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ABSTRACT

Many methods using ensemble integrations of prediction models as integral parts of data assimilation have
appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman
filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble
Kalman filter methods is derived starting from the nonlinear filtering problem. When working in a joint state–
observation space, many features of ensemble filtering algorithms are easier to derive and compare. The ensemble
filter methods derived here make a (local) least squares assumption about the relation between prior distributions
of an observation variable and model state variables. In this context, the update procedure applied when a new
observation becomes available can be described in two parts. First, an update increment is computed for each
prior ensemble estimate of the observation variable by applying a scalar ensemble filter. Second, a linear
regression of the prior ensemble sample of each state variable on the observation variable is performed to
compute update increments for each state variable ensemble member from corresponding observation variable
increments. The regression can be applied globally or locally using Gaussian kernel methods.

Several previously documented ensemble Kalman filter methods, the perturbed observation ensemble Kalman
filter and ensemble adjustment Kalman filter, are developed in this context. Some new ensemble filters that
extend beyond the Kalman filter context are also discussed. The two-part method can provide a computationally
efficient implementation of ensemble filters and allows more straightforward comparison of methods since they
differ only in the solution of a scalar filtering problem.

1. Introduction

Interest in data assimilation methods using ensemble
integrations of prediction models is growing rapidly in
the atmospheric and oceanic communities. This is oc-
curring because ensemble assimilation methods are ma-
turing rapidly and because both prediction centers and
research groups are becoming increasingly interested in
characterizing more information about the probability
distribution of the climate system than can be revealed
by a single assimilated state estimate.

Ensemble assimilation methods were originally de-
veloped as computationally feasible approximate solu-
tions of the nonlinear filtering problem patterned after
the Kalman filter (Kalman and Bucy 1961; Courtier et
al. 1993). This led to a sequence of related methods
known as ensemble Kalman filters (Evensen 1994),
which have been extended to increasingly general as-
similation problems (Houtekamer and Mitchell 1998).
More recently, other variants, still referred to as ensem-
ble Kalman filters (Bishop et al. 2001; Anderson 2001;
Pham 2001), have appeared in the literature demon-
strating improved assimilation error characteristics and/
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or decreased computational cost. Some of these were
developed directly from the probabilistic statement of
the nonlinear filtering problem, rather than starting from
the Kalman filter. Developing filters in this context can
lead to a more straightforward understanding of their
capabilities for those not intimately related with the in-
tricacies of the Kalman filter.

Here, a framework is developed in which many of
the ensemble Kalman filter methodologies documented
to date can be described while still supporting a more
general class of ensemble filters. The derivation begins
with the nonlinear filtering problem and applies a se-
quence of simplifying assumptions. The introduction of
a joint state–observation space (Tarantola 1987) leads
to an ability to deal with observations related to the
model state variables by nonlinear functions. A least
squares assumption (equivalent to assuming a local
Gaussian relation among the prior joint state variables)
has been made, sometimes indirectly, in many descrip-
tions of ensemble Kalman filters. Here, that assumption
is made explicitly and a significant simplification in the
description of the algorithms results. Under the as-
sumptions made here, the ensemble filter problem sim-
plifies to an application of a nonlinear filter to a scalar,
followed by a sequence of linear regressions. This sim-
plification makes it easier to analyze the relative ca-
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pabilities of a variety of ensemble filter implementations
and can lead to reduced computational cost.

Section 2 derives this context for ensemble filtering
and section 3 shows how several previously documented
ensemble Kalman filters are related. Section 4 discusses
details of methods for doing scalar assimilation prob-
lems while section 5 offers conclusions.

2. Ensemble filtering

To simplify notation, this section discusses only what
happens at a single time at which observations become
available. Discussion of how filter assimilations are ad-
vanced in time using ensemble methods and prediction
models can be found in Anderson (2001, hereafter A01),
Houtekamer and Mitchell (1998), and Jazwinski (1970).
Basically, each ensemble member is integrated forward
in time independently using a forecast model between
times at which observations are available.

a. Joint state–observation space and Bayesian
framework

The joint state–observation space (Tarantola 1987;
A01) is defined by the joint space state vector:

z 5 [x, h (x)] 5 [x, y], (1)

where x is the model state vector; y 5 h (x), where h is
the forward observation operator, defines the observa-
tions available at this time; and z is a vector of length
n 1 m, where n is the number of state variables and m
is the number of observations available at this time.

Using Bayesian statistics as in Jazwinski (1970) and
A01, the distribution of the posterior (or updated) dis-
tribution zu 5 [xu, yu] can be computed from the prior
distribution, zp 5 [xp, yp], as

u o p pp(z ) 5 p(y | z )p(z )/normalization (2)

where yo is an m-vector of the observed values available
at this time. In the ensemble methods applied here, the
normalization factor in the denominator is not used ex-
plicitly (Anderson and Anderson 1999).

One implication of (2) is that subsets of observations
with independent (observational error) distributions can
be assimilated sequentially. Let yo be composed of s
subsets of observations, yo 5 { , , . . . , }, whereo o oy y y1 2 s

the distribution of the observational errors for obser-
vations in subset i is independent of the distribution for
the observations in subset j, for i ± j. Then

s

o p o pp(y | z ) 5 p(y | z ). (3)P i
i51

In particular, if the individual scalar observations in yo

have mutually independent error distributions, they can
be assimilated sequentially in any order without chang-
ing the result in (2). This allows sequential assimilation
with observational error distributions represented as
Gaussians as long as the observational error covariance

matrix is diagonal. This was pointed out by Houtekamer
and Mitchell (2001) in the ensemble Kalman filter con-
text and used in A01. Equation (3) depends only on the
observing system and makes no assumptions about the
prior joint state distribution or how it is represented.

b. An ensemble method for the filtering problem

In ensemble methods for solving (2), information
about the prior distribution of the state variables, xp, is
available as a sample from N applications of a prediction
model. An ensemble sample of the prior observation
vector, yp, can be created by applying the forward ob-
servation operator, h , to each ensemble sample of xp.

Some Monte Carlo (ensemble) methods also have a
weight, w, associated with each ensemble member. The
possibility of weighted ensembles is not discussed in
detail here, but the methods in this section are easily
generalized to this case. Attempts to apply the most
common types of weighting/resampling Monte Carlo
algorithms in high-dimensional spaces have faced sig-
nificant difficulties.

Observational error distributions of climate system
observations are generally only poorly known and are
often specified as Gaussian with zero mean (known in-
strument bias is usually corrected by removing the bias
from the observation during a preprocessing step). Some
observations have values restricted to certain ranges;
for instance, precipitation must be positive. Redefining
the observation variable as the log of the observation
can lead to a Gaussian observational error distribution
in this case (Tarantola 1987). Given Gaussian obser-
vational error distributions, observations can be decom-
posed into subsets where observational errors for ob-
servations in each subset are correlated but observa-
tional errors in different subsets are uncorrelated. In
other words, R, the observational error covariance ma-
trix, is block diagonal with each block being the size
of the number of observations in the corresponding ob-
servation subset. Error distributions for the different
subsets are independent, so the subsets can be assimi-
lated sequentially in (2) in an arbitrary order.

For many commonly assimilated observations, each
scalar observation has an error distribution that is in-
dependent of all others, allowing each scalar observation
to be assimilated sequentially (Houtekamer and Mitchell
2001). If the observational covariance matrix is not
strictly diagonal, a singular value decomposition (SVD;
equivalent to an eigenvalue decomposition for a sym-
metric positive-definite matrix like R) can be performed
on R. The prior joint state ensembles can be projected
onto the singular vectors and the assimilation can pro-
ceed using this new basis, in which R9, the observational
covariance matrix, is diagonal by definition. Upon com-
pletion of the assimilation computation, the updated
state vectors can be projected back to the original state
space. Given the application of this SVD, a mechanism
for sequential assimilation of scalar observations im-
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FIG. 1. An idealized representation showing the relation between
update increments for a state variable, x, and an observation variable,
y, for a five member ensemble represented by asterisks. The projection
of the ensemble on the x and y axes is represented by a plus sign
and the observation, yo is represented by 3. In this case, y is func-
tionally related to x by h . The gray dashed line shows a global least
squares fit to the ensemble members. Update increments for ensemble
members 1 and 4 for y are shown along with corresponding incre-
ments for the ensemble as a whole (thin vectors parallel to least
squares fit) and for the x ensemble.

plies no loss of generality for observations with arbi-
trary Gaussian error distributions. In everything that
follows, results are presented only for assimilation of a
single scalar observation so that m 5 1, with joint state
space size k 5 n 1 m 5 n 1 1. Allowing arbitrary
observational error distributions represented as a sum
of Gaussians is a straightforward extension to the meth-
ods described below.

c. Two-step data assimilation procedure

Following A01, define the joint state space forward
observation operator for a single observation as the or-
der 1 3 k linear operator H 5 [0, 0, . . . , 0, 1]. The
expected value of the observation can be calculated by
applying H to the joint state vector, z, which is equiv-
alent to applying the possibly nonlinear operator h to x.
The conversion of the possibly nonlinear h to the linear
H is a primary motivation for applying ensemble filters
in the joint state space.

The updated probability for the marginal distribution
of the observation joint state variable, y, can be formed
from Eq. (2) with the simple form

u o p pp (y ) 5 p(y | y )p (y )/(norm),y y (4)

where the subscript on the probability densities indicates
a marginal probability on the observation variable, y.
The one-dimensional problem for this marginal distri-
bution can be solved by a variety of methods, some of
which are discussed in sections 3 and 4. Note that (4)
does not depend on any of the model state variables.

This suggests a partitioning of the assimilation of an
observation into two parts. The first determines updated
ensemble members for the observation variable y given
the observation, yo. To update the ensemble sample of
yp, an increment, Dyi, is computed for each ensemble
member, 5 1 Dyi, i 5 1, . . . , N, where N is theu py yi i

ensemble size.
Given increments for the observation variable, the

second step computes corresponding increments for
each ensemble sample of each state variable, Dxi,j (i
indexes the ensemble member and j 5 1, . . . , k indexes
which joint state variable throughout this report). This
requires assumptions about the prior relationship be-
tween the joint state variables. Although reasonable al-
ternatives exist (Tarantola 1987), the assumption used
here is that the prior distribution is Gaussian (or a sum
of Gaussians that allows generality). This is equivalent
to assuming that a least squares fit (local least squares
fit) to the prior ensemble members summarizes the re-
lationship between the joint state variables.

Figure 1 depicts the simplest example in which there
is only a single state variable, x. The observation var-
iable, y, is related to x by the operator h , which is non-
linear in the figure. Increments for each ensemble sam-
ple of y have been computed. The corresponding incre-
ments for x are then computed by a global least squares
fit (linear regression) so that

sx,y
Dx 5 Dy . (5)i isy,y

The change in the ith ensemble sample of the state var-
iable due to observation variable y is equal to the prior
covariance of x with y, sx,y divided by the prior variance
of y, sy,y times the change in the ith ensemble sample
of the observation variable. This is just a statistical lin-
earization and inversion of the observation operator h .
This linearization can be done globally by computing
the global sample covariance and using this for the re-
gression for each ensemble member (Fig. 1).

The linearization can also be done locally (Fig. 2) by
computing local estimates of covariance for each en-
semble member. This can be done, for instance, by only
using a set of nearest neighbors (in y, in x, or in some
combined distance metric) to compute sample covari-
ance. Figure 2 shows an idealized form of nearest neigh-
bor linearization in which only a single closest ensemble
member is used to compute the statistical linearization.
Related methods for doing local Gaussian kernel ap-
proximations of this type can be found in Silverman
(1986) and Bengtsson and Nychka (2001). When x is
functionally related to y as in Fig. 2, local linearization
methods like this can give significantly enhanced per-
formance when h is strongly nonlinear over the prior
ensemble range of y.
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FIG. 2. As in Fig. 1 but showing the application of local least
squares fits, in this case using only the nearest neighbor in y, to
compute the updates for x given the updates for y. The local updates
for the first and fourth ensemble members are shown by the black
vectors.

FIG. 3. As in Fig. 1 but now y 5 h (x2), where x2 is a second state
variable that is moderately correlated with x1. The thin dashed vector
demonstrates the hazard of using local least squares fits when the
observation variable y and the state variable x1 are not functionally
related.

If h is nonlinear as in the figures, the statistical lin-
earization is only valid locally. To minimize errors due
to the linearization, whether global or local lineariza-
tions are applied, it is desirable that the observation
variable increments, Dyi, should be as small as possible.
This is discussed further in section 4c.

This two-step method can be extended trivially to
problems with arbitrary numbers of state variables.
When a global linearization is applied using a least
squares fit, a single Gaussian is assumed to approximate
the prior relation of the variables. The increments, Dxi,j,
for each ensemble sample of each state variable in terms
of Dyi can be computed independently by regression:

sx j,y
Dx 5 Dy . (6)i, j isy,y

Again, local linearizations could be performed using
Gaussian (or extended Gaussian) kernel methods (Tar-
antola 1987) in which only some subset of local infor-
mation is used to compute the covariance from the en-
semble sample. In (6), all relevant information about
the prior covariance of the model state variables, x,
needed to compute increments is contained in the cor-
relation of the individual scalar state variables with the
observation variable y.

When the state variable being updated and the ob-
servation variable are not functionally related, the use
of local linearizations can be more problematic. Figure
3 shows an example where state variable x1 is being
updated by an observation, yo. The expected value of
the observation is y 5 h (x2), where x2 is a second state

variable, here moderately correlated with x1. In this case,
the linear regression for x1 performs a statistical line-
arization in the presence of noise. Using large (global)
regressions is useful to filter out this noise. On the other
hand, using local linearizations can help to resolve more
of the structure of h . Applying local regressions that are
based on too few ensemble members can lead to disas-
trous overfitting behavior as demonstrated by the ap-
plication of an idealized single nearest-neighbor line-
arization in Fig. 3. Appropriate trade-offs in choosing
local versus global linearizations are an important part
of tuning ensemble filters for improved performance.

3. Relation to ensemble Kalman filters

A variety of ensemble Kalman filters have been de-
scribed in the literature (see, e.g., Evensen and van
Leeuwen 1996; Keppenne 2000; Mitchell and Houtek-
amer 2000; Pham 2001). Closely related methods for
doing assimilation have been described by Lermursaix
and Robinson (1999) and Miller et al. (1994). This sec-
tion demonstrates that two of these, the perturbed ob-
servations ensemble Kalman filter (EnKF) and the en-
semble adjustment Kalman filter (EAKF), can be recast
in the two-step framework outlined in the previous sec-
tion. At the heart of these ensemble Kalman filters is
the fact that the product of the joint prior Gaussian with
mean p, covariance Sp, and weight w and the Gaussianz
observation distribution with mean yo and error variance
R has covariance
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u p 21 21 21TS 5 [(S ) 1 H R H] , (7)

mean
u p pu 21 21 oTz 5 S [(S ) z 1 H R y ], (8)

and an associated relative weight
pp pT 21 o T o21D 5 exp{2[(z ) (S ) z 1 (y ) R y
u uu T 212 (z ) (S ) z ]/2}w, (9)

as in A01.
The discussion that follows assumes sequential as-

similation of scalar observations so that in (7)–(9), yo

is a vector of length 1 and R is a 1 3 1 matrix. Additional
simplifications in computing the product of Gaussians
can then be made easily. The order of the prior joint
state covariance, Sp, is k 3 k, where k 5 n 1 1. The
updated covariance from (7) can be written

u p p21S 5 [I 2 (r 1 s ) S ]S ,k,k 0k (10)

where sk,k is the prior observation variable error vari-
ance (the kth diagonal element of Sp), r is the obser-
vation error variance (the only element of the 1 3 1
matrix R), and is the matrix consisting of Sp withpS0k

all elements except those in the last column set to 0.
The last column is the prior covariance of each joint
state variable with the observation variable. The change
in the covariance due to the assimilation of a single
observation is then

u p p p21DS 5 S 2 S 5 2(r 1 s ) S S .k,k 0k (11)

Substituting (10) into the expression for the updated
mean from (8) gives

p p pu p21 21 oT 21z 5 [I 2 (r 1 s ) S ]S [(S ) z 1 H R y ].k,k 0k

(12)

Noting that SpHTR21yo 5 HTR21yo and 5p p pS S S0k 0k 0k

sk,k , this becomespS0k

pu p21z 5 [I 2 (r 1 s ) S ]zk,k 0k

p21 21 oT1 r [I 2 (r 1 s ) s ]S H y . (13)k,k k,k 0k

An equation for the change in the mean due to assim-
ilating the observation is

pu p p21 oTDz 5 z 2 z 5 (r 1 s ) S (H y 2 z )k,k 0k

p21 o T5 (r 1 s ) (y 2 z )[s , s , . . . , s ] , (14)k,k k 1,k 2,k k,k

where the single element of the vector yo is yo and pz k

is the prior mean value of the observation variable.
Finally, in this case the weight D from (9) (a scalar)

depends only on the observation and the observation
variable and simplifies to

po 2D 5 exp[2(y 2 z ) /2(r 1 s )]w. (15)k k,k

It is easily verified that computing the impact of the
observation on each state variable independently in (11),
(14), and (15) is equivalent to computing the impact on
all state variables at once. This was pointed out, but not

rigorously derived, in A01 where assimilations were
performed by looking at the impact of an observation
on each state variable in turn. More complete discussion
of estimation theory as applied in the preceding two
subsections can be found in Cohn (1997).

a. Perturbed observation ensemble Kalman filter

In its traditional implementation, the perturbed ob-
servation ensemble Kalman filter (Houtekamer and
Mitchell 1998) uses a random number generator to sam-
ple the observational error distribution (specified as part
of the observing system) and adds these samples to the
observation, yo, to form an ensemble sample of the ob-
servation distribution, , i 5 1, . . . , N. In most im-oyi

plementations (Houtekamer and Mitchell 1998), the
mean of the perturbations is adjusted to be 0 so that the
perturbed observations have mean yo; other clever meth-
ods for perturbing the observations can preserve other
aspects of the distribution (Pham 2001) (the discussion
below applies whether adjustment to the means or other
types of perturbation algorithms are used or not). Here,
Sp is computed using sample statistics from the prior
joint state ensemble and (7) is computed once to find
the value of Su. Equation (8) is then applied N times
with p replaced with and yo replaced by in thep oz z yi i

ith application to compute N ensemble members for zu.
This method is described using more traditional Kalman
filter terminology in Houtekamer and Mitchell (1998).
As shown in Burgers et al. (1998), computing a random
sample of the product as the product of random samples
is a valid Monte Carlo approximation to the nonlinear
filtering equation (2). Note that all ensemble members
are assumed equally weighted in both the EnKF and
EAKF so that (9) is not used; however, (9) may be
relevant for other ensemble filtering methods (see sec-
tion 4).

An equivalent two-step procedure for the EnKF be-
gins by computing the update increments for the ob-
servation variable, y, a scalar problem independent of
the other joint state variables (4). Perturbed observations
are generated and (7) is used to compute an updated
variance for the observation variable; all matrices here
are order 1 3 1. Equation (8) is evaluated N times to
compute , with p and yo replaced by and , whereu p oy z y yi i i

the subscript refers to the value of the ith ensemble
member.

Equation (14) applies in this case, since the updated
covariance in the full dimension EnKF is computed by
(7), and can be used to compute the increments for all
other state variables given the value of Dyi 5 2u py yi i

(the kth component of the k-vector Dz i). All components
of Dzi can be computed from (14) as

sj,k
Dz 5 Dy , (16)i, j isk,k

where the first subscript on Dz indexes the ensemble
member and the second indexes the state variable. This
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is the regression formula (6) presented in section 2c
derived from the assumption of a Gaussian relation be-
tween the prior state variables. Implementing the EnKF
in this two-step fashion gives results identical (to com-
putational roundoff ) to previous implementations of the
EnKF.

b. Ensemble adjustment Kalman filter–square root
filter

Bishop et al. (2001), Whitaker and Hamill (2002),
and Pham (2001) have all described other ensemble fil-
tering methods similar to the EAKF in A01. Tippett et
al. (2003), providing an analysis of the work of these
different authors, point out that the methods are roughly
equivalent and suggest that the name deterministic
square root filter (Andrews 1968) may be more appro-
priate.

The EAKF constructs an updated ensemble with a
mean and sample variance that exactly satisfy (7) and
(8). In A01 this is done by shifting the mean of the
ensemble and then adjusting the spread of the ensemble
around the updated mean using a linear operator A:

p uu pz 5 A(z 2 z ) 1 z ,i i (17)

where A satisfies Su 5 ASpAT.
The EAKF can be recast in the two-step framework

developed in section 2. Again, (4) implies that the ob-
servation variable y can be updated independently of
the other joint state variables. Recalling that y is the kth
element of the k-dimensional joint state vector, the up-
dated variance for y can be written

u p 21 21 21s 5 [(s ) 1 r ]k,k k,k (18)

using a scalar application of (7). Applying a scalar ver-
sion of (8) to compute the updated mean, yu, the updated
value of y can be written

p uu py 5 a(y 2 y ) 1 y ,i i (19)

where
u p 21 1/2 p 21 1/2a 5 [s (s ) ] 5 [r(r 1 s ) ] .k,k k,k k,k

For the change in the mean values, D 5 u 2 p, Eq.z z z
(14) holds for the EAKF and this implies that (16) can
be used to compute the changes in the state variables
by regression from the change in the mean for y.

It can also be shown that the regression formula can
be applied for the adjustment of the ensemble members
around the mean in the EAKF. Equation (10) can be
rewritten by taking the square root of the operator as

u p TS 5 BS B , (20)

where
pB 5 (I 1 bS ) and (21)0k

p 21 p 21b 5 (s ) 3Ïr(r 1 s ) 2 14. (22)k,k k,k

If the deviation of the observation variable around

the mean is updated as in (19), applying the linear re-
gression (16) for state variable j gives

21 21 pDz 5 s (s ) Dy 5 s (s ) (a 2 1)y .i,j j,k k,k i j,k k,k i (23)

Then,
u p p pz 5 z 1 s Gy ,i,j i,j j,k i (24)

where
p 21G 5 (s ) (a 2 1)k,k

p 21 p 215 (s ) 3Ïr(r 1 s ) 2 14. (25)k,k k,k

Writing this in vector form for the updates of all joint
state variables gives

pu pz 5 A(z 2 z ),i i (26)

where
pA 5 I 1 GS .0k (27)

The matrix A used in the regression update is identical
to B in (21) demonstrating that using regression in the
two-step framework is identical to the implementation
of the EAKF described in A01.

In summary, the EnKF and EAKF assume a Gaussian
relation between the variables in the joint state space
prior distribution. However, these methods do not use
(7) and (8) directly to compute an updated distribution.
Both methods can be recast in terms of the two-step
assimilation context developed in section 2c. First, up-
date increments are computed for each ensemble sample
of the observation variable using scalar versions of the
traditional algorithms. Once increments for ensemble
samples of the observation variable have been com-
puted, (16) is used to solve for the increments, Dzj,i, for
each state variable in turn in terms of Dyi by linear
regression. The appendix discusses this method in the
case where the prior covariance matrix is degenerate.

There are a number of implications about the com-
putational complexity of ensemble (Kalman) filtering
that can be drawn from (16). First, there is no need to
compute the prior covariance among the model state
variables (only the prior cross covariance of each state
variable with the observation variable is needed, along
with the variance of the observation variable) or the
complete updated covariance, Su (only the updated var-
iance of the observation variable is needed). Second,
once the observational variables are updated, the incre-
ments for the state variables depend only on ratios of
prior (co)variances. Any multiplication of the prior co-
variance matrix by some type of covariance inflation
factor, as is done in many existing ensemble Kalman
filter implementations (Anderson and Anderson 1999;
Whitaker and Hamill 2002), does not impact the solution
to (16). The impacts of covariance inflation are still felt
in the first step in which the increments of the obser-
vational variable are computed. Note that many types
of covariance inflation directly increase the spread of
the joint prior distribution.
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There are important caveats to this discussion of en-
hanced computational efficiency. First, as noted in sec-
tion 2b, correlations between observational errors re-
quire a rotation of the problem to apply the sequential
methods discussed here. In the limit where most of the
observational errors are correlated, the cost of doing
this rotation could end up offsetting the savings from
avoiding matrix multiplies. At present, most operational
centers do not assume that there are correlated obser-
vational errors, but this could become important at a
later date. If only certain sets of observations have cor-
related errors, a block diagonal covariance structure re-
sults and rotation can still be done more efficiently than
computing the full matrix products. Second, the se-
quential method outlined here may present challenges
for implementation on highly parallel computer archi-
tectures; relative performance on such hardware will
require further analysis.

4. Additional methods for updating the
observational variable ensembles

In this section, some additional methods for updating
the observational variable are discussed. Once update
increments for the observation variable are computed
by one of the following methods, the rest of the joint
state variables can be updated by linear regression using
(16).

a. A kernel filter

If the prior distribution of the observation variable
may have significant non-Gaussian structure, a kernel
method similar to the one employed in Anderson and
Anderson (1999) may be useful for computing the up-
date increments. One simple example of kernel methods
is the Fukunaga method (Silverman 1986). In this al-
gorithm, the prior distribution is represented as a sum
of Gaussians with identical variance but different means.
The means are the individual prior ensemble samples
and the variance is the prior sample variance multiplied
by a scaling factor, h. The prior distribution is then

N
pppp(y ) 5 N(y , hS ),O i

i51

where N(a, b) is a Gaussian with mean a and variance b.
The product of a prior expressed as a sum of Gaus-

sians and a Gaussian observational distribution is equal
to the sum of the products of the individual prior Gaus-
sians and the observational Gaussian. The variance of
all Gaussians summed in the product is identical in this
case and can be computed by a single scalar application
of (7). The means will all be different and can be com-
puted by N scalar applications of (12). In the most naı̈ve
application of this method, an updated ensemble can be
generated from this continuous representation by ran-
domly sampling the sum of Gaussians as in Anderson
and Anderson (1999).

This kernel method can be extended in a number of
ways by allowing more general kernels. For instance,
kernels with different means and different variances can
be used following a variety of techniques like the class
of nearest-neighbor methods (Silverman 1986; Bengts-
son and Nychka 2001). In addition, kernels from the
class of ‘‘generalized’’ Gaussians as described in Tar-
antola (1987) can lead to related kernel algorithms.

b. Quadrature product methods

Update methods that are based directly on ‘‘quadra-
ture’’ solutions to (4) can also be used to find increments
for observation variables. One implementation of such
a method could begin by computing a continuous ap-
proximation to the prior distribution from the ensemble
sample; again, kernel methods are an example. Quad-
rature methods can then be used to divide the real line
into a set of intervals over which the product in the
numerator of (4) is computed to approximate the up-
dated distribution. An appropriate method can then be
used to sample this updated distribution to generate new
ensemble methods.

c. General requirements for an observation variable
update

Several characteristics may be important for algo-
rithms used to update the observation variables. First,
low quality observations should have small impacts on
the ensemble. For atmospheric and oceanic models, the
prior distributions may be sampling model ‘‘attractors’’
that have a great deal of structure. Allowing low impact
observations to change the ensembles has the potential
to destroy valuable information. Pure resampling al-
gorithms would be an example of an undesirable meth-
od. In this case, the prior ensemble would be converted
to a continuous representation that would then be only
subtly modified by a low information observation. This
updated continuous distribution would then be resam-
pled to generate an ensemble, leading to possibly large
increments to ensemble members. The ensemble kernel
filter as described above suffers from this deficiency and
generally produces assimilations with larger ensemble
mean error than do the EnKF and EAKF despite the
fact that in many instances it produces more accurate
samples of the updated observation variable distribution
when the prior is significantly non-Gaussian. Modifi-
cations to the kernel filter that limit the impact of low
information observations are required to make this
method more generally useful.

For related reasons, it is desirable to limit the size of
the increments for observation variables as noted in sec-
tion 2. Since the regression used to update the state
variables is a statistical linearization, it is likely to be
an increasingly poor approximation as the increments
increase. For instance, the updated mean and covariance
of the observation variable for the EnKF would be the
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same if the pairing between the updated, , and prior,uzk

, observational variable ensemble members waspzk

changed before the computation of update increments,
Dzk.

In some applications, the performance of the EnKF
can be dramatically improved by pairing the updated
observational variable ensemble members with the prior
members so as to reduce the value of the update incre-
ments. The most obvious way to do this is to sort the
prior and updated observational variable ensemble
members and to associate the nth sorted updated en-
semble member with the nth sorted prior ensemble
member. Doing this reduces much of the difference be-
tween the EnKF and EAKF reported in A01. Doing
ordered pairing also significantly improves the perfor-
mance of kernel filter algorithms (section 4a) by re-
ducing the size of the increments.

As an idealized example of this sorting procedure,
suppose that for a three-member ensemble, the prior
observation variable sample 5 {1, 5, 7} and the up-pzk

dated sample 5 {4.9, 6.6, 1.2}. Unordered pairingsuzk

like this can result when perturbed observations are used
in the EnKF. Pairing these in this order gives increments
Dzk 5 {3.9, 1.6, 25.8}. If both sets are sorted, the
statistics of each remains unchanged, but the increments
are Dzk 5 {0.2, 20.1, 20.4}. The errors resulting from
the linear regression in the second step of the assimi-
lation are clearly expected to be significantly less in the
sorted case.

While many existing ensemble filters can be recast
in the framework presented here, there are some that
apparently cannot. For instance, the particle filter of
Pham (2001) requires information about the joint dis-
tribution of observation and state variables when doing
resampling. Methods like the singular second-order-ex-
act EnKF of Pham (2001), however, can be expressed
in the two-step framework.

5. Conclusions

A local least squares framework for ensemble filtering
has been derived leading to a two-step ensemble filtering
update procedure when a new observation becomes
available. The first step is to compute update increments
for each ensemble member of a prior estimate of the
value of the observation. This can be done using a va-
riety of algorithms including the perturbed observation
ensemble Kalman filter and the ensemble adjustment
Kalman filter. Other viable update methods, for instance
a kernel filter, extend beyond the Kalman filter context
and can be referred to more generally as ensemble filters.

The second step computes increments for each en-
semble member of the prior estimate for each state var-
iable by using the prior ensemble sample to do a linear
regression of each state variable in turn on the obser-
vation variable. The increments for a given state variable
are computed by multiplying the corresponding obser-
vation variable increment by the prior covariance of the

state and observation variable and dividing by the prior
variance of the observation variable.

Deriving a class of ensemble filters in this two-step
context has a number of advantages. First, it is com-
putationally more efficient than previous descriptions of
ensemble Kalman filter algorithms in the literature when
observations do not have correlated error distributions.
The cost is expected to be dominated by the computation
of the prior sample cross covariance of the observation
and state variables and the variance of the observation
variables. A second advantage is that much more elab-
orate and expensive ensemble update methods can be
used because they need be applied only in a scalar fash-
ion to the observation variables. A final advantage is
that it is easier to understand differences between var-
ious filtering algorithms. Differences only need to be
explored in a scalar context making the relative features
of, for instance, the EnKF and EAKF much easier to
understand.

By lowering the cost of existing filters and opening
up a variety of new filter update algorithms, it is hoped
that this local least squares framework can accelerate
the development of ensemble filtering algorithms that
are best suited for applications such as numerical weath-
er prediction and ocean state estimation.
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APPENDIX

Degenerate Prior Covariance

A potential complication occurs if Sp is degenerate
so that its inverse is not defined. There are several rea-
sons why Sp might be degenerate. First, it is possible
that the joint state vector is of order greater than the
size of the space that it spans. The most obvious instance
occurs when an observation is a linear function of the
prior model state variables (for instance if a state var-
iable is observed directly). Second, details of the sample
statistics of the prior ensemble could lead to degeneracy.
For instance, if the ensemble is smaller than the size of
the joint state space, Sp computed from the sample sta-
tistics must be degenerate. Third, details of the predic-
tion model could lead to states that are confined to some
submanifold of the model state space.

The two-step procedures for the EnKF and EAKF
continue to be equivalent to the traditional implemen-
tations even if Sp is degenerate. In this case, (7)–(9)
must be modified to replace the inverses with pseu-
doinverses. Let UT be an h 3 k orthogonal matrix whose
rows are the set of left singular vectors of Sp corre-
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sponding to nonzero singular values (h is the rank of
Sp). Applying UT to a vector in the original space gives
the projection of that vector on the range of Sp. The
projection of the covariance on this space is UTSpU. The
probability density of the prior distribution outside of
this subspace is zero, so the updated distribution and
hence Dz must lie in this subspace.

Next, define an h 3 h orthogonal matrix BT that
performs a change of basis in the reduced SVD sub-
space. Let the h 3 k matrix CT 5 BTUT be defined so
that the last row of CT is the projection of the obser-
vation variable, zk 5 y, on the range of Sp; the last
column of CT is [0, 0, . . . , 0, c]T. As long as the
observation vector does not lie in the null space of Sp,
CT exists, but this must be the case for (2) to have a
relevant solution. If the observation vector did lie en-
tirely in the null space, then p(yo | zp) would be 0 with
probability 1 and the result of (2) would be a delta
function indicating a deterministic solution [and prob-
ably an improperly defined problem (Tarantola 1987)].

In the subspace spanned by the rows of CT, the pro-
jection of the prior covariance has an inverse and (7)–
(9) can be applied. The results can then be projected
back to the original space:

u p 21 21 21 TT T TS 5 C[(C S C) 1 C H R HC] C . (A1)

In this subspace, define that S9u 5 CTSuC, S9p 5
CTSpC, 5 CTz i (an h vector), 5 cyi is the lastz9 y9i i

element of , and 5 c2 is the prior variancep pz9 s9 si h,h k,k

of . Also note that CTHTR21HC is a h 3 h matrix withy9i
all elements 0 except the last column of the last row,
which is r921 5 c2r21. Finally, define R921 as the 1 3
1 matrix with only element r921 and H9 as the h vector
[0, 0, . . . , 0, 1].

In the subspace, (10)–(16) hold for the primed quan-
tities just defined. In particular, (16) in vector form gives

pp 21 TDz9 5 (s9 ) S9 [0, 0, . . . , 0, Dy9] .i h,h i (A2)

Converting this back to the original subspace gives
pp 21 TDz 5 CDz9 5 (s9 ) CS9 [0, 0, . . . , 0, cDy ] .i i h,h i

(A3)

Using the fact that CTC 5 I,
p22 p 21 TTDz 5 c (s ) CS9 C C[0, 0, . . . , 0, cDy ]i k,k i

pp 21 T5 (s ) S [0, 0, . . . , 0, Dy ] , (A4)k,k i

which is a vector form of (16).
This demonstrates that using the two-step procedure

in the original space, even if Sp is degenerate, gives
results corresponding to those given by the previously
documented versions of the EnKF and EAKF.
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