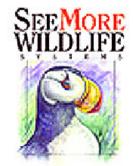
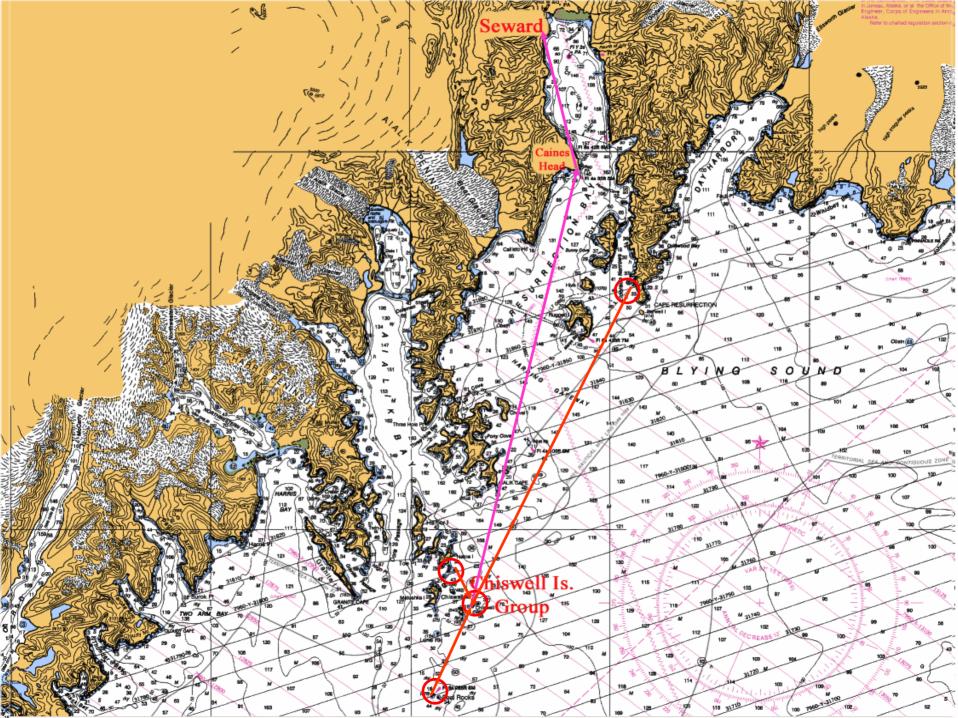
Remote Video Monitoring of Steller Sea Lions


Principal Investigator: John Maniscalco

Co-Investigators: Pam Parker, Shannon Atkinson, Don Calkins, Karin Harris, Emily Teate, Craig Matkin, Rebecca Taylor

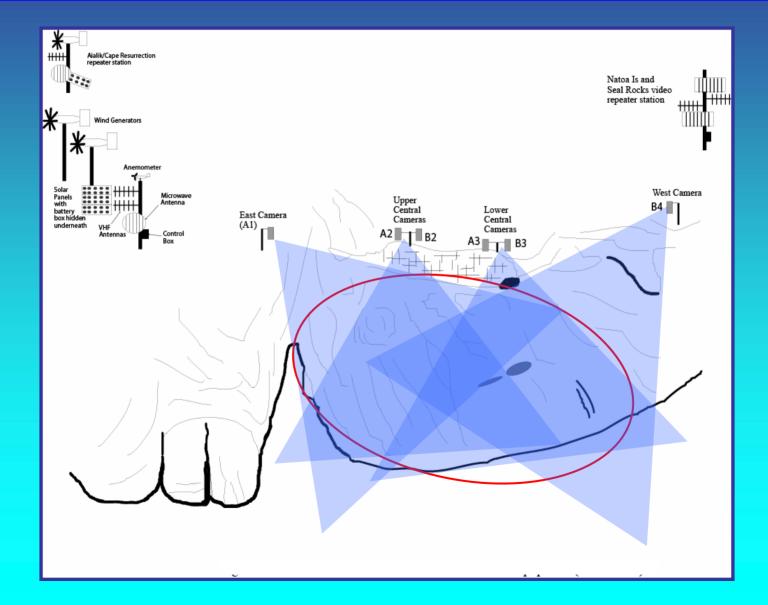
Photo by Elizabeth Moundalexis


Remote-control cameras Equipped with *Zoom *Pan/Tilt *Windshield washer/wipers

Control tower

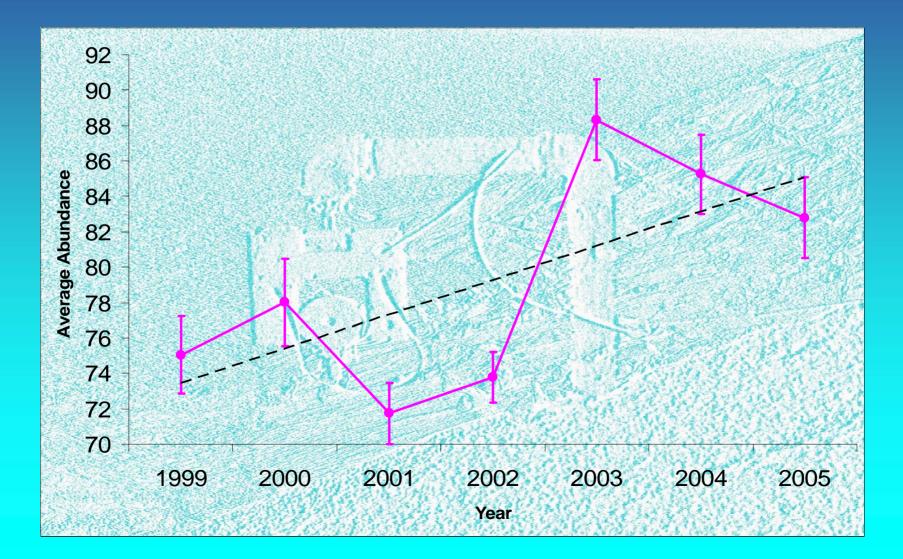
- *Microwave
- ***VHF** antennas
- *Solar panels
- *Wind generators
- *Anemometer
- *Weather data logger

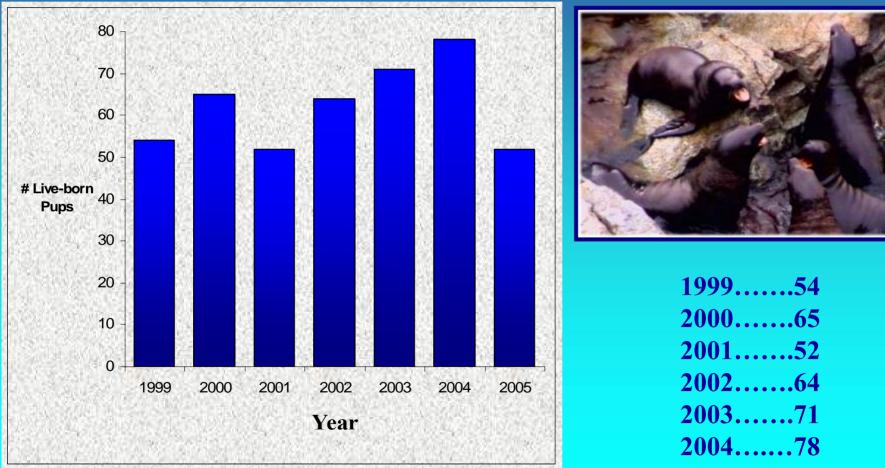
At The Alaska SeaLife Center



🔀 SWS Remote Control 1.0.9D

File Options Window ViewPort Quality ViewPort Location (B3: 20.3.207.0.255.255.255.227.0.0)


Coverage of the Rookery


Chiswell Island 1982 vs. 2002

Average summer abundance of age 1+ sea lions at Chiswell Island (±1 SE)

Chiswell Island Pup Production 1999 - 2004

2005.....52

Studies Being Accomplished

- **1. Maternal Investment**
- 2. Characteristics of Parturition
- **3. Alloparental Care**
- 4. Pupping Site Fidelity
- 5. Early Pup Mortality
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- **12. Remote 3D Photogrammetry**

Future Studies

Population Estimates and Trends

Seasonal and Long-term Movements

Survivability

Synthesis of Studies

Studies Being Accomplished

- 1. Maternal Investment
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- 5. Early Pup Mortality
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Maternal Investment Studies

Bubbles

• Identification of females

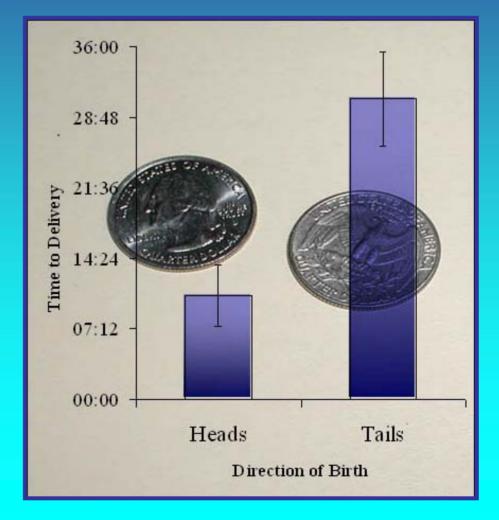
Uncanny

Hogan

Buttercup

Parturition

Females give birth late May to July



~100 births recorded (VHS & DVD)

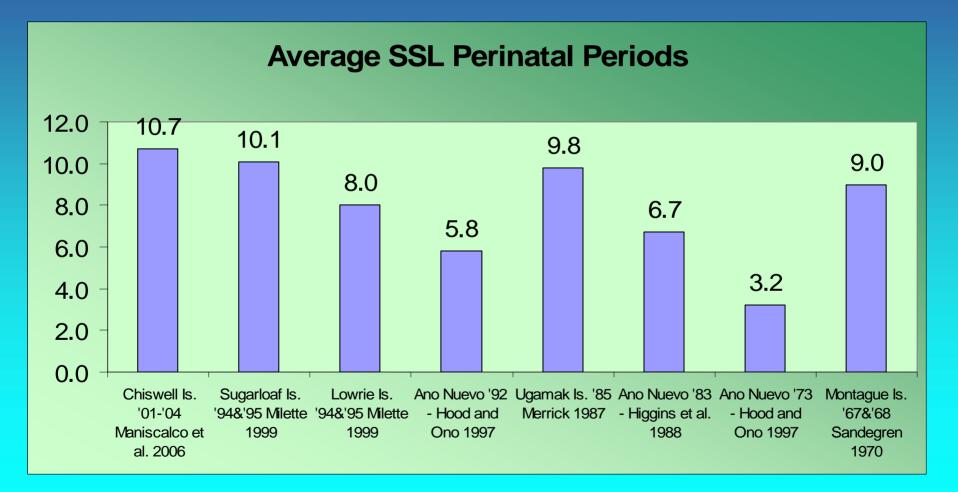
Parturition

2001-2003

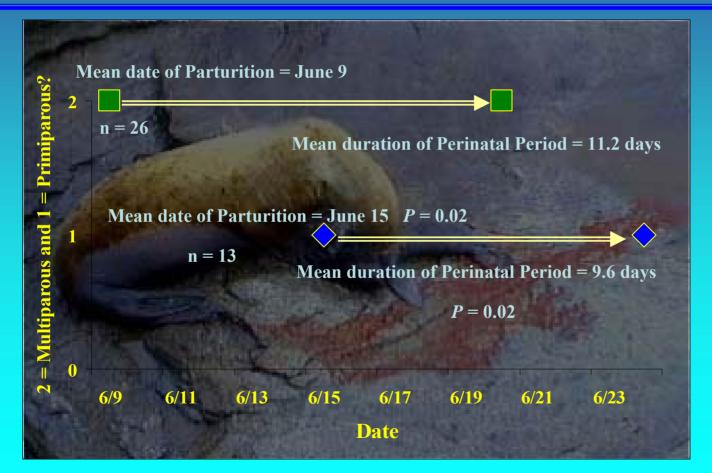
Heads = 27 females Tails = 30 females

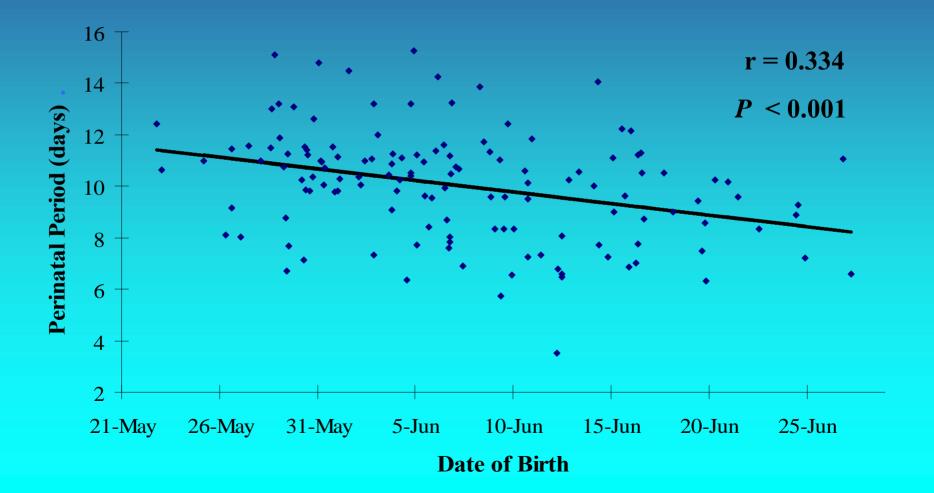
Maternal Care - Parturition

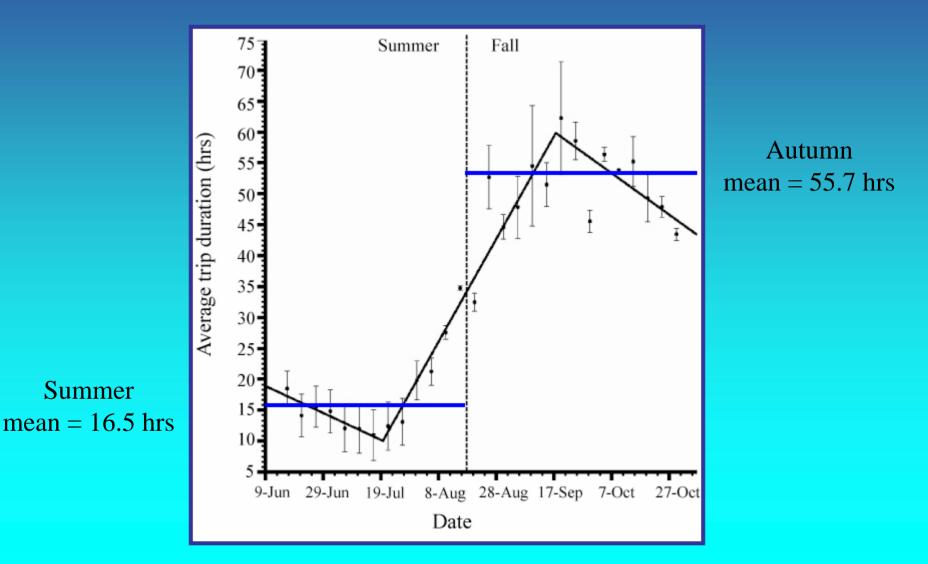
- **2001 = June 10**
- **2002 = June 10**
- **2003 = June 10**
- **2004 = June 11**



Individual females did differ significantly in their dates of parturition from year to year (n = 13; RM ANOVA, P = 0.025).


2001 = June 13 2002 = June 15 2003 = June 8 2004 = June 10


Maternal Care – Perinatal Periods


Maternal Care Parturition and Perinatal Period Multiparous vs. Primiparous(?)

Maternal Care Parturition and Perinatal Period

Maternal Care – Foraging Trips

Parturition and Maternal Care

Presentations

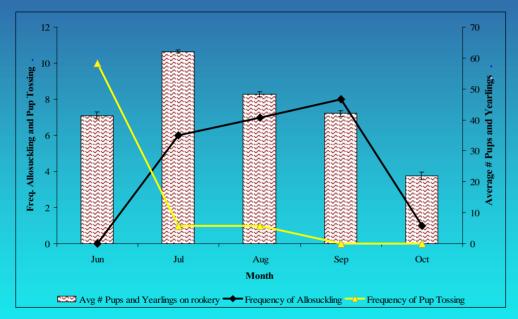
- Maniscalco, J. M., S. Atkinson, A. M. Burdin, D. G. Calkins. 2003. Population dynamics, maternal investment, and early pup mortality in Steller sea lions at Chiswell Island. *Oral Presentation* at Marine Science in the Northeast Pacific, Jan 13-17. Anchorage, AK
- Parker, P., J. Maniscalco, S. Atkinson, K. Harris, R. Baptista. 2003. Summer to autumn increases in maternal investment for individual Steller sea lions (*Eumetopias jubatus*) in the Northern Gulf of Alaska. *Poster Presentation* at 15th Biennial Conference on the Biology of Marine Mammals, Dec 14-19. Greensboro, NC
- Maniscalco, J., S. Atkinson. 2003. Characteristics of parturition and neonatal behavior in Steller sea lions (*Eumetopias jubatus*). *Poster Presentation* at 15th Biennial Conference on the Biology of Marine Mammals, Dec 14-19. Greensboro, NC

Parturition and Maternal Care

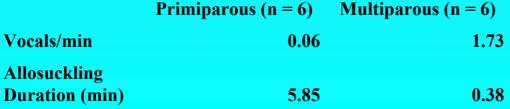
Publications

Maniscalco, J. M., S. Atkinson, P. Armato. 2002. Early maternal care and pup survival in Steller sea lions: A remote video monitoring project in the northern Gulf of Alaska. Arctic Research of the United States 16:36-41.

Maniscalco, J. M., P. Parker, S. Atkinson. 2006. Interseasonal and interannual measures of maternal care among individual Steller sea lions (*Eumetopias jubatus*). Journal of Mammalogy 87:304-311.


See Also: Synopsis of Research on Steller Sea Lions – Chapter 32

Studies Being Accomplished


- **1. Maternal Investment**
- 2. Characteristics of Parturition
- **3. Alloparental Care**
- 4. Pupping Site Fidelity
- 5. Early Pup Mortality
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Alloparental Care

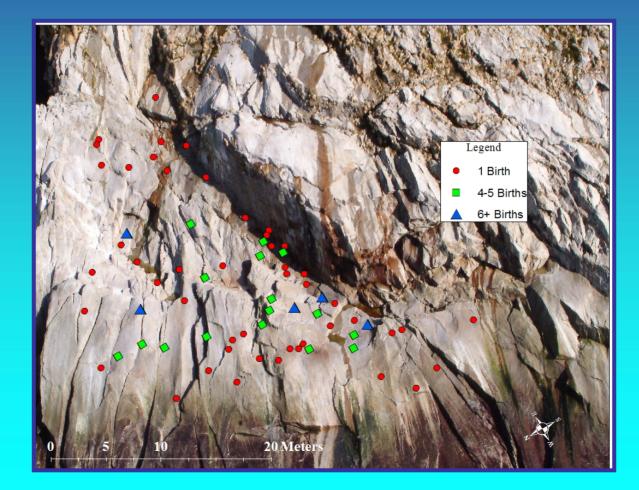
23 cases of allosuckling observed over the years 2001-2004

Also: One case of adoption

Alloparental Care

Presentation and Publication

- Maniscalco, J. M., K. Harris. 2005. Observations of alloparental care in Steller sea lions. *Poster Presentation* at Animal Behavior Society, 42nd Annual Meeting. Aug 6-10, Snowbird, UT
- Maniscalco, J. M., K. R. Harris, S. Atkinson, P. Parker. *In Press*. Alloparenting in Steller sea lions (*Eumetopias jubatus*): Correlations with misdirected care and other observations. Journal of Ethology.


See Also: Synopsis of Research on Steller Sea Lions – Chapter 29

Studies Being Accomplished

- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- 5. Early Pup Mortality
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

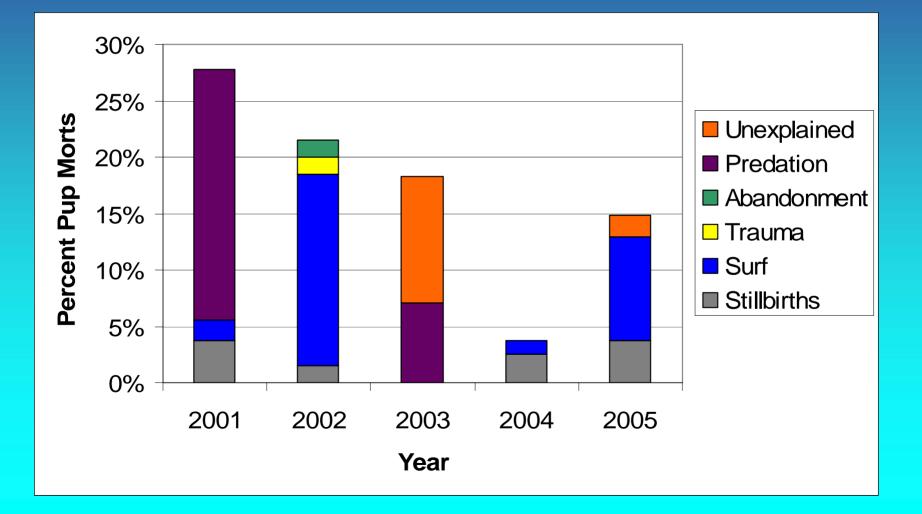
Pupping Site Fidelity

Pupping Site Fidelity

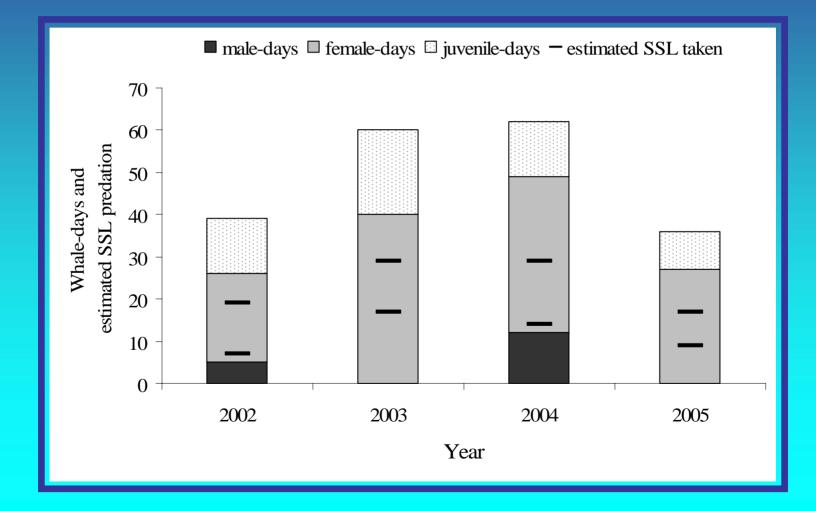
Presentations and Publications

Parker, P. J. M. Maniscalco, J. Harvey, S. Atkinson. 2005. Pupping site fidelity among individual Steller sea lions (*Eumetopias jubatus*) in the northern Gulf of Alaska. *Oral Presentation* at upcoming 16th Biennial Conference on the Biology of Marine Mammals, Dec 12-16, San Diego, CA

Parker, P. 2006. Master of Science Thesis, San Jose State University, CA *Further publication TBD


See Also: Synopsis of Research on Steller Sea Lions – Chapter 33

Studies Being Accomplished


- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- **5. Early Pup Mortality**
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Pup Mortalities

Killer Whale Presence and Estimated Predation in KF

Pup Mortalities and Predation

Presentations and Publications

- Maniscalco, J. M., S. Atkinson. 2004. Causes of early pup mortality at a Steller sea lion (*Eumetopias jubatus*) rookery in the northern Gulf of Alaska. *Poster Presentation* at Marine Science in Alaska Symposium, Jan 12-14, Anchorage, AK
- Matkin, C. O., J. Maniscalco, D. Maldini, E. Saulitis, L. Mazzuca. 2005. Specialists or generalists? Population-specific variation in the foraging ecology of transient killer whales in Alaska. *Poster Presentation* at upcoming 16th Biennial Conference on the Biology of Marine Mammals, Dec 12-16, San Diego, CA
- Maniscalco, J. M., C. O. Matkin, D. Maldini, S. Atkinson, D. G. Calkins. *In Review*.
 Assessing killer whale predation on Steller sea lions from field observations in Kenai Fjords, Alaska. Marine Mammal Science
- See Also: Synopsis of Research on Steller Sea Lions Chapter 22

Studies Being Accomplished

- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- **5. Early Pup Mortality**
- 6. Killer Whale Predation

- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Calculating Reproductive Rates Methods

- Identification of females
- Establish presence with intent to breed

Brook hauling out in 2002

Brook with pup in 2003

Calculating Reproductive Rates Methods

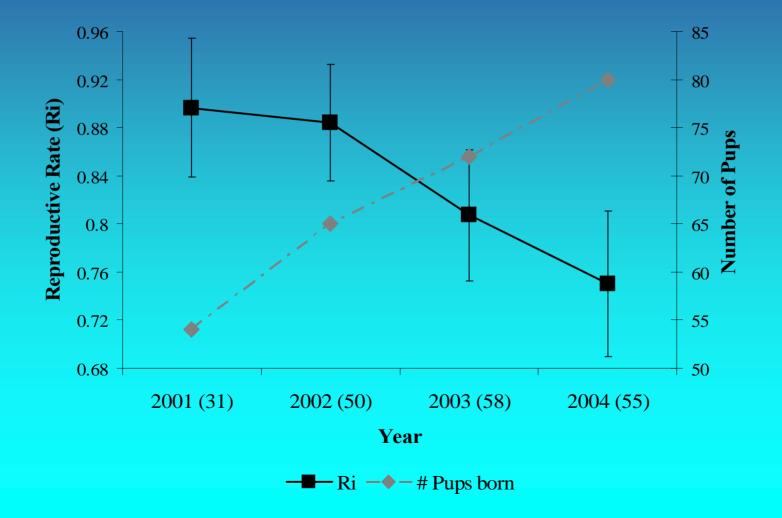
- Identification of females
- Establish presence with intent to breed
- What to do with females gone missing?

What happened to Marti?

Calculating Reproductive Rates Methods

- Identification of females
- Establish presence with intent to breed
- What to do with females gone missing?
- Are some females too young?

Rita first identified 2003 but did not pup



Rita returned in 2004 and still did not produce a pup

$$R_{i} = \frac{\sum F_{bi}}{\left(\sum F_{bi} + \sum F_{oi} + \frac{1}{2}\left(\sum F_{yi} + \sum F_{xi}\right)\right)}$$

- R_i = Reproductive rate in year i
- F_{bi} = Females observed and have given birth in year i
- F_{oi} = Females observed and have not to have given birth in year i
- F_{vi} = Females that may be too young to give birth in year i
- F_{xi} = Females who are missing and may be dead or taking a year off

'01-'04 combined $R_i = 82.5\%$ (+/- 2.8%) n = 61 Female SSLs whose status was known for ≥ 2 yrs

Reproductive Rates based on observed copulations and births

Year	Copulation- based Rate	Standard Rate	
2002 (n=9)	88%	89%	
2003 (n=23)	80%	87%	
2004 (n=22)	76%	75%	

Are female SSLs more likely to pup after taking a year off or losing their previous pup?

	<u>Year i</u>			
<u>Year i + 1</u>	<u>Lived</u>	Died	<u>Total pups</u> <u>lived+died</u>	<u>No pup</u>
Pup	63 (79%)	15 (60%)	78 (74%)	11 (46%)
No pup	7 (9%)	4 (16%)	11 (10%)	8 (33%)
Not present	10 (12%)	6 (24%)	16 (15%)	5 (21%)

Does loss of a pup affect timing of birth the following season?

Average Pupping Date following a loss = June 7

Average Pupping Date after no loss = June 11

Paired T = 2.06

P = 0.035, n = 10

Reproductive Performance

Presentations and Publications

Maniscalco, J. M., R. Taylor, D. G. Calkins, S. Atkinson. 2005. Reproductive performance in Steller sea lions at Chiswell Island, Gulf of Alaska. *Poster Presentation* at Marine Science in Alaska Symposium, Jan 24-26, Anchorage, AK

Maniscalco, J. M., R. Taylor, D. G. Calkins, S. Atkinson, P. Parker. *In Prep.* Reproductive performance in Steller sea lions (*Eumetopias jubatus*) at a small Alaskan rookery. Journal TBD.

See Also: Synopsis of Research on Steller Sea Lions – Chapter 30

Studies Being Accomplished

- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- **5. Early Pup Mortality**
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females

8. Effects of Branding

- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Effects of Branding

June 30, 2005

Branded 26 pups (E33 – E58)

Tagged 13 pups (1251 – 1263)

Bled 30 pups (10 pre- & 10 post-brand & 10 tagged)

Morphs for 39 pups

Genetic samples from 39 pups

Effects of Branding

Presentations and Publications

Data are currently being analyzed Additional branding and tagging in 2006 Report by end of 2006?

Future publications and presentations TBD

Studies Being Accomplished

- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- **5. Early Pup Mortality**
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance
- **10. Breeding Bull Dynamics**
- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Effects of Rookery Disturbance

7 years of intermittent disturbance

7 years of videotape before and after disturbance events

7 years of daily census counts

What are the short-term effects?

What are the long-term effects?

Must consider: Intensity of disturbance, weather conditions, presence of orcas, time of season, number SSLs present, other things?

Studies Being Accomplished

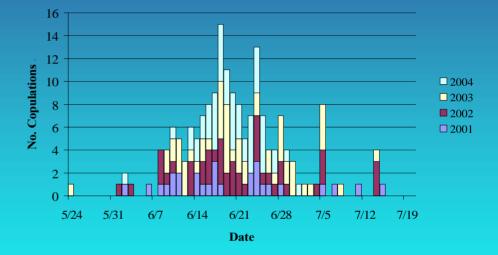
- **1. Maternal Investment**
- 2. Characteristics of Parturition
- 3. Alloparental Care
- 4. Pupping Site Fidelity
- **5. Early Pup Mortality**
- 6. Killer Whale Predation
- 7. Reproductive Performance of Females
- 8. Effects of Branding
- 9. Effects of Rookery Disturbance

10. Breeding Bull Dynamics

- 11. Occurrence of Zalophus in Alaska
- 12. Remote 3D Photogrammetry

Breeding Bull Dynamics

Mean no. bulls holding territory during peak breeding season (6/15 to 7/5) = 10


Mean no. days holding territory per season = 42

Mean no. years holding a territory = 3

Mean no. observed copulations per territory holder = 4

(actual no. copulations is probably greater because not all were observed)

*Data based on bulls that hold a territory for at least one week with females present

Breeding Bull Dynamics

Presentations and Publications

Teate, E., P. Parker, J. M. Maniscalco, K. Harris. 2005. Tenure and reproductive success in Steller sea lion (*Eumetopias jubatus*) males at Chiswell Island, Gulf of Alaska. *Poster Presentation* at upcoming 16th Biennial Conference on the Biology of Marine Mammals, Dec 12-16, San Diego, CA

Future presentations and publications TBD.

Acknowledgments

Many thanks to the hard work of several interns and technicians. Daniel Zatz and Co. (SWS) kept the remote control system operational at all costs. Field observations and transportation were also provided by Kenai Fjords Tours and Renown Charters and Tours. We also thank Mike Pendergast, Chip Arnold, Kristen Sieminski and Daniel Hilliard for providing invaluable tech support, and Daniel Hennen for statistical advice.

The Chiswell Island group is part of the U.S. Fish & Wildlife Service Alaska Maritime National Wildlife Refuge. The placement of equipment and research conducted on refuge land was done under a special use permit issued by the U.S. Fish & Wildlife Service and under NMFS permits No. 782-1532-00 & 881-1668-00 issued under the authority of the Marine Mammal Protection Act and the Endangered Species Act.

Overview of Marine Mammal Predation by Killer Whales in Alaska

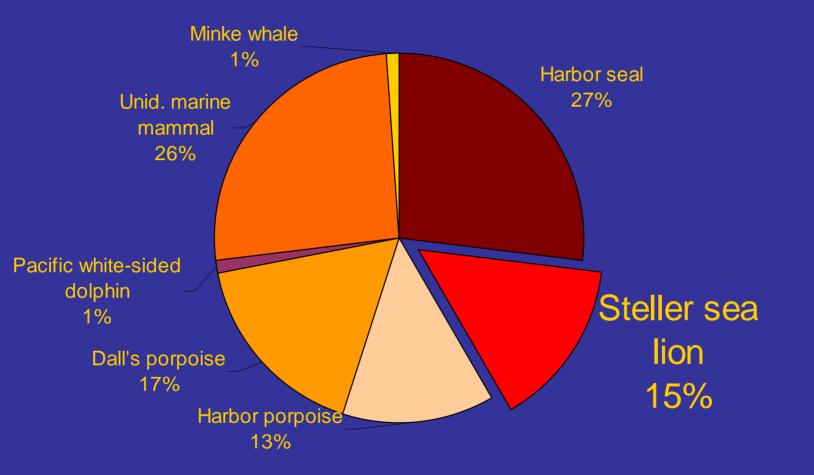
Summarized by Craig Matkin Eva Saulitis

05/06/01

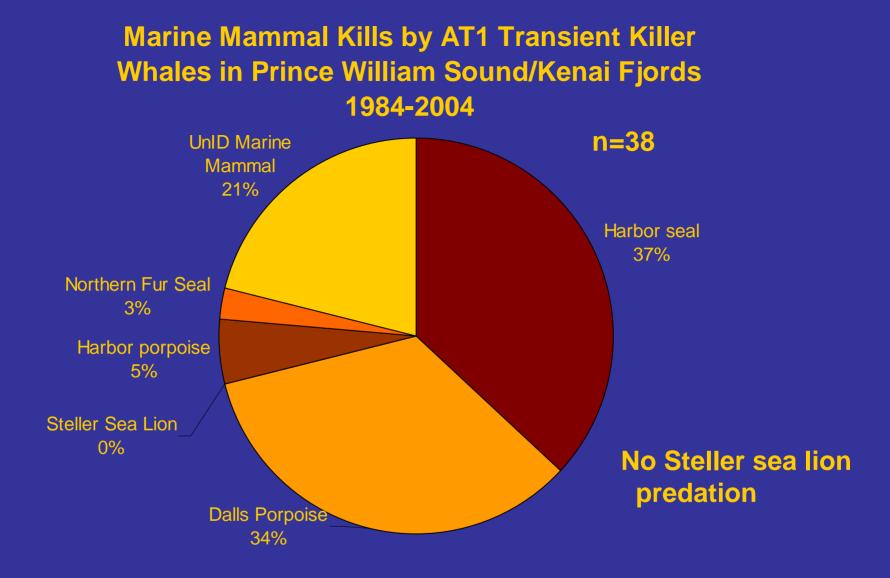
1

Acknowledgements

Alaska Sealife Center. windows to the sea

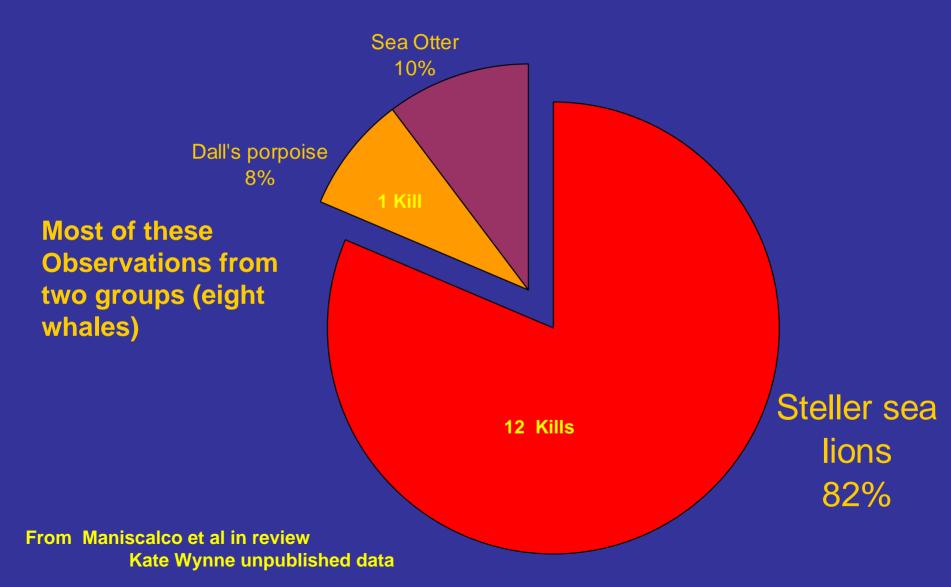


Southeastern Alaska

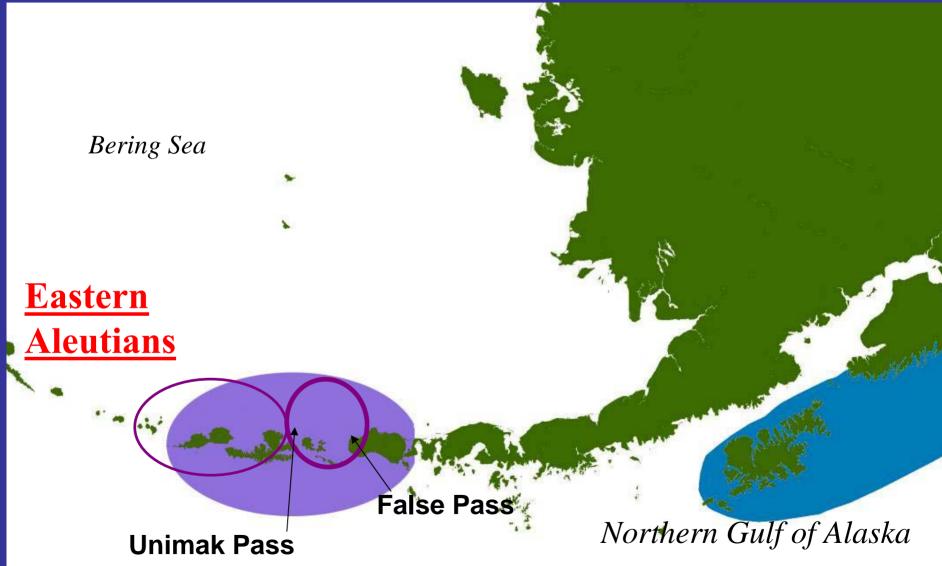

Work presented is from observational studies in three areas in Alaska

British Columbia

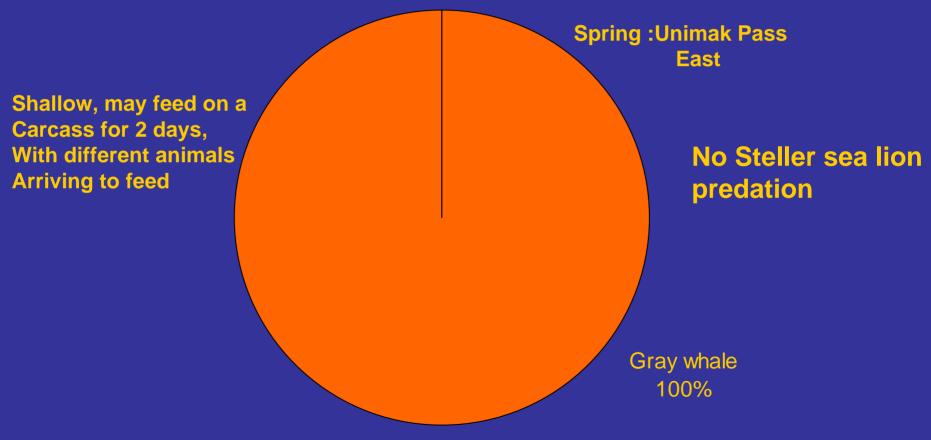
Kills by West Coast Transient Killer Whales in Southeastern Alaska 1984-2003 n = 90

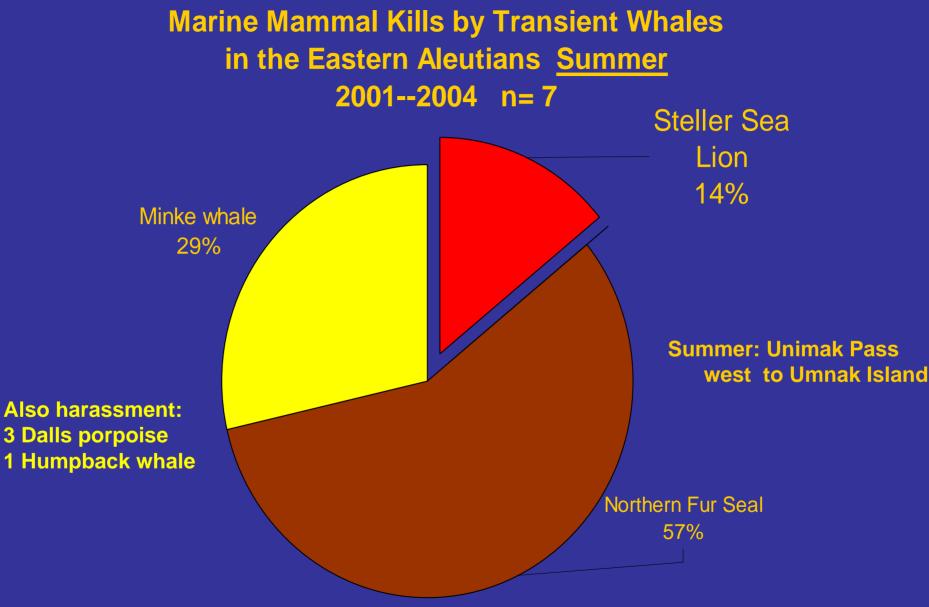


From: Straley, Matkin, Deeke, in prep (does not include observer network data) and Dahlheim, White, and Ellifrit, in prep



From Saulitis et al 2000 Matkin unpublished data


Marine Mammal Harassment and Kills by Gulf of Alaska Transients 1997-2004 n= 48


Spring work: East of Unimak Pass Summer work: West of Unimak Pass

Marine Mammal Kills by Transient Whales in the Eastern Aleutians <u>Spring</u> 2002--2004 n=18

From Barrett-Lennard and Matkin in prep

From Matkin et al in press

Predation Summary

- In Southeast Alaska harbor seals most frequent prey, followed by Dalls and harbor porpoises, Steller sea lions
- Unique AT1 population in Kenai Fjords/Prince William Sound specialize in harbor seals and Dalls porpoises with no SSL predation. Dalls porpoise increase in diet with harbor seal decline? Recent sea otter predation from one stomach.
- Some GOA transients (Prince William Sound through Kodiak) appear to be seasonal SSL specialists in the PWS/KF/Kodiak region, but very few (8) that we regularly encounter. Habits unknown out of nearshore study areas. Mixed stomach contents
- Eastern Aleutian transients focus on grey whales during spring migration (May/June) primarily northern fur seals in summer w/ minke whales and SSL and possibly Dalls porpoise.
- Data is limited in eastern Aleutians and lacking in central and western Aleutians

Bias in Observations of Predation

- Bias against observation of predation on some species (harbor seal and harbor porpoise predation are difficult to observe)
- Bias due to work in particular locations
- Bias toward inshore vs. offshore areas
- Bias toward spring/summer/fall vs winter season

Conclusions from Predation Data

- Killer whales consume a wide variety of pinniped and cetacean prey from Southeast Alaska to Eastern Aleutians in spring summer and fall observations.
- Except for 2 particular groups in Kenai Fjords/Kodiak no good evidence that killer whale populations specialize on a single pinniped prey in the regions studied
- Large cetaceans primarily limited to gray whales (calves) and minke whales despite abundance of fin and humpbacks. Sea otters not important in the areas/times we have observed.
- Predation varies by area and by season. Pinnipeds and small cetaceans are important in most areas during the spring/summer/fall months.
- Steller sea lions have not been indicated as a primary prey in most areas, except for two groups of whales in Kenai Fjords/Kodiak.

