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ABSTRACT

The binned probability ensemble (BPE) technique is presented as a method for producing forecasts of the
probability distribution of a variable using an ensemble of numerical model integrations. The ensemble forecasts
are used to partition the real line into a number of bins, each of which has an equal probability of containing
the “‘true’’ forecast. The method is tested for both a simple low-order dynamical system and a general circulation

.model (GCM) forced with observed sea surface temperatures (an ensemble of Atmospheric Model Intercom-

parison Project integrations). The BPE method can also be used to calculate the probability that probabilistic
ensemble forecasts are consistent with the verifying observations. The method is not sensitive to the fact that
the characteristics of the forecast probability distribution may change drastically for different initial condition
(or boundary condition) probability distributions. For example, the method is capable of evaluating whether the
variance of a set of ensemble forecasts is consistent with the verifying observed variance. Applying the method
to the ensemble of boundary-forced GCM integrations demonstrates that the GCM produces probabilistic fore-
casts with too little variability for upper-level dynamical fields. Operational weather prediction centers including
the U. K. Meteorological Office, the European Centre for Medium-Range Forecasts, and the National Centers
for Environmental Prediction have been applying this method, referred to by them as Talagrand diagrams, to
the verification of operational ensemble predictions. The BPE method only evaluates the consistency of ensemble
predictions and observations and should be used in conjunction with additional verification tools to provide a
complete assessment of a set of probabilistic forecasts.
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1. Introduction

Breaking with a long tradition of producing a single
‘‘deterministic’’ numerical forecast, operational pre-
diction centers have recently begun to produce real-
time ensemble numerical forecasts. While it now seems
apparent that ensemble forecasts are one of the few
currently tractable approaches to modeling the uncer-
tainty inherent in predictions of the atmosphere—ocean
system, a great number of questions about how best to
produce, interpret, summarize, and evaluate ensemble
forecasts remain.

Ensemble forecasts have been utilized in a variety of
ways at operational centers. Perhaps the most funda-
mental application is to use the ensemble mean forecast
as a substitute for a single traditional ‘‘discrete’” fore-
cast (Brankovic et al. 1990; Milton 1990; Tracton and
Kalnay 1993). In general, ensemble average forecasts
have reduced error compared to the mean error of the
individual forecasts when evaluated with most tradi-
tional error metrics (Seidman 1981; Murphy 1988). As
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pointed out by Leith (1974), much but not all of this
error reduction can be reproduced by statistical filtering
techniques making use of previous forecast verifica-
tions.

Ensemble forecasts have also frequently been sub-
jected to clustering algorithms ( Brankovic et al. 1990;
Ferranti et al. 1994), with the goal of producing a
small, easily understood set of forecast states, usually
characterized by the cluster means. Such methods at-
tempt to make use of more information than is used by
a single grand mean forecast, and there have been some
promising results. Nevertheless, the proper definition
of “‘cluster’’ in such ensemble results remains an un-
resolved question, and algorithms used for forming
clusters contain a number of heuristic parameters that
can have some impact on the resulting clusters. In ad-
dition, it continues to be difficult to establish whether
clusters in this sense should really be expected to exist
in the forecast probability distributions arising from
current generation GCMs and observational error dis-
tributions ( Trevisan 1995; Wallace et al. 1991; Cheng
and Wallace 1993). Many researchers are continuing
to address such issues in both simple models and
GCMs.

A third application of ensemble forecasts has been
to make a priori predictions of forecast skill (Murphy
1990; Milton 1990). The most straightforward of these
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methods postulates a relation between the spread of a
forecast ensemble distribution and the skill of a forecast
(Hoffman and Kalnay 1983; Mureau et al. 1993), usu-
ally the ensemble mean, derived from the ensemble.
Even in relatively simple models, the prediction of skill
has proved to be less straightforward than one might
hope (Barker 1991), although there continue to be sug-
gestions that such predictions can be made in opera-
tional models (Tracton et al. 1989; Barkmeijer et al.
1993; Brankovic et al. 1994). As pointed out by An-
derson and Stern (1996), it is important that the mea-
sure of ensemble spread and the measure of forecast
skill be appropriately related. Even when such efforts
are taken, problems such as the interaction of system-
atic model error with spread and skill are not yet com-
pletely understood.

A final paradigm for utilizing ensemble forecasts is
to examine the entire ensemble. Obviously, the most
information can be extracted in this fashion, but the
information may be in a form that is too complex to be
readily utilized. Ensemble forecasts from a large vari-
ety of models have been examined in this fashion (see,
e.g., Tracton and Kalnay 1993). Ensemble integrations
with prescribed external forcing have also been eval-
uated in a similar fashion (Hoerling et al. 1992).

In what follows, a method for utilizing ensemble
forecasts that makes direct use of all ensemble mem-
bers is described. The goal of this method is to use as
much information as possible from the ensemble by
approximating the forecast probability distribution for
some variable. This method produces probabilistic
forecasts of variables and also leads to a method for
verifying the consistency of such forecasts with obser-
vations. The consistency verification method is non-
parametric and allows verification of large sets of en-
semble forecasts. Unlike many tools that have been ap-
plied to verify ensemble forecasts to date, this method
evaluates the entire probability distribution forecast,
not just the mean or some set of low-order moments
(Deque et al. 1994). The method can be applied to
forecasts whose verifications have radically different
probability distributions. The verification method can
be used to study the systematic error characteristics of
the entire forecast probability distribution. Similar
methods have been developed independently by groups
at several operational centers and are now being used
operationally to verify the consistency of ensemble
forecasts (Harrison et al. 1995).

It is assumed in the following sections that the state
of the atmosphere used as initial conditions for numer-
ical model forecasts can never be measured exactly be-
cause of observational limitations. Instead, the initial
conditions can only be properly represented in terms of
a probability distribution that is determined by the ob-
served state and the distribution of observational errors;
the significant difficulties in finding this observational
error distribution are ignored here. A forecast consists
of integrating the initial condition probability distri-
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bution with a numerical model and determining the re-
sulting probability distribution at some later time. In
practice, it is too expensive to integrate the initial prob-
ability distribution forward in time (Epstein 1969a), so
traditional Monte Carlo ensemble forecasts must be
used to attempt to produce an equitable sample of the
forecast probability distribution. It should be noted that
the methods currently in use by many operational cen-
ters do not explicitly try to create an equitable sample
of the initial condition probability distribution (Tracton
and Kalnay 1993; Harrison et al. 1995).

It is also useful to define a ‘‘true’’ forecast proba-
bility distribution. This is the probability distribution
that would be obtained if the initial condition proba-
bility distribution could be integrated forward to the
forecast time with a perfect model. In other words, it
is the best forecast that can be made given that obser-
vational errors are inevitable. The actual true verifying
state of the atmosphere (which can itself never be
known exactly due to observational error) can be
thought of as a random sample from the *‘true’’ fore-
cast probability distribution.

Section 2 presents some basic results on sampling of
random variables; the relation between ensemble fore-
casts and such random variables is then developed. Sec-
tions 3 and 4 present sample applications of the
method. Section 3 examines the method in the context
of a simple dynamical model, while section 4 uses a
sophisticated atmospheric general circulation model
forced by observed sea surface temperature (SST) dis-
tributions. Section 5 presents discussion and ideas for
additional applications.

2. Binned probability ensemble forecasts

This section examines the use of binned probability
ensemble (BPE) forecasts. The first subsection dis-
cusses the theory of BPE forecasts, while the second
presents a simple idealized example of a forecast. The
third subsection eventually relaxes the perfect model
context that is assumed in the previous subsections in
order to demonstrate use of the BPE method for vali-
dating ensemble forecasts and for investigating system-
atic errors in models and initial condition distributions.

a. Theory

Let X be a random variable and let the set x;, (i = 0,
- -+, n — 1) be samples of this random variable. The x;
can be sorted by value, and there is a 1/n chance that
sample x, is the smallest, a 1/n chance that it is the
second smallest, etc. The remaining n — 1 samples x;
(i=1, ---, n — 1) partition the real line into » inter-
vals, called bins hereafter. It follows that the probability
that the sample x, falls into any given bin is 1/n.

Now let U(t) = (u,(2), u(t), -+ u,(z)) be an m-
dimensional vector that represents the state of a forecast
model in phase space (Gleeson 1970). Because of un-
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certainties in the initial condition of the forecast model
integration, the state of a perfect forecast model at any
time is represented as an m-dimensional random vari-
able that is a function of time, V (¢), and the ith indi-
vidual sample from V at a given time is represented by
the state vector ;U(#). Suppose that there are n samples
from V (#), one of which is the truth, (U(#), and an (n
— 1)-member ensemble forecast, ;U(¢),i=1, -+, n
— 1. There exists a random variable, X;(¢), associated
with the jth vector component of V (#) (X; is the mar-
ginal distribution of V for the jth vector component).
Let ;u; represent the ith sample of X;. The (n — 1)
forecasts of the jth component (ju;, i =1, - n— 1)
can be sorted to partition the real line into » bins, and
as in the previous paragraph, the probability that the
truth ou; lies in any given bin is 1/n.

When making an ensemble forecast, an explicit rep-
resentation of the forecast probability distribution cor-
responding to V is not available for any but the initial
time, so V cannot be sampled directly. Instead, when
making ensemble forecasts (in some idealized world),
one is given a single observation of the initial state,
Uops, @ probability distribution for the observational er-
ror corresponding to an m-dimensional random vari-
able E, and a numerical forecast model (assumed to be
a perfect model for the time being) that maps a state at
the initial time into a forecast state at time f;. The fore-
cast model can be represented by a function, g, such
that U(z = #;) = g[U(r = 0)].

Following Leith (1974), a probability distribution
for the true initial state can be created by adding the
observational error distribution to the observed point.
Let the random variable Y = V(¢ = 0) = E + Uy, be
:associated with this initial condition distribution. Next,
again assuming a perfect model, V(¢ = t;) = g(¥) is
a random variable associated with the distribution of
the forecast state, U(¢ = #;). When making an (n — 1)-
member ensemble forecast, n — 1 initial condition
states are sampled from Y using the observed point and
the observational error distribution. Each of these initial
states is then integrated by the forecast model to pro-
duce an n — 1 member sample of V(¢ = 1;). A binned
probability forecast can then be made for any compo-
nent of the state vector at the forecast time (or for any
function of the state variables) following the example
of the previous paragraph. The n — 1 ensemble values
of the jth component of the state vector are sorted to
divide the real line into n intervals; again, the proba-
bility that the true value of the jth component of the
state falls into any given bin is 1/n.

b. Binned forecast example

As a simple example, suppose a three-member en-
semble forecast is made using an atmospheric forecast
model. Three possible initial conditions for the ensem-
ble are selected by randomly sampling from the initial
condition distribution, and each is then integrated with
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the numerical model. Suppose that the forecast values
of temperature at a given model grid point are 22, 23,
and 26. Then the probability that the true temperature
is less than 22 is one-quarter, the probability that it is
between 22 and 23 is one-quarter, the probability that
it is between 23 and 26 is one-quarter, and the proba-
bility that it is greater than 26 is also one-quarter. With-
out making use of additional information about the
forecast model or the initial condition distribution, this
is the most information that can be extracted about this
temperature from the ensemble forecast. Providing
probabilistic forecasts in this form is particularly useful
since any user of the forecasts can extract whatever
information they would like.

To avoid confusion in the following discussion, it is
essential that a precise terminology be defined.
Throughout the following sections, the term ‘‘mem-
ber’’ is used to refer to an individual discrete forecast
that is part of an ensemble of forecasts selected from
the same initial condition probability distribution. The
term ‘‘set’” will be used to refer to a collection of n-
member ensemble of forecasts. A set is composed of
individual ‘‘samples,’’ each of which is an n-member
ensemble of forecasts. Each sample is assumed to be
for a unique initial condition probability distribution.

¢. Model validation with binned forecasts

Model validation can also be performed using BPE
forecasts. Given an m-sample set of (n — 1)-member
perfect model ensemble forecasts and the correspond-
ing verifying true state vectors, the m samples of the
bin number containing the true state should be uni-
formly distributed in the » bins. Since the BPE method
is nonparametric, this result does not depend on any of
the details of the probability distribution of the fore-
casts or the initial conditions, so a large set of ensemble
forecasts can be grouped for validation without diffi-
culty. The traditional chi-square test can be directly ap-
plied to the BPE results for a set of ensemble forecasts
to see how likely it is that the bin distribution is uni-
form.

However, the whole premise of ensemble forecasts
is based on the notion that the true state of the system
being forecast cannot be exactly measured; instead, all
observed states include the effects of the observational
error, E. As pointed out above, the ‘‘true’’ state of the
system at the verification time should fall into each of
the n bins with equal probability (the perfect model
assumption is still being made). However, this is not
the case for the observed state at the forecast time. The
observed state is sampled from a random variable Z
= V 4+ E. In order to validate ensemble forecasts using
the BPE technique, each of the ensemble forecasts at
the verification time is regarded as an independent es-
timate of the ‘‘true’’ state of the system. A random
sample from the observational error distribution, E,
must be added to each member of the ensemble forecast



JuLy 1996

so that the members will be independent estimates of
the “‘observed’’ state at the forecast time. Once this has
been done, the resulting n — 1 forecasts of the random
variable Z can be used to form bins. This time, the
observed state at the forecast time is equally likely to
fall into any one of the n bins.

Now suppose that the perfect model assumption is
no longer necessarily valid and that the specification of
the error distribution E is also possibly incorrect. Val-
idations for a large set of ensembles can be performed
as outlined above. For each ensemble forecast in the
set being verified, the ensemble members are used to
form n bins. The number of the bin into which the
corresponding observation falls is then found. The chi-
square test can be used to determine if the observations
are uniformly distributed in the bins and the signifi-
cance of the chi-square test can be evaluated. A small
value of chi-square significance means that the distri-
bution of observations in the bins is significantly dif-
ferent from uniform so that either the forecast model
or the observational distribution must be inconsistent
with the truth.

In cases where the distribution of the observations
in the bins is not uniform, an examination of the fre-
quency with which the observation falls into each of
the bins can help to analyze the structure of the model
systematic error distribution. This is related to the tra-
ditional examination of model bias, however, in this
case the chi-square test gives an a priori assessment of
the significance of the model systematic error. Bias (in
terms of the median, not the mean) in the forecasts can
be seen if many of the verifications fall well to one side
of the middle bin. Problems with variance of the fore-
cast distributions can be seen if the verifications are
clustered in a few neighboring bins, or if many of the
verifications are located in bins far away from the cen-
ter. It is important to recall that the chi-square test is
measuring the statistical significance of the difference
between the distributions, not the strength of the dif-
ference (see section 3). Given ensembles with many
members and a sufficiently large sample of ensemble
forecasts, problems with even higher order moments of
the forecast distribution can be diagnosed.

The next two sections provide demonstrations of the
BPE method for evaluating ensemble forecasts. The
first section examines an initial value problem in a
highly idealized model, while the second examines re-
sults for a modern general circulation model integrated
for a long period in the presence of observed sea sur-
face temperature forcing.

3. Binned forecasts in the Lorenz model

In this section, the three-variable Lorenz convective
model (Lorenz 1963) is used to provide demonstra-
tions of the BPE technique. This model is used because
its small size allows very large samples of ensembles
with many members to be generated. Although it is
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obviously far-fetched to assume that such large ensem-
bles will ever be available for realistic atmospheric
models, it is useful to use the simple model to under-
stand the behavior of the BPE technique.

The Lorenz model is represented by the equations:

X=—ox + oy (1)
y=—XZ+rx—y (2)
Z=xy— bz (3)

where the dot represents a derivative with respect to
time. The parameters are set to ¢ = 10, r = 28, and b
= 8/3, identical to those used in Lorenz (1963) with
a nondimensional time step of 0.01 unless otherwise
noted. With these parameters, the model displays cha-
otic behavior. A probability distribution for the initial
conditions in this model is stretched and twisted in
phase space as integration time increases. Since the sys-
tem is ergodic, after a sufficiently long integration time
the forecast probability distribution becomes identical
to the distribution created by periodically sampling a
single very long integration of the model.

A large number of true states, X,, from the Lorenz
model attractor are generated by integrating the model
for a very long time from arbitrary initial conditions,
discarding the first 100 000 time steps, and then sam-
pling the rest of the integration every 1000 steps. For
most of the results reported here, a set of 1000 initial
states is used. An observational error distribution cor-
responding to the random variable E of the previous
section is specified as multinormal with a standard de-
viation of 1.0 (about 2% of the range of these variables
on the attractor) for each of x, y, and z. A set of 1000
“‘observed’’ states is generated by adding an indepen-
dent random sample from E to each of the 1000 true
states.

An ensemble of initial condition members are gen-
erated for each of the 1000 observed states by adding
random samples from E to the observed states (Leith
1974). These ensemble initial conditions correspond to
samples from the random variable Y defined in section
2. All experiments here use an ensemble size of nine
unless otherwise noted.

For each of the 1000 true states, the true state and
the nine ensemble initial conditions are integrated in
the Lorenz model. At a given lead time and for each of
the 1000 samples, the nine ensemble values of each of
the Lorenz variables (x, y, and z) are sorted to form
equiprobable bins. The bin number into which the true
state falls is then determined. This results in 1000 true-
state bin values at each forecast lead time; one can then
test if the distribution of these 1000 samples is uniform
in the ten bins. Figure 1 plots the significance of the
chi-square test applied to the distribution of the true
state in the bins for lead times out to 200 steps for the
z variable. The chi-square significance can be inter-
preted as the probability that the distribution of the true
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time for z in the Lorenz model for perfect model ensembles, 1000
samples, nine-member ensembles.

values in the bins was selected from a uniform distri-
bution. Small values indicate that the binned distribu-
tion is probably not uniform. For the results of Fig. 1,
the chi-square tests support the conclusion that the real
state falls into each of the bins with equal probability.
This demonstrates that the BPE method provides con-
sistent probabilistic forecasts. The large variability of
the significance of the chi-square test with time is sim-
ply a reflection of the fact that for the null hypothesis
of identical distributions, the chi-square significance
values should have a uniform distribution on [0, 1].

In any more realistic situation, only noisy observa-
tions of the system would be available and the true state
of the system could never be known exactly. From now
on, it is assumed that only the observed values from
the Lorenz model integration are available. As pointed
out in section 2, in order to validate the ensemble fore-
casts in this case, it is necessary to add a random sample
from the observational error distribution, E, to each
ensemble forecast element before forming the bins into
which the verifying observed value is placed. Results
for this experiment are qualitatively similar to those of
Fig. 1, again providing heuristic verification of the BPE
technique as developed in section 2.

The ability of the BPE method to detect errors in the
forecast model is investigated in a third experiment
with the Lorenz model. The observed states and the
ensemble initial conditions are selected as in the pre-
vious discussion. This time, however, the ensemble
forecasts are integrated using a value of b in (3) that
is 2% larger than in the control integration. In this case,
the ensembles should become a progressively worse
estimate of the true state as forecast lead time is in-
creased. Figure 2 shows chi-square significance for the
BPE technique applied to the observed values of z for
this case. As lead time increases, the significance de-
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creases to values close to zero, indicating that the BPE
forecast is no longer a good estimate of the true state
(i.e., the ensemble forecasts with added samples from
the observational error are not good estimates of the
observed state). At very long lead times (not shown in
the figure), the chi-square values rebound to indicate
that the BPE method provides a good probabilistic fore-
cast. This is simply a result of the ergodicity of the
Lorenz system and the fact that the attractors for the
Lorenz system with the standard value of b and the 2%
increased value are statistically extremely similar.

The BPE technique can also detect errors resulting
from an improper estimate of the observational error
when selecting ensemble initial conditions and validat-
ing the binned probability forecasts. An experiment to
demonstrate this is constructed by using the same ob-
served states as in the previous experiments. However,
in this case, the error distribution used in forming the
ensemble initial conditions and in modifying the en-
semble forecasts before forming the bins is assumed to
be multinormal with a standard deviation of only 0.90
(as opposed to 1.0, which is used to generate observed
states from the true states). Figure 3 plots the signifi-
cance of the chi-square test for z in this experiment. For
small lead times, the chi-square significance is. gener-
ally small, indicating that the BPE forecasts are not
consistent with the observed states. However, after
about 100 steps, the chi-square values begin to in-
crease, indicating that the binned forecasts are becom-
ing progressively better. This is a result of the sym-
metric nature of the error introduced in the observa-
tional error distribution. As the forecast lead time is
increased, both the correct and the erroneous (i.e., the
1.0 and 0.90 standard deviation observational error, re-
spectively ) probability distributions in phase space are
stretched and twisted as shown in Anderson (1996).
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As the distributions become increasingly deformed, the
probability density in the wings of the distributions be-
comes less, and it becomes more and more difficult to
detect statistically significant differences in this part of
the distribution.

This simple model context is convenient for a brief
examination of the sensitivity of the results to the num-
ber of members in the ensemble and to the number of
samples in the set (see discussion of terminology in
section 2b) used to evaluate the BPE forecasts. As the
number of ensemble members increases, the ability of
a perfect model to resolve details of the forecast prob-
ability structure increases. However, if the BPE fore-
casts are being used to validate forecasts from an im-
perfect model, the results of the chi-square significance
are not particularly sensitive to the number of bins (en-
semble members) in this simple model. In this case the
number of bins is not particularly relevant to determin-
ing if a forecast differs in some way from the verifi-
cation because the mean of the two distributions is dif-
ferent. Nevertheless, if the details of the systematic er-
ror structure of the model are of interest or if
differences only exist in higher-order moments of the
distributions, using more than just a few bins may re-
veal additional information about the systematic error.
In addition, more complex models might introduce
more complicated structure in their forecast probability
distributions. It might require relatively large numbers
of bins to detect the details of such probability distri-
butions.

Not surprisingly, the results of the chi-square test are
sensitive to the number of samples in the set used to
evaluate ensemble forecasts (i.e., the number of differ-
ent observations for which ensemble forecasts have
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been made). As the sample size increases, the infor-
mation yielded by the ensemble forecasts increases;
large samples can reveal differences that cannot be dis-
tinguished from noise by small samples. Figure 4
shows the chi-square significance for the same condi-
tions as in Fig. 2 (the flawed model example), except
that the statistic has been evaluated for a smaller 100
sample and a larger 5000 sample set. The 5000 sample
case shows that the significance of the chi-square be-
comes very small after just a few steps (the solid curve
for the 5000 sample case is only visibly nonzero for
the first few steps), while the 100 sample case is never
able to distinguish between forecast and verification
with statistical significance. Although the chi-square
test is only a measure of the significance of differences
between the forecasts and verifications and not the
strength of the difference, indirect information about
the strength of the difference can be gleaned from the
sample size needed to find significant differences.

Only results for z have been shown in this section,
since results for x and y lead to qualitatively similar
conclusions. In the perturbed model and initial condi-
tion experiments, z is somewhat more sensitive to dif-
ferences between the ensemble and the verification than
are x and y.

4, AMIP ensemble integration

In this section, the BPE technique is applied to an
ensemble of integrations in an atmospheric general cir-
culation model (GCM) that is forced by observed sea
surface temperatures (SSTs). The atmospheric model
is an 18-level spectral model truncated at T42 and is
described in Gordon and Stern (1974, 1982). The pre-
scribed SSTs are those used for the Atmospheric Model
Intercomparison Project (AMIP) (Gates 1992). A
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nine-member ensemble was integrated for 10 years
from 1 January 1979 through 31 December 1988. The
initial conditions for the ensembles were taken from
analyses for 12 December 1978 through 21 January
1979, sampled every five days. Each of these analyses
was then used as an initial condition as if it were the
analysis for 1 January 1979. A more detailed descrip-
tion of the ensemble integrations can be found in Stern
and Miyakoda (1995). Although this is not a true fore-
cast experiment because of the imposed SSTs, the re-
sults will be referred to as ‘‘forecasts’ throughout this
section.

The first 14 months of the ensemble integrations
were discarded in an attempt to eliminate direct effects
of the initial conditions. The remainder of the integra-
tions were divided into 35 3-month seasonal means ex-
tending from MAM (March, April, May) 1980 through
SON (September, October, November) 1988, giving a
total of 8 years for the DJIF (December, January, Feb-
ruary) season and 9 years for all others. An ensemble
mean climatology was computed for each of the four
seasons and removed from the individual seasonal
fields to produce seasonal mean model anomaly fields.
Verifying anomaly fields in this fashion is equivalent
to making an a posteriori seasonal mean bias correc-
tion. Verifying anomaly fields neglects differences due
to model bias but allows easier examination of differ-
ences in the variance of the forecast and verifying prob-
ability distributions. Since the BPE can reveal infor-
mation about the variance that traditional parametric
methods cannot, only the anomaly forecasts are verified
here to highlight this ability.

a. Perfect model validation

As a first test, the BPE technique was used to validate
the ensemble integrations in a perfect model context.
One of the ensemble integrations was designated as the
“‘truth,”” and the other eight integrations were treated
as an eight-member ensemble. For a given season, at
each grid point of the model’s Gaussian grid, the eight-
ensemble members were used to form nine bins for a
given scalar field and the ‘‘true’” value was placed in
the appropriate bin. A separate chi-square test was per-
formed at each grid point of the model Gaussian grid.
In the first application, a set of nine samples consisting
of each of the MAM cases was validated (in this case,
each sample in a set corresponds to different external
forcing, rather than to different observed states as in
the initial value problem of section 3). When the first
ensemble integration was designated as the ‘‘truth,”’
the chi-square tests indicated that the remaining eight-
member ensemble was not a consistent forecast of the
“truth.”” Over 31% of the grid points produced chi-
square results with significance less than 0.01. Addi-
tional tests revealed the cause of this inconsistency be-
tween the AMIP ensemble members. If integration 2
was designated as the truth, and integrations 3—-9 were
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used as a seven-member ensemble forecast, just more
than 1% of the grid points produced chi-square signif-
icance less than 0.01, and 11% of the points produced
significance less than 0.1. This result indicates that in-
tegrations 2 through 9 are apparently consistent. A
careful study of the AMIP integrations revealed that
integration 1 had been performed with a slightly mod-
ified gravity wave drag parameterization. The differ-
ences in the integrations are subtle enough that they
had not been noticed by a number of researchers who
had previously used the data, but they were immedi-
ately detected by the binning technique.

b. Validation with observations

For the remainder of this section, the first integration
of the AMIP model is discarded and the remaining in-
tegrations are used as an eight-member ensemble.
Three model fields, 200-hPa height, 850-hPa temper-
ature, and precipitation, were compared to observa-
tions. The upper air observations were produced from
the daily NMC analyzed values. In the isolated cases
where NMC daily observations were unavailable, an
attempt was made to use the corresponding ECMWF
daily analyzed values. The daily values were then av-
eraged at each grid point to form seasonal means cor-
responding to the AMIP seasonal means described
above. The precipitation data were prepared by
Schemm et al. (1992) and are composed of data from
the world monthly surface station climatology dataset.
In all cases, validation was done by interpolating data
from the model Gaussian grid to the data grid and then
performing binning at each data grid point. For all of
the observed data ficlds, seasonal mean climatologies
were generated and removed from the individual sea-
sonal means to produce seasonal anomaly fields.

Figure 5 shows the chi-square significance for the
850-hPa temperatures for MAM. This experiment has
nine bins (since there are eight ensemble members)
and, purely by coincidence, nine samples (determined
by the number of available seasons for which the AMIP
integrations are available). Figure 5 shows that the
bias-corrected ensemble forecasts are significantly dif-
ferent from the observations over large areas of the
globe, particularly over Antarctica, Africa, much of the
tropical oceans, and the Himalayas and southeast Asia.
In all other regions, the eight samples are too few to
resolve differences between the ensemble forecasts and
the observations.

Figure 6 shows the chi-square significance for the
850-hPa temperature, but this time for a 35-sample val-
idation set including all seasons of the AMIP integra-
tion. As expected, the larger sample size leads to much
larger areas for which the forecasts are significantly
different from the observations. Despite this, large por-
tions of the extratropics still have ensemble forecasts
that cannot be distinguished from the observations.
This suggests that the model with bias correction is
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FIG. 5. Significance of chi-square tests for BPE validation of eight-member AMIP ensemble ‘‘forecasts’ of 850-hPa
temperature for MAM. Light (dark) stippled regions have greater than 90% (99%) significance that the ensemble

forecasts are inconsistent with the observations.

doing a reasonable job simulating the midlatitude dy-
namics.

The BPE validation of the ensemble forecasts can be
compared to the rms error of the ensemble mean fore-
casts, shown for MAM in Fig. 7. The dangers of eval-
uating forecasts based only on quantities such as rms
that do not take into account variations in the proba-
bility distribution of the forecast variable are readily
apparent. Many areas for which the ensemble forecasts
are shown to be significantly different from the obser-
vations in Fig. 5 are found in areas that have small

mean rms error in Fig. 7. Rms and local anomaly cor-
relations for the ensemble mean forecast are poor pre-
dictors of ensemble forecast consistency with obser-
vations. For instance, some of the lowest chi-square
significance for 850-hPa temperature occur over the
central Pacific, in a region where rms is particularly
low. It is vital that details of the complete ensemble
distribution and its relation to the observations be taken
into account. This is also true even for single member
‘‘deterministic’’ forecasts that can be verified using a
two-bin BPE technique (although this is probably eas-

ID 90w

Fic. 6. As in Fig. 5 except validating against observations for all 35 seasons.
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FIG. 7. Rms error of AMIP ensemble mean forecasts for MAM 850-hPa temperature. Contours are at 0.4°, 0.8°, 1.6°,
3.2° and 6.4°, and 12.8°C; regions with less than 0.8°C are lightly shaded, and regions greater than 3.2° are heavily

shaded.

ier to interpret for forecasts of the entire field not the
bias-corrected forecasts examined here). The quality
of a forecast cannot be judged purely by bias, rms, or
anomaly correlation without more detailed knowledge
of the structure of the true forecast probability distri-
bution.

An examination of some of the individual grid-
point binning results for the 850-hPa temperature
case can help to analyze the nature of the model’s
systematic errors as well as revealing why the bin-
ning validation and rms results are not always in
good agreement. In almost all areas where Fig. 5
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Fic. 8. Distribution of observations in bins for MAM 850-hPa tem-
perature for grid points over Africa (A) and over northern South
America (B).

shows a significant difference between the ensemble
forecasts and observations, an examination of the
bins reveals that the outermost bins are heavily pop-
ulated, while the innermost bins are almost empty. In
many cases, for instance, for points over Africa and
northern South America (Figs. 8a,b), almost all of
the observations fall in one of the outermost bins,
indicating that the observation is colder (warmer)
than the coldest (warmest) forecast. This indicates
that the ensemble forecasts do not have enough vari-
ability compared to the observations. In other words,
the variability of the model ensemble response is not
as large as would result if a perfect model were run
for the same SST forcings. The rms is not a good
predictor of forecast consistency with observations
because the variability of the ‘‘true’’ forecast distri-
bution can vary considerably as a function of geo-
graphical location. An rms normalized by a measure
of this local variability would be an improved pre-
dictor of forecast consistency, but even this makes
an implicit assumption that the verifying distribution
is normal, which may not be a good approximation.

The BPE results are similar for the 200-hPa geopo-
tential height field. Figure 9 shows the chi-square sig-
nificance for MAM BPE forecasts of this quantity. The
forecasts are generally not significantly different from
the observations in the extratropics, but in the Tropics,
especially over the oceans, there are a number of areas
where the forecasts are significantly different. The in-
dividual bins in these significant areas show the same
behavior as for the 850-hPa temperatures; the outer
bins are heavily populated by the observations. Again,
this suggests that the model does not produce the ob-
served amount of variability.
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F1G. 9. Significance of chi-square tests for BPE validation of eight-member AMIP ensemble *‘forecasts’’
of 200-hPa height for MAM, stippling as in Fig. 5.

Qualitatively different behavior was found for veri-
fications of the precipitation forecasts with the BPE
technique. Figure 10 shows the chi-square significance
for MAM precipitation forecasts; verification data are
generally only available over land regions. There are a
number of isolated regions for which significant dif-
ferences between the ensemble forecasts and the ob-
servations are indicated. As is the case for all the results
discussed here, the 99% significant areas have large
field significance (Livezey and Chen 1983), with about
10% of the available grid points having significance at
this level for Fig. 10.

Unlike the upper air forecasts, the precipitation en-
semble forecasts have too little variability in some
regions where the forecasts are inconsistent with the
observations. This can be seen by examining the indi-
vidual gridpoint bins in the significant areas (not
shown). In many areas, for instance over North Amer-
ica, the observations are clustered into just a few of the
interior bins.

c. Relation to potential predictive utility

Anderson and Stern (1996) used the same AMIP
dataset to compute seasons and geographic regions for
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Fic. 10. Significance of chi-square tests for BPE validation of eight-member AMIP ensemble *‘forecasts’” of
precipitation for MAM, stippling as in Fig. 5. No verification data was available in cross-hatched regions.
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which the ensemble forecasts were statistically signif-
icantly different from the forecasts for the same season
in all other AMIP years; such regions were said to have
potential predictive utility. Potential predictive utility
is a nonparametric cousin of the more traditional po-
tential predictability (Chervin 1986) and the reproduc-
ibility index of Stern and Miyakoda (1995). Presum-
ably, regions of significant potential predictive utility
identify times and places for which the external forcing
is compelling enough that the AMIP response to the
SSTs can be detected. Examining the results in Ander-
son and Stern (for MAM as an example) shows that
most of the regions where the BPE technique shows
significant differences between ensemble forecasts and
observations correspond to regions that have significant
potential predictive utility for both the temperature and
height fields. Significant potential predictive utility in
this context implies that the AMIP ensembles for in-
dividual MAM seasons can be distinguished from
MAM ensembiles for other years. In other words, these
are regions where the height and temperature are sig-
nificantly dependent upon the external SST forcing in
certain years. The fact that these same regions generally
have too little interannual variability suggests that the
model is unrealistically constrained by the SST anom-
alies in these regions.

The fact that almost all dynamical quantities have
insufficient variability while precipitation has too much
variability gives additional clues to possible model de-
ficiencies. It seems likely that the model’s precipitation
parameterizations are too sensitive in some sense, so
that small changes in dynamical quantities can lead to
unrealistic large changes in seasonal precipitation.

5. Discussion

The BPE technique is an extremely simple method
for producing a probabilistic forecast from an ensem-
ble of forecast model integrations. The ensemble
forecasts are used to partition the real line into a num-
ber of bins, each of which can be assumed to have
an equal probability of containing the ‘‘true’’ fore-
cast. The method does not discard any information
from the ensemble and thereby allows users to tailor
their own applications in an optimal fashion. The
method for producing probabilistic forecasts was
successfully tested with perfect model experiments
in both a simple .initial value problem using the Lo-
renz convective model and in a boundary-forced
problem using an ensemble of AMIP integrations.
The method has also been applied at operational cen-
ters including the U. K. Meteorological Office, the
European Centre for Medium-Range Forecasts, and
the National Centers for Environmental Prediction
(Harrison et al. 1995), where it is referred to as Tal-
agrand diagrams.

The BPE technique can also be used for validating
ensemble forecast probability distributions. Since ob-
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servational errors are inevitable, the observed condition
of the atmosphere will always be represented by a prob-
ability distribution. Given this fact, the forecast prob-
lem considered here can be phrased as: what is the re-
sulting probability distribution when the observed ini-
tial probability distribution is integrated forward in
time with a perfect atmospheric model. The probability
distribution at the forecast time will be referred to as
the ‘‘true forecast probability distribution’” in the fol-
lowing discussion. It is convenient to regard the true
state at the forecast time as being a random sample
drawn from this probability distribution. Likewise, the
observed state at the forecast time is a random sample
from the true observed distribution. If one had the lux-
ury of performing many experiments with the observed
atmosphere, one could simply compare the members of
an ensemble forecast to samples from the real atmo-
sphere. Unfortunately, only a single sample from the
true observed distribution is available for any given
initial condition probability distribution. In fact, there
do not even exist any reasonable analogs in the obser-
vational record (Gutzler and Shukla 1984; Van den
Dool 1994), so there seems no way to get around the
single sample problem.

Therefore, to validate ensemble forecasts, one must
compare them to the observations for a large set of
independent initial conditions. The problem is now
complicated by the fact that the true observed proba-
bility distributions for the different initial conditions
(or for the different boundary value forcing in the SST
forced problem of section 4) may be drastically differ-
ent. In fact, it is the prospect that the true observed
probability distributions are significantly different from
one another that makes the forecast problem of interest
(otherwise some climatological forecast would always
be a good forecast).

Because the true observed distributions may be
quite different from one another, one may no longer
be able to use a parametric method (Deque et al.
1994) to compare the ensemble forecasts to the ob-
servations. The BPE technique presents a robust,
resistant, nonparametric tool for evaluating the con-
sistency with observations of the entire probability
distribution forecast produced from ensemble integra-
tions. The method also produces an explicit evaluation
of the statistical significance of differences found be-
tween the ensemble forecasts and the verifying obser-
vations. However, the BPE technique only provides
information on the strength of differences indirectly
through the forecast sample size needed to produce a
given level of significance.

The BPE method can detect differences between en-
semble forecast probability distributions and verifying
observations that are a result of errors in both the fore-
cast model and in the observational error distribution
that is used to generate the ensemble initial conditions
and the ensemble ‘‘observations.”” Examination of the
bins for particular scalar quantities can give insight into
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the systematic error behavior of the ensemble integra-
tions. For example, if all of the verifying observations
are clustered into bins on one side of the median bin,
the forecast model is clearly producing biased fore-
casts. Traditional methods are already capable of ex-
amining systematic bias (in the mean), however, the
BPE method allows examination of higher-order dif-
ferences between the ensemble forecast distribution
and the verification distribution. For instance, exami-
nations of differences between the ensemble forecast
variance and the verifying distribution variance can be
readily identified, as pointed out in section 4.

The BPE technique could easily be applied to en-
semble forecasts of arbitrary real-valued quantities to
produce probabilistic forecasts. For instance, applica-
tion to individual EOF weightings could allow exami-
nation of more dynamically relevant quantities than the
single gridpoint values examined here. Statistical cor-
rections such as bias correction, or even application of
model output statistics (MOS), could be included as
part of the forecast model before producing the BPE
forecasts.

The BPE method can be applied even to a tradi-
tional ‘‘deterministic’’ forecast that can be viewed as
a single-member ensemble. In this case, there are
only two bins, and observations are either greater
than or less than the forecast value. Use of the chi-
square test can determine when a distribution of ob-
servations in the two bins is inconsistent with the
uniform distribution, implying that the forecast and
observations are inconsistent. This is related to the
computation of model bias but automatically pro-
duces a statistical confidence.

The BPE technique evaluates whether ensemble
probability forecasts are consistent with observa-
tions. However, consistency does not guarantee that
the probability forecasts are useful. For instance, a
12-h ensemble forecast generated by randomly sam-
pling observations from climatology would be con-
sistent but not as useful as a forecast produced
through operational ensemble forecasts systems.
Similar issues involving the ‘‘sharpness’” of conven-
tional probabilistic forecasts have been addressed by
Murphy and Winkler (1987) and Epstein (1969b).
A complete ensemble verification system would have
to include both consistency measures and additional
measures of the size of the bins.

At present, ensemble forecasts produced at oper-
ational centers are not generally founded on the no-
tion of equitable sampling of the forecast probability
distribution that has been the foundation of the dis-
cussion here. Nevertheless, it is interesting to apply
the BPE method to the results of ensembles of op-
erational forecast models for either discrete gridpoint
variables or for EOF weightings. It is quite possible
that the continued improvement in operational mod-
els has reduced model systematic errors enough that
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an equitable sampling approach is not out of the
question.
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