation of observations, the analysis ensemble can be
constructed stochastically or deterministically. Deter-
ministic construction of the analysis ensemble elimi-
nates one source of sampling error and leads to deter-
ministic SRFs being more accurate than stochastic SRFs
in some examples (Whitaker and Hamill 2002; Ander-
son 2001). SRFs are not unique since different ensem-
bles can have the same covariance. This lack of unique-
ness is illustrated in three recently proposed ensemble
data assimilation methods that use the Kalman SRF
method to update the analysis ensemble (Bishop et al.

2001; Anderson 2001; Whitaker and Hamill 2002).
Identifying the methods as SRFs allows a clearer dis-
cussion and comparison of their different analysis en-
semble updates.

Accounting for small ensemble size and model de-
ficiencies remains a significant issue in ensemble data
assimilation systems. Schur products can be used to
filter ensemble covariances and effectively increase co-
variance rank (Houtekamer and Mitchell 1998, 2001;
Hamill et al. 2001; Whitaker and Hamill 2002). Co-
variance inflation is one simple way of accounting for
model error and stabilizing the filter (Hamill et al. 2001;
Anderson 2001; Whitaker and Hamill 2002). Hybrid
methods represent forecast error covariances with a
combination of ensemble and parameterized correlation
models (Hamill and Snyder 2000). Here we have shown
deterministic methods of including model error into a
square root or ensemble data assimilation system when
the model error has large-scale representation and when
the model error is represented by a correlation model.
However, the primary difficulty remains obtaining es-
timates of model error.

The nonuniqueness of SRFs has been exploited in
estimation theory to design filters with desirable com-
putational and numerical properties. An open question
is whether there are ensemble properties that would
make a particular SRF implementation better than an-
other, or if the only issue is computational cost. For
instance, it may be possible to choose an analysis update
scheme that preserves higher-order, non-Gaussian sta-
tistics of the forecast ensemble. This question can only
be answered by detailed comparisons of different meth-
ods in a realistic setting where other details of the as-
similation system such as modeling of systematic errors
or data quality control may prove to be as important.
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APPENDIX

Computational Costs

Here we detail the computational cost scalings sum-
marized in Table 1. All the methods require applying
the observation operator to the ensemble members to
form Hk , and we do not include its cost. This cost isfZk

important when comparing ensemble and nonensemble
methods, particularly for complex observation opera-
tors. The cost of computing Hk is formally O(mnp),fZk

but may be significantly less when Hk is sparse or can
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be applied efficiently. We also assume that the inverse
observation error covariance is inexpensive to ap-21R k

ply.

a. Direct method

1) Solve (Hk 1 Rk)Yk 5 Hk for Yk. If R21 isf fTP H Zk k k

available, the solution can be obtained using the
Sherman–Morrison–Woodbury identity (Golub and
Van Loan 1996),

f T 21(H P H 1 R )k k k k

f f fT 2121 21 215 R 2 R H Z [I 1 (H Z ) R (H Z )]k k k k k k

f T 213 (H Z ) R ,k k

and only inverting m 3 m matrices. Cost: O(m3 1 m2p).
2) Form I 2 (Hk )TYk. Cost: O(pm2).fZk

3) Compute matrix square root of the m 3 m matrix I
2 (Hk )TYk. Cost: O(m3).fZk

4) Apply matrix square root to Zf . Cost: O(m2n).

Total cost: O(m3 1 m2p 1 m2n).

b. Serial method

For each observation:

1) Form D. Cost: O(m).
2) Form I 2 bVVT and apply to . Cost: O(nm).fZk

Total cost: O(mp 1 mnp).

c. ETKF

1) Form Zf THTR21HZf . Assume R21 inexpensive to ap-
ply. Cost: O(m2p).

2) Compute eigenvalue decomposition of m 3 m ma-
trix. Cost: O(m3).

3) Apply to Zf . Cost: O(m2n).

Total cost: O(m2p 1 m3 1 m2n).

d. EAKF

Cost in addition to ETKF:

1) Eigenvalue decomposition of Pf (low rank). Cost:
O(m2n 1 m3).

2) Form FTZf . Cost: O(m2p).

Total cost: O(m2p 1 m3 1 m2n).
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