The molecular ecology and management of Steller sea lions

NORR

Greg O'Corry-Crowe Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California

Steller sea lion population genetic studies

Genetics 101

Steller sea lion genetics: the three stock hypothesis

Dispersal patterns and population structure in Steller sea lions

Emigration, migration and colonization in Steller sea lions: new rookeries suggest a new paradigm

Kinship, mating systems and colonization in Steller sea lions

Population Genetics and Marine Mammal Management

The study of inheritance and patterns of genetic variation within and between populations, and the evolutionary forces that determine these patterns: mutation, genetic drift, gene flow, and selection

Mutation:	the process by which new variation is produced
Gene flow:	the exchange of variants among groups of organisms via dispersal and interbreeding
Genetic drift:	the loss of variation over time due primarily to differences in survival and reproductive success among individuals within a population
Selection:	a deterministic relationship between how free a genetic locus is allowed to vary and how essential its function is to an individual's fitness

O'Corry-Crowe, G. (in review) Population genetics of marine mammals

Heredity and the forces that shape mtDNA variation within and among populations

Haploid marker: e.g., mtDNA

Patterns of variation in **neutral** genetic markers are influenced by 3 primary factors.....

gene flow	– dispersal, interbreeding	d, m
genetic drift	– population size	N_e
mutation	– generation time	μ

Over ecological timescales the effects of mutation are likely to be small

Wright's Island model

$F_{st} = 1/(2Nm + 1) = 1/(2NdT + 1)$

Population genetic studies on Steller sea lions

Gene flow and dispersal on contemporary timescales

identify management units extinction-colonization, metapopulation dynamics conduct population viability analysis

Gene flow and dispersal over evolutionary timescales

identify management units estimate evolutionary significance

Kinship, mating systems and social organization

estimate N_e estimate level of inbreeding estimate lifetime reproductive success

Genetic diversity and population history

loss of genetic diversity, genetic 'bottlenecks' evolutionary potential genetic health

Gene flow and dispersal on contemporary timescales

identify management units extinction-colonization, metapopulation dynamics conduct population viability analysis

Limitation: current models assume equilibrium

Gene flow and dispersal over evolutionary timescales

Phylogeography

identify management units estimate evolutionary significance

Heredity and the forces that shape mtDNA variation within and among populations

Kinship, mating systems and social organization

Ne

random mating, level of inbreeding philopatry to natal group estimate lifetime reproductive success

Polygynus species: low N_e

Molecular genetic studies on Steller sea lions

K. Raum-Suryan

Multiple markers mtDNA microsatellite (STR) loci

Cloning technology PCR Sequence analysis Fragment length analysis

Phylogeny reconstruction

Management objectives Generating hypothesis Sample collection Marker choice Interdisciplinary collaborations

The management objectives.....

Endangered Species Act, 1973

Prevent the extinction of 'species', 'subspecies' and 'distinct population segments' of fish, wildlife and plants - preserve biodiversity and evolutionary potential

Marine Mammal Protection Act, 1972

Maintain 'species' and 'population stocks' as significant functioning elements of their ecosystem, and not allow them to diminish below optimum sustainable population levels

.....determines the definition of management unit or stock

ESA – no gene flow, evolutionarily distinct ecological and biological significance

MMPA – limited female dispersal demographically distinct

Steller sea lion genetics

the three stock hypothesis

John Bickham

Texas A&M University

Population Trends

- The total SSL population numbered between 240,000 and 300,000 during the late 1950's and early 1960's.
- Only 116,000 were estimated range-wide in 1989.

Pictures from Ugamak Island rookery, Eastern Aleutian Islands

⁻¹⁹⁸⁹⁻

-1969-

-1979-

A Third Stock?

 Previous research suggests that animals sampled from Russian rookeries are genetically distinct from other western stock sea lions.

<u>Methods</u>

Why mtDNA?

maternally inherited
undergoes no recombination

✓ evolves 5-10 times faster than nuclear genes

- Control Region is the most rapidly evolving segment of the mtDNA and is most commonly used for population genetic studies.
- Cytochrome *b* is a commonly used marker for both inter-specific and population genetic studies.

 Microsatellites are highly polymorphic, biparentally inherited nuclear markers commonly used today for population genetic analyses.

Control Region Sample Sizes

Stock	Region	Sample Size
EASTERN STOCK	NCA (1 ROOKERY)	51
	ORE (1 ROOKERY)	83
	BRC (2 ROOKERIES)	23
	SEA (3 ROOKERIES)	76
	TOTAL	233
WESTERN STOCK	PWS (2 ROOKERIES)	124
	BER (1 ROOKERY)	40
	CGA (7 ROOKERIES)	122
	WGA (5 ROOKERIES)	99
	EAL (6 ROOKERIES)	272
	CAL (9 ROOKERIES)	213
	WAL (3 ROOKERIES)	55
	COM (1 ROOKERY)	126
	TOTAL	1051
ASIAN STOCK	KAM (2 ROOKERIES)	71
	KUR (5 ROOKERIES)	207
	OKH (2 ROOKERIES)	148
	TOTAL	426
	GRAND TOTAL	1,710

Control Region Haplotype Distributions

Cytochrome *b* **Haplotype Distributions**

NJ Phylogram of Regions Based on Microsatellite Data.

<u>Conclusions</u>

Control Region Phylogeography

 Despite the generally high sample sizes in this study, resolution of population substructure increased when rookeries were grouped into their respective regions.

Possible reason – sample size effect

Rookeries

 Eastern stock rookeries were clearly differentiated from all other rookeries when using Φ-statistics.

 Differentiation of eastern stock rookeries was less clear when using Fstatistics.

<u>Regions</u>

 F-statistics resolved three lineages corresponding to the Eastern, Western and Asian stocks.

 Φ-statistics resolved only two lineages, although Asian regions clearly occupied the most basal positions of the Asian/Western lineage.

Conclusions

Cytochrome b

Population Genetics

Cytochrome b has considerably less variability than Control Region.

A high number of first position mutations and subsequent amino acid substitutions could result from selection.

Phylogeography

Cytochrome b has less homoplasy and a more completely resolved haplotype network than Control Region.

There is good support for the separation of the eastern and western stocks. There is little support for the separation of the Asian and western stocks.

Conclusions Microsatellites

- There is good support for the separation of the eastern and western stocks.
- There is little support for the separation of the Asian and western stocks.
- Further studies are planned to determine if the recognition of two subspecies, one to include the eastern stock and the other to include the western and Asian stocks, is appropriate.

The recognition of three management units and two subspecies may be appropriate for Steller sea lion conservation.

Study 1. Dispersal patterns and population structure in Steller sea lions

Topic: Population Structure Dispersal behavior Marine ecosystems

Key elements:

mtDNA Phylogeography Demographic independence Stock Identification Oceanography Behavioral ecology Sample size Data integration

G. O'Corry-Crowe, B.L. Taylor, T. Gelatt, T. Loughlin, J. Bickham, M. Basterretche, K. Pitcher, and D.P. DeMaster (in review.)

Supported by NOAA Fisheries and the Alaska Department of Fish and Game

Population Structure and dispersal patterns in Steller Sea lions

Marker type: mtDNA 531bp n=1,654 28 rookeries

Substantial phylogeographic partitioning of mtDNA haplotypes among long established **Eastern DPS** and **Western DPS** rookeries confirming an ancient divergence between these two populations

Using a range of coalescent models of historical population growth as priors in a bayesian McMC analysis of mtDNA sequences and substitution rates based on a 2myr age of divergence between *Eumetopias* and *Zalophus*, the time of divergence of lineages found exclusively in the Eastern or Western DPS today, was estimated at 226,000 (CV. 36,000-479,000) to 399,000 (CV. 240,00-544,000) yr. ago. Average pairwsie differences among individuals from both DPSs date population divergence at 213,000 yr.

Subdivision and dispersal within the Western DPS

F_{st} for mitochondrial DNA

Gulf of Alaska

E. Aleutians

Central Aleutians

W. Aleutians

<i>n</i> =	S. Rocks 57	Wooded 47	Sugarloaf 64	Marmot 67	Chirikov 56	Chowiet 24	Atkins 56	Pinnacle 51	Clubbing 25	Ugamak 93	Akutan 78	Amak 53	Yunaska 34	Seguam 46	Kasatochi 55	Adak 65	Gramp R. 56	Ayugadak 20	Kiska 39	Buldir 30	Agattu 40
S. Rocks																					
Wooded	0.006																				
Sugarloaf	-0.006	0.007																			
Marmot	-0.007	0.011	-0.007																		
Chirikov	-0.001	0.023	-0.004	-0.006																	
Chowiet	-0.011	0.012	-0.010	-0.011	-0.002																
Atkins	0.001	0.015	-0.005	0.002	-0.002	0.001															
Pinnacle	-0.003	0.015	0.000	0.003	0.000	-0.002	-0.010														
Clubbing	0.015	0.049	0.006	-0.005	-0.004	-0.006	0.012	0.020													
Ugamak	0.003	0.019	0.005	0.007	0.004	0.004	-0.002	-0.004	0.027												
Akutan	0.014	0.021	0.013	0.015	0.009	0.030	0.000	0.005	0.031	0.005											
Amak	0.000	0.018	-0.001	-0.001	-0.001	-0.011	0.007	0.011	0.002	0.011	0.023										
Yunaska	0.016	0.046	0.025	0.023	0.018	0.032	0.018	0.011	0.058	0.011	0.015	0.046									
Seguam	0.014	0.029	0.010	0.014	0.005	0.012	0.010	0.013	0.029	0.004	0.015	0.019	0.007								
Kasatochi	0.016	0.048	0.023	0.026	0.016	0.034	0.024	0.020	0.057	0.023	0.026	0.045	-0.012	0.012							
Adak	0.015	0.036	0.017	0.025	0.013	0.025	0.011	0.008	0.054	0.007	0.015	0.036	-0.010	0.000	-0.006						
Gramp R.	0.013	0.048	0.018	0.023	0.016	0.029	0.023	0.025	0.047	0.024	0.025	0.032	0.002	0.009	-0.007	0.003					
Ayugadak	0.022	0.050	0.024	0.036	0.027	0.026	0.026	0.024	0.071	0.024	0.046	0.039	0.012	0.010	0.006	0.010	0.006				
Kiska	0.017	0.034	0.017	0.024	0.016	0.034	0.010	0.010	0.056	0.010	0.009	0.038	-0.005	-0.002	-0.001	-0.004	0.002	0.001			
Buldir	0.036	0.054	0.034	0.041	0.028	0.041	0.023	0.023	0.064	0.018	0.022	0.055	-0.003	-0.004	0.010	-0.002	0.019	0.017	0.000		
Agattu	0.027	0.051	0.029	0.039	0.027	0.050	0.018	0.022	0.072	0.021	0.017	0.051	-0.005	0.007	0.000	0.001	0.002	0.009	-0.015	0.001	

P > 0.05 : 0.05 > P > 0.01 : P < 0.01 :

Inter-rookery differentiation — Iimited female dispersal

Subdivision and dispersal within the Western DPS

F_{st} for mitochondrial DNA

Gulf of Alaska

E. Aleutians

Central Aleutians W. Aleutians

	S. Rocks	Wooded	Sugarloaf	Marmot	Chirikov	Chowiet	Atkins	Pinnacle	Clubbing	Ugamak	Akutan	Amak	Yunaska	Seguam	Kasatochi	Adak	Gramp R	Ayugadak	Kiska	Buldir	Agattu
<i>n</i> =	57	47	64	67	56	24	56	51	25	93	78	53	34	46	55	65	56	20	39	30	40
S. Rocks	0.000																				
wooded	0.006	0.007																			
Sugarioar	-0.006	0.007	0.007																		
Chirikov	-0.007	0.011	-0.007	0.006																	
Chawlet	-0.001	0.023	-0.004	-0.000	0.002																
Atking	-0.011	0.012	-0.010	-0.011	-0.002	0.001															
Binnaclo	0.001	0.015	-0.005	0.002	-0.002	0.001	0.010														
Clubbing	-0.003	0.013	0.000	0.005	0.000	-0.002	-0.010	0 0 2 0													
Ugomok	0.015	0.049	0.000	-0.005	-0.004	-0.000	0.012	0.020	0.027												
Oyamak	0.003	0.019	0.005	0.007	0.004	0.004	-0.002	-0.004	0.027	0.005											
Amak	0.014	0.021	-0.001	-0.001	-0.009	-0.011	0.000	0.003	0.001	0.003	0.023										
Yunaska	0.016	0.046	0.025	0.023	0.001	0.032	0.018	0.011	0.058	0.011	0.015	0.046									
Seguam	0.014	0.029	0.010	0.014	0.005	0.012	0.010	0.013	0.029	0.004	0.015	0.040	0.007								
Kasatochi	0.014	0.048	0.023	0.026	0.016	0.034	0.024	0.020	0.020	0.023	0.026	0.045	-0.012	0.012							
Adak	0.015	0.036	0.017	0.025	0.013	0.025	0.011	0.008	0.054	0.007	0.015	0.036	-0.012	0.000	-0.006						
Gramp R.	0.013	0.048	0.018	0.023	0.016	0.029	0.023	0.025	0.0047	0.024	0.025	0.032	0.002	0.009	-0.007	0.003					
Avugadak	0.022	0.050	0.024	0.036	0.027	0.026	0.026	0.024	0.071	0.024	0.046	0.039	0.012	0.010	0.006	0.010	0 006				
Kiska	0.017	0.034	0.017	0.024	0.016	0.034	0.010	0.010	0.056	0.010	0.009	0.038	-0.005	-0.002	-0.001	-0.004	0.002	0.001			
Buldir	0.036	0.054	0.034	0.041	0.028	0.041	0.023	0.023	0.064	0.018	0.022	0.055	-0.003	-0.004	0.010	-0.002	0.019	0.017	0.000		
Agattu	0.027	0.051	0.029	0.039	0.027	0.050	0.018	0.022	0.072	0.021	0.017	0.051	-0.005	0.007	0.000	0.001	0.002	0.009	-0.015	0.001	

P > 0.05 : 0.05 > P > 0.01 : P < 0.01 :

Inter-rookery differentiationImited female dispersalRegional differentiation---> demographic independence

Trends in abundance (York et al., 1996, Sease & Gundmundson, 2002)

Seal lion diet (Sinclair and Zeppelin, 2002)

Conclusions:

The Western DPS of Steller sea lions consists of 2 distinct metapopulations

The split coincides with a strong physical and biogeographic boundary between two marine ecosystems

The 2 metapopulations have separate ecologies and experienced differing trends in abundance

Implications:

Meets the criteria for 2 Distinct Population Segments under U.S. ESA

Future research efforts should be based on this improved understanding of population subdivision and dispersal

Study 2. Emigration, migration and colonization in Steller sea lions: new rookeries suggest a new paradigm

Topic 4: Colonization Density dependent dispersal non-equilibrium populations

Key elements:

Assignment tests Mechanisms of rookery formation Rare event

G. O'Corry-Crowe, T. Gelatt, K. Pitcher and B. Taylor (in prep.)

Supported by NOAA Fisheries and the Alaska Department of Fish and Game

New sea lion rookeries have mixed origins

Mimimum Spanning Tree of 130 mtDNA haplotypes

Haplotypes found in the Eastern Stock Haplotypes found in the Western Stock

Haplotypes found in Graves Rock and White Sisters

New sea lion rookeries have mixed origins

Mimimum Spanning Tree of 130 mtDNA haplotypes

Haplotypes found in the Eastern Stock Haplotypes found in the Western Stock

Haplotypes found in Graves Rock and White Sisters

Branded female from Sugarloaf on White Sisters with a newborn pup

Conclusions:

Molecular genetics documented behaviour in real time

Molecular genetics documented a rare event, emigration across evolutionarily distinct boundaries.

Motivations for dispersal likely differed between females from the Western DPS and the Eastern DPS

A unique opportunity to document the mechanisms of rookery formation

Implications:

Questions our understanding of the current stock boundaries

Interpretation of comparative studies may need to be re-evaluated

Caution when applying equilibrium models to population structure inference.

Future directions:

Investigating the male component by screening 40 microsatellite markers

Study 3. Kinship, mating systems and colonization in Steller sea lions

Topic 4: Relatedness Paternity Colonization

Key elements:

DNA fingerprinting Assignment tests Mechanisms of rookery formation Rare event

G. O'Corry-Crowe, C. Bonin, T. Gelatt, K. Pitcher (In data generation and analysis phase)

Supported by NOAA Fisheries and the Alaska Department of Fish and Game

Population Structure, kinship, mating systems and dispersal patterns in Steller Sea lions

Marker type: microsatellites 37 tested n=574 12 rookeries

Preliminary results:

10 hypervariable loci screened for 574 sea lions 7 more to screen

Individual identity

substantial subdivision indicating limited interbreeding as well as limited female dispersal between the eastern DPS and western DPS

Assignment tests suggest that some pups born on new rookeries in Southeast Alaska were fathered by Western males.

Future Directions

Microsatellite analysis of the Aleutian Passes break

Genetics of colonization and extinction on other rookeries

Steller sea lion mating systems

Paternity of pups on White Sisters and Graves Rocks rookeries

Structure within rookeries

Acknowledgements

Funding for our research has been provided by:

NOAA Fisheries, ADF&G

Thanks are due to:

Barb Taylor, Carolina Bonin, Amy Frey, Marc Basterretche, Tom Gelatt, Tom Loughlin, Ken Pitcher, Doug DeMaster, Lori Rea, Lauren Hansen, Carrie LeDuc, Steve Reilly, John Bengtson, Kaja Brix, and Bob Small

