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ABSTRACT

The skill of a set of extended-range dynamical forecasts made with a modern numerical forecast model is
examined. A forecast is said to be skillful if it produces a high quality forecast by correctly modeling some
aspects of the dynamics of the real atmosphere; high quality forecasts may also occur by chance. The dangers
of making a conclusion about model skill by verifying a single long-range forecast are pointed out by examples
of apparently high ““skill’’ verifications between extended-range forecasts and observed fields from entirely
different years.

To avoid these problems, the entire distribution of forecast quality for a large set of forecasts as a function of
lead time is examined. A set of control forecasts that clearly have no skill is presented. The quality distribution
for the extended-range forecasts is compared to the distributions of quality for the no-skill control forecast set.

The extended-range forecast quality distributions are found to be essentially indistinguishable from those for
the no-skill control at leads somewhat greater than 12 days. A search for individual forecasts with a ‘‘return of
skill”’ at extended ranges is also made. Although it is possible to find individual forecasts that have a return of
quality, a comparison to the no-skill controls demonstrates that these return of skill forecasts occur only as often
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as is expected by chance.

1. Introduction

Since the advent of successful numerical weather
predictions there has been a constant quest to extend
the range for which useful numerical forecasts can be
produced. Attempts to produce forecasts for lead times
up to two weeks were pioneered by Miyakoda et al.
(1972). Although success in forecasts for lead times
past ten days has generally been limited, there have
been some examples of highly successful forecasts of
monthly means (Miyakoda et al. 1983). More recently,
many of the world’s operational prediction centers have
become interested in the prospect of long-range nu-
merical forecasts. At the National Meteorological
Center (NMC) this has led to a number of large
experiments on dynamical extended-range forecasting
(DERF) (Tracton et al. 1989).

The task of evaluating the skill of a forecast can be
as involved and complex as producing the forecast it-
self. Even for simple point forecasts of a single discrete
variable, the problem of verifying forecasts is not en-
tirely straightforward (Murphy and Winkler 1987).
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Here, a much more complex problem is of interest:
evaluating the largest lead times for which a dynamical
forecast of the global circulation has any predictive
skill. Clearly, it is not possible to completely solve this
problem; however, the method presented here should
be able to produce a considerable amount of new in-
formation.

It is helpful to distinguish between the concepts of
forecast skill and forecast similarity. A forecast is said
to have skill if it is quite similar to some verifying ob-
servation because the forecast method (a numerical
model in the examples presented here ) has successfully
captured some portion of the dynamics of the real at-
mosphere. On the other hand, forecasts that are similar
to a verifying observed field can also be generated by
chance. For instance, randomly selecting a field from a
set of historical observations is a forecast method that
clearly has no skill by the preceding definition. Nev-
ertheless, there will be some such random forecasts that
are somewhat similar to their verifying observations
purely by happenstance. Determining whether a fore-
cast is skillful is especially difficuit for lead times near
the limits of skillful prediction. In this case, a skillful
model may produce forecasts that are, on the average,
only slightly more similar to the verifying observations
than are forecasts produced by some control with no
skill.
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Saha and Van den Dool (1988) have already pointed
out some of the subtleties involved in evaluating pre-
dictive skill. They demonstrated that a numerical
weather prediction (NWP) model of late 1980s vintage
lost the ability to predict the 1-day time tendency of
the circulation field at leads of less than 10 days. They
used a comparison to control forecasts with no skill at
predicting the time tendency (persistence of the fore-
cast valid one day previously) to evaluate when fore-
casts of the time tendency were no longer skillful.

In this paper, a method is presented to help distin-
guish between skillful forecasts and unskillful forecasts
that may appear skillful due to random effects. This is
done by comparing a scalar measure [the anomaly cor-
relation (AC) defined in section 3] of the similarity
between observed and forecast fields for a set of DERF
forecasts to ACs for a similar set of control ‘‘forecasts’’
that is known a priori to have no useful skill. To be
skillful, the DERF forecasts must be clearly superior to
the no-skill control. This idea is similar to the tradi-
tional use of persistence or climate mean forecasts as
no-skill controls to which dynamical forecasts can be
compared. Hoffman and Kalnay (1983) suggested a
more sophisticated use of a no-skill control but did not
have a chance to test their proposed methodology.

A simple example of the proposed method is a com-
parison to analogs ( Van den Dool 1989). There is only
limited similarity between any observation and its best
historical analog. Therefore, any forecast that is more
similar to its verifying observation than the best natural
analogs is potentially skillful, no matter what its lead
time.

In the following, the DERF forecasts are first com-
pared to a control set as a function of lead time in an
attempt to find the longest lead times for which skill
exists. The 5% and 95% limits and mean of the DERF
forecast AC distribution are compared to the control as
a function of lead. In addition, a statistical test is ap-
plied to compare the entire AC distributions. In this
fashion, an upper bound can be placed on the extreme
lead limits for which statistically significant forecast
skill exists.

Since only a limited number of extended-range fore-
casts have been made to date with modern sophisticated
NWP models, very little is yet known about the behav-
ior of forecasts past 10 days lead time. One of the re-
curring themes in discussions of such long lead fore-
casts is the possibility of forecasts exhibiting the elu-
sive ‘‘return of skill.”” A forecast with return of skill
would exhibit a minimum of AC at a lead time of n
days and then an increase of skill thereafter. In earlier
DERF experiments, Tracton et al. (1989) found sug-
gestions of return of skill. Their Fig. 30 shows a return
of skill in ACs for 10-day average forecasts. The theme
of return of skill is often discussed in meetings, some-
times in jest, but has rarely found a place in the pub-
lished literature.
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Nevertheless, there are some possible explanations
for a return of skill. For instance, if a model success-
fully reproduces some wavelike phenomenon but with
an error in phase speed, the model wave will be peri-
odically in phase with the observed wave resulting in
periodic higher AC. Palmer (1993) has recently
pointed out another possible cause of return of skill. In
his case, the apparent return is simply a result of ran-
dom chance and would be discounted by the method
presented here.

Examples of individual forecasts with an apparent
return of skill can easily be found in the DERF90 ex-
periment. It is important to examine if these return of
high AC cases are statistically significant or just a result
of random chance. Again, the same method is applied
by comparing possible return of skill cases in DERF
forecasts to randomly occurring return of higher AC
cases from the no-skill control. A significantly greater
number of return of high AC cases in DERF than in
the control would be evidence of return of skill.

Section 2 presents the datasets used to examine skill
and return of skill, while section 3 develops the mea-
sures used for verification of individual forecasts. Sec-
tion 4 explains the no-skill control forecasts compari-
son that is applied in section 5. Section 6 presents a
more robust statistical technique for comparing fore-
casts with the controls. Section 7 examines return of
skill and is followed by conclusions in section 8.

2. Data

The datasets used to examine extended-range fore-
cast skill are described in this section. Unless otherwise
stated, all results presented are for S00-mb height fields
obtained from archived spectral T21 representations. In
addition, 300- and 700-mb height fields and stream-
function fields at all three levels were examined in an
identical fashion. The results were not qualitatively af-
fected by the choice of level or field.

a. DERF90

The DERF90 dataset, produced at NMC by Saha,
Kalnay, Kanamitsu, and Van den Dool, consists of a
series of extended-range forecasts produced by NMC'’s
Medium-Range Forecast (MRF) Model. Comprehen-
sive information about the MRF can be obtained from
Kalnay et al. (1990) and Kanamitsu et al. (1990). In
the DERF90 experiment, forecasts out to 90-day leads
were made for 128 consecutive days starting on 3 May
1990. Progressively shorter lead forecasts were ap-
pended to complete the block of forecasts depicted in
Fig. 1. Only the ‘‘Lorenz block”’ of forecasts verifying
between 1 August and 6 December 1990 are used here.

The model used for DERF90 was a reduced resolu-
tion (T40) version of the MRF that was operational
during the summer of 1990 (White and Caplan 1990).
The boundary conditions for the DERF90 runs were



MARCH 1994 ANDERSON AND VAN DEN DOOL 509
May 3, 1990 — December 6, 1990
4 128 Days o
May 3 Aug 1 Sep 7 Dec 6
¥ IC N N NN
1 AN N NN
— NN N NN
a) 2 AN N DN
% 3 \\\\ AN AN
NN N\ NN
=1 AN N, NN
A SO\ AN AN
Qé \\\\ \, \\\\
E X AN AN
o O\ N\ NN
a ANERN N\ NN
Q AN N NN
._] \\\\ \\ \\\\
ey AN \, ANERN
§ SN ™~ SON
AN AN NoN
L ANEAN N ANERN
‘5 N\ \\ ANERN
= N N AN
N\ N\ NN
NN N ANERN
Y 90

128 Days Lorenz Block

FiG. 1. Schematic of the DERF90 forecast experiment. Forecasts in the rectangular Lorenz
block that verify on the 128 days from 1 August through 6 December are used.

designed to be as realistic as possible. Snow depth and
soil moisture were interactive but were attracted to an
evolving climatology with a 90-day e-folding time. Sea
surface temperature (SST) was initially the observed
field but was also damped toward climatology with a
90-day e-folding. The sea ice was represented by ob-
served initial anomalies for 30 days and switched dis-
continuously to the climatological distribution for leads
greater than 30 days. Some of the basic results of
DERF90 can be found in Van den Dool (1993).

b. Observed data and climatology

The observed analyses used to verify the DERF90
forecasts were obtained from NMC'’s global data as-
similation system (GDAS). The instantaneous daily
0000 UTC observations from the years 1987—-1991 are
used here.

An observed climatological mean field is required
for calculation of the AC defined in the next section.
The 10-yr Climate Diagnostics Data Base (CDDB)
consisting of 10-yr mean monthly fields from Septem-
ber 1978 through August 1988 is used here. These cli-
matologies are based on twice-daily NMC GDAS data
archived in real time. The monthly means are linearly
interpolated to produce monthly climate means valid
on each individual date.

3. Verifying individual forecasts

The method for evaluating skill described in the next
section uses a scalar measure of the similarity between
a forecast field and an analysis field. Throughout this
study, the anomaly correlation

S F-CHVi-C)

TR E—arsei-en”

is used to measure this similarity. Here C;, F;, and V;
are the climate, forecast, and verification height values
at grid point i, and the area-weighted sum extends over
all grid points in a given geographic region. This def-
inition of AC was used by Miyakoda et al. (1972) and
Saha and Van den Dool (1988) (who also summed in
time) but is slightly different from the AC used oper-
ationally at NMC.

The AC has been applied to three different geograph-
ical regions. For all regions, the data points are on the
33° latitude X 64° longitude Gaussian grid correspond-
ing to the T21 spectral representation of the data. Two
regions are the Northern Hemisphere (NH) and South-
ern Hemisphere (SH), all points north of 20°N or south
of 20°S, respectively. The North American (NA) re-
gion contains all points between latitudes 30° and 80°N
and between longitudes 70° and 140°W.

The root-mean-square error
s (Fl _ ‘/l)z 1/2

i
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where n is the number of grid points, has also been
applied as a complement to AC results (see discussion
in section 8).

4. A method for assessing forecast skill

Figure 2 shows an extended lead DERF90 forecast
verifying on 6 December and an analysis for 6 Decem-
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FIG. 2. The 500-mb height fields for (a) 6 December 1987 and (b) the 79-day lead DERF90 forecast valid on 6 December 1990. Positive
(negative) departures from the CDDB climatology are shaded dark (light) starting at +30-m anomalies. The contour interval is 60 m starting

at =30 m.

ber. The forecast and verification have a Northern
Hemisphere AC of 0.62, above the threshold of 0.60
that is frequently used to demarcate skillful forecasts
(Hollingsworth et al. 1980). Unfortunately, the verifi-
cation field is for 6 December 1987, while the DERF
forecast is, of course, for 1990. This clearly demon-
strates the hazards involved in evaluating single fore-

.......... R

casts from a large set; some high AC forecasts will
occur by chance even in sets of forecasts with no rea-
sonable possibility of skill.

Figure 3 shows a DERF90 forecast for 14 August
1990 and the observations for 14 August 1989. The AC
between the forecast and the 1989 analysis over the
North American region is 0.87 in this case. For fore-

FIG. 3. As in Fig. 2 but for (a) the 14 August 1989 analysis and (b) the 5-day lead DERF90 forecast valid 14 August 1990.
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casts verified over limited regions like North America
(where the number of spatial as well as dynamical de-
grees of freedom resolved by the data is relatively
small), the distribution of AC values tends to be
broader, making chance occurrence of high (or very
negative ) AC forecasts even more likely. The Southern
Hemisphere distribution of AC also differs from that
for the Northern Hemisphere; several SH ACs of over
0.70 (and less than —0.70) occur for DERF90 forecasts
verified against observations from the wrong year. The
largest NH ACs have absolute magnitudes of slightly
more than 0.6.

The preceding examples illustrate the hazards of
evaluating skill without some control with which to
establish statistical significance. While such a control
is useful in the evaluation of individual forecasts as
above, it can provide more information when applied
to the distributions of ACs for a large set of forecasts.

The method applied here can be summarized as fol-
lows: suppose g is some measure (assumed to be scalar
here although this is not essential ) of the similarity be-
tween a forecast and an analysis; G is defined as the
distribution of values of g for some set of forecasts f
compared to the appropriate verifying analyses v; G*
is a control distribution of values of g for the same set
of forecasts fbut verified against some set of unrelated
observations vg,s.. Forecasts can be considered skillful
only if the distribution of elements in G is different
from (and presumably better than) the distribution of
G*; G* will be the most rigorous test if the unrelated
observations vg,,. are for the same variable, same level,
same region, and same time of year. Hence, vg is
chosen to be identical to v except that the year of the
analyses is different from that of the forecasts.

In the next section, the DERF90 forecasts will be
verified against a set of no-skill forecasts that verify the
DERF90 forecasts against analyses from the years
1987—89 and 1991. Table 1 provides a description of
this “‘false verification’” forecast control set. Figures 2
and 3, discussed above, are individual verifications
from the 1987 and 1989 false verification control sets.
With the exception of interannual variability in the ob-
served climate, the ‘“‘degrees of freedom’” in the false
verification set for each other year is identical to that
for the DERF90 verification set.

The DERF90 forecasts can be said to have no skill
if they have a distribution of ACs that is statistically
indistinguishable from the distribution for the control
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Fig. 4. The 95% threshold (upper curves), mean (middle), and
5% threshold (lower) for NH ACs as a function of lead time for
DERF90 (thin dash) and the 1987 (solid) and 1988 (thick dash)
false verification control sets.

forecast set. If the DERF90 AC distribution does differ
significantly from the distribution for the false verifi-
cation controls, the DERF90 forecast may be skillful.
However, there are a number of other possible causes
for a difference in the AC distribution. The climate for
some false verification years may have a different num-
ber of dynamical degrees of freedom leading to a dif-
ference in the AC distribution width. The mean AC of
the distribution may also change if, by chance, a given
verification year has a time-mean anomaly from the
long-term climate mean that is similar to the DERF90
model bias. Given a sufficiently large number of false
verification control years, even these effects can be
ruled out with statistical confidence.

5. Skill of DERF90 forecasts

This section compares the AC of the DERF90 fore-
casts to those for the false verification controls. Figure
4 shows the NH ACs for DERF90 and the 1987 and
1988 false verification sets as a function of forecast lead

TaBLE 1. The forecast and verification fields for DERF90 and the no-skill control forecast set.
The lower right box indicates a field that is different from the DERF90 case.

Forecast set name Forecast fields

Verification fields

DERF90
False verification control

DERF90 0—90-day lead forecasts.
DERF90 0-90-day lead forecasts.

DERF90 period observations (1990)
Observations from DERF90 period but
from different year (1987-89, 1991)
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time; for each lead time there are 128 AC values. The

upper and lower groups of curves are the 95% and 5%
points of the AC distribution, while the middle group
of curves are the mean values. The DERF90 ACs are
clearly much better for short lead times when the MRF
forecasts are known to have skill. The individual curves
in each of the three groups become essentially indistin-
guishable (to our eyes at least) at leads of approxi-
mately 14 days. A similar result also holds for curves
of the maximum and minimum AC values as a function
of lead time (not shown). The maxima and minima
curves have average absolute values slightly greater
than 0.5 for leads past 15 days. This is consistent with
the findings of Lorenz (1969) and Ruosteenoja (1988)
that good analogs for large regions like the NH are
extremely rare.

For extended lead times, past the loss of DERF90
initial skill, the mean ACs are approximately 0. The
mean AC of the DERF90 forecasts is generally brack-
eted by the 1987 and 1988 controls. It is interesting to
note that the 95% AC curve for 1987 is almost always
higher than those for DERF90 or the 1988 control. This
skew toward larger ACs in the 1987 false verification
control suggests that the climate anomaly of that year
was somehow more similar to the DERF90 long-lead-
time model bias than was the case for other observed
years including 1990 itself. In contrast, the 5% curves
are more similar.

The differences in behavior demonstrated by the 5%,
95%, and mean curves in Fig. 4 suggest that more in-
formation on DERF90 might be obtained by examining
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FiG. 6. Distribution of NH ACs for 14- and 15-day-lead DERF90
forecasts (solid) and the false verification controls (dashed). The
upper curves plot the difference as in Fig. 5.

the entire distribution of DERF90 ACs as a function of
lead time. Figure 5 displays the complete distribution
of NH ACs for DERF90 forecasts with leads of 12 and
13 days and the distribution for the corresponding false
verification sets for all four alternate years. Both Figs.
5 and 6 use a total of 51 bins to plot the results. Two
lead times are included in the AC distribution plots
because plots for a single lead are difficult to evaluate
by eye due to sampling noise. In Fig. 5, the DERF90
forecasts clearly have many more positive AC forecasts
than the controls, and it seems that the forecasts are still
skillful at this lead time. Section 6 will present a sta-
tistical method to look more closely at this comparison.

Figure 6 shows a comparison between the 14- and
15-day-lead NH AC distribution for DERF90 and the
corresponding distribution for the false verification
control. As shown by the difference plot at the top of
the figure, the DERF90 forecasts are no longer clearly
skillful at leads beyond approximately 12 days since
they do not have more high AC forecasts than the con-
trol. However, it is important to note that there are
many forecasts in both Figs. 5 and 6 with AC greater
than 0. Even the mean of the distributions is positive;
this makes a control essential to accurately assess skill.

Even with a fairly large number of samples, it is
difficult to compare distributions like those in Fig. 6 by
eye. The next section presents a robust statistical
method that can compare such distributions.

6. Kolmogorov—Smirnov tests

Because of sampling noise in the AC distributions,
two lead times had to be combined to produce the rea-
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sonably smooth AC distribution plots displayed in the
previous section. Statistical tests are available that can
compare samples from two distributions, despite large
amounts of noise or small sample sizes. In this section,
the Kolmogorov—Smirnov (KS) test (Knuth 1981;
Conover 1980) is applied to compare DERF90 fore-
casts to the false verification control forecast set for
each lead time. The KS test produces a probability that
two samples of arbitrary sizes are taken from identical
distributions. The cumulative distribution functions for
the two samples D (x) and F(x) are compared over the
range of the functions. The largest value of G = | F(x)
— D(x)| is used to evaluate the similarity of the two
samples. The value of G can be compared to a known
distribution to evaluate the probability that the two
samples came from the same distribution. Here the KS
test was computed using the International Mathemati-
cal and Statistical Libraries, Inc. statistical routine
KSTWO.

Figure 7a shows the results of the KS test as a func-
tion of lead time for the DERF90 forecasts compared
to the false verification control ‘‘forecasts.”” Kolmo-
gorov~Smirnov values are shown for the NH, SH, and
NA AC distributions. For lead times less than 10 days,
the KS test gives values of very nearly 0, indicating
that the DERF90 forecasts have a very different AC
distribution from that for the control. Results from the
previous section suggested that these differences are
generally a result of much more frequent positive ACs
in the DERF90 short lead forecasts.

Figure 7a shows that the KS test first becomes sig-
nificantly nonzero (greater than 0.1, the 90% confi-
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dence threshold for distinct distributions) at leads of
13, 14, and 16 days for the NA, NH, and SH regions,
respectively. At these leads, the DERF90 forecasts
have apparently become unskillful since their AC dis-
tribution is statistically indistinguishable from the dis-
tribution for control forecasts with no skill. At shorter
lead times, the DERF90 forecast AC distribution
differs from that for the controls. Examination of the
complete individual lead time distributions suggests
that DERF9Q is producing skillful forecasts in all three
regions up to the time at which the KS tests become
nonzero. The SH retains a small amount of skill for
several days longer than the NH, an unexpected result
given the more rapid decay of SH skill for short lead
times. What part of the SH forecasts is actually main-
taining the small amount of skill is currently unknown.
A closer examination of the KS values in Fig. 7
shows that the values fluctuate quite a bit for leads past
15 days. Figure 7b shows 5-day mean values of the KS
test for leads out to 90 days. There are certain periods
past 20 days lead in Fig. 7a, and even in the average
values of Fig. 7b, when the KS values are quite small.
This leaves open the possibility that some sort of return
of skill might be occurring in the DERF90 forecasts, a
possibility that is examined in the next section.

7. Return of skill

Although the results of section 6 indicate that overall
there is no significant skill at lead times in the midteens,
this does not entirely rule out the possibility of return
of skill. For instance, the individual forecast NA AC
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series shown in Fig. 8 has two apparent returns of skill,
the first in the range where slightly skiliful forecasts are
still being produced on average. This is not an isolated
example; similar return of skill can be found for other
initial conditions and for the NH and SH regional ACs.
This section will examine the return of skill phenom-
enon with the goal of determining if there is any sta-
tistically significant return of skill in the DERF90 fore-
casts. If so, further questions about the utility of such
forecasts and the physics involved would be in order.

a. Methodology

As in the previous section, the return of skill in the
DERF90 forecasts will be compared to return of high
AC in a set of no-skill control forecasts. In the DERF90
forecasts, an initial AC minimum is required as a pre-
cursor to potential return of skill. For each DERF90
forecast, the initial skill minimum is defined as the first
day for which the AC is a local minimum as a function
of lead time and is also below a threshold criterion (AC
= 0.25 in the cases presented here although results for
other thresholds show no qualitative difference). The
days following this initial AC minimum are candidates
for a return of skill. For instance, in Fig. 8, the first AC
minimum occurs at day 6, and all days after that are
potential return of skill days.

The false verification forecast set is used as a stan-
dard to which the DERF90 return of skill can be com-
pared. For each false verification forecast (the 0—90-
day lead forecasts from an individual DERF90 initial
condition verified against another year’s analyses), a
local AC minimum as a function of lead time is located
at leads of 10 days or greater. Ten days is chosen so
that the mean lead time of the false verification control
and DERF90 initial AC minima are approximately the
same. A local false verification AC minimum will be
accepted only if it is bounded by the largest and small-
est values of the AC found for initial skill minimum
days in the DERF90 forecasts. Again, the purpose is to
make the mean value of the false verification AC min-
ima as close as possible to the mean for the DERF90
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case. This is an attempt to produce as fair a comparison
as possible between forecasts following the false veri-
fication AC minima and forecasts following the
DERF90 AC minima. If there is significant return of
skill in the DERF90 forecasts, the distribution of ACs
following the AC minimum should be different for
DERF90 than for the false verification controls.

b. Results

Figure 9 shows the distribution of ACs for the first
20 days after the initial NH AC minimum for DERF90
and for the false verification controls using a total of
201 bins for plotting. The two distributions are nearly
identical, with a KS value of 0.62. In fact, if only 51
bins had been used in Fig. 9, the curves would be al-
most indistinguishable. There is no evidence at all of a
statistically significant return of skill in the DERFS0
forecasts.

Results for values of the initial AC minimum thresh-
old other than 0.25 are similar. If the value is made
much larger than 0.25, some small dips in AC occurring
in the first few days of DERF90 forecasts are picked

“up as candidates for return of skill. In a strict sense,

these are true return of skill cases but they occur only
at very short lead times. The return of skill of interest
here would occur at times later than 2 or 3 days lead
time, when ACs have generally dropped below 0.25.

Results for return of skill in the SH and NA regions
(not shown) are similar. Again, there is no significant
difference between the AC distribution for DERF90
and that for the false verification controls immediately
following an AC minimum.
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F1G. 9. Distribution of NH ACs for DERF90 forecasts (solid) and
the false verification controls (dashed). The upper curves plot the
difference as in Fig. 5. Anomaly correlations are for first 20 days
following an initial AC minimum of less than 0.25.
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8. Conclusions

NMC’s DERF90 forecasts have been examined to
establish the longest lead times for which the existence
of forecast skill can be claimed. At lead times past 10
days, these forecasts can be expected to have sporadic
and/or extremely limited amounts of skill. Examples
have been presented to demonstrate the hazards of
equating positive ACs of individual extended-range
forecasts with forecast skill since high ACs can also be
generated by chance. To evaluate whether a set of dy-
namical forecasts has statistically significant skill, the
distribution of AC for the entire set should be examined
and compared to some reasonable control distributions.

A set of control forecasts, known a priori to have no
skill, has been developed to help evaluate the DERF90
set of extended-range dynamical forecasts. The control
set retains the same forecasts as the DERF90 experi-
ment but substitutes verification fields from years other
than that for which the DERF90 forecasts were made.

The results presented compare the distribution of AC
as a function of lead time for the DERF90 forecasts and
the control set. Although not presented here, all the
tests were also repeated using the rms difference (sec-
tion 3) to verify individual forecasts. The rms is a good
complement to the AC because, as opposed to the AC,
it does not depend on the choice of a climatological
field. All results presented were reproduced qualita-
tively using rms instead of AC.

Comparisons between DERF90 and the control set
were performed for three different regions. Differences
in the dynamical degrees of freedom resolved in each
region can lead to very different distributions of AC.
The dependence of AC distributions on verification re-
gion makes a priori bounds on the AC for skillful fore-
casts almost impossible to define. Hence, it is always
necessary to compare DERF90 AC distributions to the
control distribution for the corresponding region.

The distributions of AC for DERF90 were compared
to those for the contro! as a function of lead time. Vi-
sual inspection of the distributions was used to estimate
the lead times at which the DERF90 forecasts were no
longer clearly superior to the controls. The Kolmogo-
rov—Smirnov test, which evaluates the probability that
two samples are taken from identical distributions, was
also used to examine the leads at which the DERF90
AC distributions become statistically indistinguishable
from the controls, This occurs at leads of 13, 14, and
16 days for the NA, NH, and SH regions, respectively.

Although significant skill for the complete DERF90
set is lost at these leads, it is still possible that individual
forecasts have skill at larger leads. It is not hard to find
individual forecasts in the DERF90 set with apparent
return of skill after an initial AC minimum. Compari-
son to the no-skill controls shows that just as many
individual forecasts with return of skill occur in the
controls. Hence, there is no evidence of any statistically
significant return of skill in the DERF90 forecasts.
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There appears to be little skill in the DERF90 fore-
casts at leads greater than 14 days. If it is possible to
identify a priori those forecasts that maintain (or re-
turn) skill at longer leads, forecasts could be issued
only in those cases. If this were possible, it would also
be possible to identify all other forecasts as less skillful
on average than a control forecast. However, our results
suggest that forecasts with skill at extended ranges do
not exist.

Another potential way to improve the lead times at
which DERF forecasts retain skill is the reduction of
model bias or drift. As shown by Anderson (1993), the
MREF used in DERF90 has a significant drift that may
be dominating the forecast errors for extended leads.
Johannson and Saha (1989) in a simple model, and
Saha (1992) in the MRF, have clearly demonstrated
the potential skill increases that can result from cor-
recting model bias. How much effect such techniques
would have on extended-range forecast skill is an in-
teresting and as yet unanswered question.

Great care is always needed when searching for skill
in forecasts that are expected to have little or none. It
is vital to establish the statistical significance of skill
results. This paper has presented a method that can bet-
ter evaluate the amount of skill in extended-range fore-
casts than many traditional methods. It is essential to
gauge accurately the small amounts of useful skill
available in extended-range dynamical forecasts in or-
der to evaluate further model improvements, With this
in mind, more robust and sophisticated methods for
evaluating skill of slightly skillful forecasts need to be
developed. Studies evaluating skill for forecasts with
very limited amounts of skill should include compari-
sons to adequate controls. Some procedure similar to
that described here could be applied in all studies, es-
pecially those where intricate manipulations (averages,
filters, etc.) are performed on forecasts and analyses
before skill is evaluated. Preliminary application of the
procedure to time- or ensemble-averaged forecasts has
produced some interesting results that will be discussed
in a note to be published at a later date. It is hoped that
the use of good controls will lead to a more accurate
assessment of the current state of extended-range fore-
cast skill and subsequent improvements in this skill.
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