1298

BIOCHEMISTRY

REGULATION OF CALCIUM UPTAKE IN NEUROBLASTOMA OR HYBRID CELLS - A POSSIBLE MECHANISM FOR SYNAPSE PLASTICITY. A. Rotter*, R. Ray* and M. Nirenberg. NIH, Bethesda, Md. 20014

A. Rotter*, R. Ray* and M. Nirenberg. NIH, Bethesda, Md. 20014 Thirteen neuroblastoma or hybrid cell lines with or without defects in stimulus-dependent acetylcholine release and synapse formation (Wilson, S., et al. (1978) Fed. Proc. <u>37</u>, 2819) were tested for K⁺-dependent ⁴⁵Ca²⁺ uptake. NBr10A hybrid cells (synapse⁺) grown for days with 1 mM dibutyryl cAMP (Bt2cAMP) and incubated with 5.4 or 85.4 mM K⁺ accumulate 2.5 and 5.0 nmoles of ⁴⁵Ca²⁺/5 min/mg protein, respectively. Methoxy-verapamil inhibits K⁺-dependent ⁴⁵Ca²⁺ uptake >95% (IC50 = 2x10⁻⁷ M) but has no effect on basal ⁴⁵Ca²⁺ uptake. ⁴⁵Ca²⁺ uptake also is inhibited by 10 mM La³⁺, Co²⁺, Ni²⁺, Mn²⁺ or Sr²⁺ but not by 10 vM tetrodotoxin, 20 mM tetraethylammonium or 1 mM 3,4-diaminopyridine. Logarithmically dividing NBr10A cells grown without Bt2cAMP do not respond to K⁺ by accumulating ⁴⁵Ca²⁺ but can be shifted to a responsive state by treatment for 7 days with Bt2cAMP or 10 µM PGE1 (an activator of adenylate cyclase) and 1 mM theophylline. Examination of 12 other cell lines grown with Bt2cAMP revealed 2 classes of synapse defects: (1) defects in K⁺-dependent ⁴⁵Ca²⁺ uptake and (2) defects in another unidentified step required for synapse formation. These results suggest that cAMP is required for the acquisition of K⁺-dependent Ca²⁺ uptake is regulated and that cell lines with or without defects in Ca²⁺ uptake can be generated. The results suggest that cAMP is required for the acquisition of K⁺-dependent Ca²⁺ uptake thereby regulating synapse formation and efficiency.