Nonlinear Processes in Geophysics (1998) 5: 167-179

Nonlinear Processes
in Geophysics

© European Geophysical Society 1998

Dynamical implications of prescribing part of a coupled system:

Results from a low-order model

A. T. Wittenberg! and J. L. Anderson?

!Program in Atmospheric and Oceanic Science. Princeton University, Princeton. NJ 08542, USA

3GFDL/NOAA. Princeton. NJ 08542, USA
Received: 26 November 1998 — Accepted: 13 March 1999

Abstract. It is a common procedure in climate modeling
to specify dynamical system components from an external
source; a prominent example is the forcing of an atmospheric
model with observed sea surface temperatures. In this pa-
per, we examine the dynamics of such forced models us-
ing a simple prototype climate system. A particular fully-
coupled run of the model is designated the “true” solution,
and an ensemble of perturbed initial states is generated by
adding small errors to the “true” initial state. The perturbed
ensemble is then integrated for the same period as the true
solution, using both the fully-coupled model and a model in
which the ocean is prescribed exactly from the true solution
at every time step. Although the prescribed forcing is error-
free, the forced-atmosphere ensemble is shown to converge
to spurious solutions. Statistical tests show that neither the
time-mean state nor the variability of the forced ensemble is
consistent with the fully-coupled system. A stability analy-
sis reveals the source of the inconsistency, and suggests that
such behavior may be a more general feature of models with
prescribed subsystems. Possible implications for model val-
idation and predictability are discussed.

1 Introduction

Although the ocean and atmosphere comprise a unified fluid
system, it is often convenient to separate them conceptually
to simplify model analysis and development. It is a com-
mon practice, for example, to force an atmospheric model
with observed sea surface temperatures (SSTs). The Atmo-
spheric Model Intercomparison Project (AMIP; Gates, 1992)
used this paradigm to characterize various atmosphere mod-
els, and the approach has been used extensively in dynam-
ical studies (Lau, 1985; Latif et al., 1990; Lau and Nath,
1994; Graham et al., 1994; Ward and Navarra, 1997), as-
sessments of predictability (Miller and Roads, 1990; Stern
and Miyakoda, 1995; Chen and Van den Dool, 1997) and
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investigations of forced climate variability (Kang and Lau,
1986; Harzallah and Sadourny, 1995; Rowell et al., 1995;
Kumar et al., 1996). A related technique, known as “two-
tiered” forecasting, uses SSTs predicted by a simplified cou-
pled model to force an atmospheric GCM forecast (Bengts-
son et al., 1993; Barnett, 1995; Battisti and Sarachik, 1995;
Livezey et al., 1996). This “forced-atmosphere” approach
is designed to constrain the atmospheric model to a realistic
time-mean state, which can be essential for proper simulation
of the variability (McCreary and Anderson, 1991; Philander,
1992; Latif et al., 1997).

Yet it is not clear to what extent a model with prescribed
components must emulate a fully-coupled system. Roebber
et al. (1997) showed that forcing with time-averaged SSTs,
instead of instantaneous SSTs, could alter the variability and
predictability of a simple atmospheric model. Beyond the
question of the fidelity of the prescribed forcing, there is an-
other, more fundamental issue. Specifying part of a coupled
system essentially changes its dynamics, by preventing feed-
backs from modifying the imposed forcing. This difference
could give rise to dynamical inconsistencies between forced
and fully-coupled simulations.

Recent work (Gallimore, 1995; Bladé, 1997; Saravanan
and McWilliams, 1997, 1998; Barsugli and Battisti, 1998)
provides an example of a forced-model inconsistency in mid-
latitude ocean-atmosphere systems. Consider a cold sur-
face air temperature (SAT) anomaly overlying a warm SST
anomaly. In nature, the surface air is free to interact with
the ocean surface through heat fluxes. As the SAT warms to-
wards the SST, the SST also cools towards the SAT, so that
the effective damping of the SAT anomaly decreases with
time. When the SST is specified as in an AMIP-type model,
however, the ocean can no longer respond to SAT anoma-
lies. As a result, air-sea heat fluxes become unrealistically
large and SAT anomalies are too strongly damped. Thus in
this case a model with specified SSTs will overestimate the
true variance of the heat fluxes, and underestimate the true
variance of surface air temperatures.

Other studies have demonstrated that specifying part of
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a strongly-coupled system can bias the attribution of cause
and effect in the system. Saravanan and McWilliams (1998)
found that a model with specified SSTs failed to reproduce
the air-sea temporal covariances of a coupled model: SAT led
SST in the latter, but not in the former. In the study of Sar-
avanan (1998), an AMIP model portrayed the atmosphere’s
effect as primarily one of damping SST anomalies. The cou-
pled model, however, revealed that atmospheric variability
was actually forcing these SST anomalies.

Such studies could have important implications for im-
posed-forcing paradigms such as AMIP. Because the cli-
mate system’s time-mean state and variability are both de-
termined by coupled feedbacks, eliminating these feedbacks
might alter both the climate and the variability of a forced
model. Tuning an atmosphere or ocean GCM in this con-
text might then predispose it to failure as a component of a
fully-coupled system.

This paper explores the dynamical implications of pre-
scribing system components from an external source. Sec-
tion 2 describes a prototype coupled system. Section 3
shows how the variability of this system’s “atmospheric”
component changes when its “ocean” component is pre-
scribed rather than predicted, and Section 4 explains why
the forced and coupled systems evolve differently. Section 5
reveals some differences in the spread-skill relationship be-
tween forced and coupled ensembles. Section 6 concludes
with a discussion of how the low-order model results might
apply to GCMs.

2 A prototype coupled system

Consider as a prototype “climate system” the five-variable
model of Goswami et al. (1993):
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Details of the model are given in the appendix, and trajec-
tories of the model atmosphere and ocean are shown in Fig. 1.
For our purposes the coupled system (1)—(5) will describe the
evolution of an idealized “atmosphere” ¢4 (t) = (z,y, z)T
and “ocean” ¥° (t) = (p, ¢)T. Throughout this paper, 7 will
denote a matrix transpose, while 4 and 5 will indicate vectors
which contain only “atmosphere” variables (z, y, z) or “sea”
variables (p, ¢). This low-order model is clearly too simple
to describe the detailed physics of a realistic climate system.
However, the model will prove to be a useful conceptual tool.
It will facilitate an investigation of some common dynamical
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features of models forced with prescribed components, and
will provide analogues for the behavior of more complicated
systems of this type. In certain ways the model imitates a
coupled GCM: it is forced, dissipative, and chaotic; the at-
mosphere is more rapidly-evolving and nonlinear than the
ocean; and air-sea interactions produce variability with mul-
tiple time scales in both components.

Very long integrations indicate that trajectories ¥(t) =
(z,y,2,p,9)T of the coupled model are bounded, and de-
pend sensitively on the initial state 1/(0). The numerical
model is found to be aperiodic for at least 10° years when
integrated using 64-bit floating point precision. Since the
coupled model is dissipative, volumes in its five-dimensional
phase space shrink exponentially in time; thus an initial cloud
of phase space points eventually gets stretched thin along the
model’s attractor. The attractor is chaotic in that the model
evolution depends sensitively on its initial state, and strange
in that trajectories appear to skip around randomly. Since
this finite-dimensional bounded system must eventually ap-
proach some previous state arbitrarily closely, the attractor is
ergodic on long time scales. The coupled model atmosphere
has an ergodic time scale on the order of decades. The cou-
pled model ocean, with its low natural frequency w, has an
ergodic time scale on the order of millennia.

3 Variability of a prototype forced model
3.1 Forced-atmosphere experiments

A forced-atmosphere experiment schematic is given in Fig. 2.
To attain steady statistics, the coupled model is integrated
for 500 years prior to the period of analysis. Following the
coupled spinup, the initial state ¥(0) is integrated for 2000
years via the coupled model to produce the true solution
¥(t), which consists of the “true atmosphere” solution ¢4 (¢)
and the “true sea” solution ¥°(t). Next, an ensemble of N
perturbed atmospheres ¥#(0),j = 1,..., N is generated
at the initial time by adding random errors to the true ini-
tial atmosphere ¥4 (0); the initial atmospheric error vectors
64(0) = ¢£(0)—%*(0) are selected at random from a Gaus-
sian distribution with standard deviation ¢ for each model
variable (z,y, z). The perturbed states are then integrated
for the same period as the true solution, first via the cou-
pled model to produce perturbed coupled solutions Y ;),
and then via a forced-atmosphere (AMIP) model to produce
perturbed forced-atmosphere solutions 1/)?.( ;)- In the forced-
atmosphere model, 1/)?- is governed by (1)—(3) only, with the
ocean prescribed exactly from the true sea ¢ at every time
step. By design, the forced model reproduces the true solu-
tion exactly if integrated forward from the true initial state
¥(0) (see appendix).

Fig. 3 shows a segment from an experiment with N = 9,
starting 65. years after initial perturbations with ¢ = 0.01.
The forced ensemble is generally more compact than the cou-
pled ensemble, especially when the forced ensemble most re-
sembles the true solution (years 67 and 68). Often the forced
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Fig. 1. Eight-year trajectories of the prototype coupled system for (a) atmospheric variables ¥4 (t) = (z,y, z)T and (b) oceanic variables () = (p,q)T.
The initial and final states are marked with a cross and a circle, respectively. The system is spun up by integrating for 500 years prior to the period shown.

\V J A @
m ,-\ s § LA
\V J e . true WA/
— ~ fi -
]~ — A yio g “‘Vi‘a)
VAQ N o “Upleg _
m ,—-\A A O A A CCE e >
Ws J
0 V/
Vi@ 3 e wco‘) e
S v/
W w
Fig. 2. Two representations of the integration scheme for a forced-atmosphere (AMIP) experiment. Dark boxes represent the “true” initial state 3(0) =

(v4(0), 45(0)), which is integrated forward in time via the coupled model to produce the “true solution” ¥(t) (thick lines). Open boxes denote a member
wﬁ(o) of an ensemble of perturbed atmospheric initial states. Each w*‘(o) is integrated via the forced-atmosphere model to produce a perturbed forced-

atmosphcre trajectory 11/ )(t) (dashed lines), and via the coupled modcl to produce a perturbed coupled trajectory ’/’C G )(t) (thin solid lines).

Forced

Coupled

.."
hiv

y "\\,./

Years Since Perturbation

Fig. 3. Time series of the atmospheric variable  for (a) the perturbed coupled ensemble and (b) the perturbed forced ensemble. Each ensemble has 9 members.
The true solution is superposed with a thick line. Years 65 through 70 after the initial perturbation are shown.
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Fig. 4. Probability densities for the atmospheric variable z in the coupled
model (dark line) and in the forced model (light shading). The difference
between these densities is also shown (dark shading). The 9 members of
each ensemble were sampled every 100 days for 2000 years, yielding 65 754
samples each of the coupled and forced attractors. P denotes the KS sig-
nificance for the comparison of coupled and forced distributions; P < 1
confirms the inconsistency of the distributions for this model variable.

ensemble is compact, but not constrained to the true solu-
tion (year 66). As a result the true solution is more often an
outlier of the forced ensemble than of the coupled ensemble.
During year 66, the forced trajectories converge near z =
0, and then appear to “lock on” to the true solution early in
year 67. They remain locked to the true solution until the end
of year 68, at which point the ensemble diverges from the true
solution but remains compact. At the start of year 69, the en-
_semble splits into two compact groups. By the middle of year
70, four of the nine forced members have again locked to the
true solution, while the others have spread apart. Although
the true solution often tarries near z = 0, as in years 67 and
70, it never remains in this vicinity longer than a few months.
The forced solutions, however, often linger near z = 0 for
extended periods (e.g., years 66—67). This is a first hint that
the forced climatology may not emulate the “true” coupled
climatology.

3.2 Spatial distributions

Fig. 4 compares binned probability densities of the variable
z for a 2000-year experiment with N = 9. Snapshots of
the perturbed coupled and forced ensembles were taken ev-
ery 100 days between years 20 and 2020 after perturbation,
giving 65 754 samples each of the coupled and forced at-
tractors. The histograms show that forced trajectories spend
more time near ¢ = 0 than do coupled trajectories.

The Kolmogorov-Smirnov (KS) test (Press et al., 1992) is
used to estimate the significance of differences between spa-
tial distributions of the forced and coupled ensembles. The
test defines a statistic

D = max|Sn, (z) — Sn,(z)]

which is the maximum absolute difference between two cu-
mulative distributions. The Sy, are the cumulative distri-
bution functions of the two data sets; they give the fraction
of the N; data points which have values smaller than z. In
the case of the null hypothesis that the data sets were drawn
from the same distribution, one can calculate the probability
P that D could be as large as observed. If the null hypothe-
sis is correct, independent realizations of P will be uniformly
distributed on the interval (0, 1]. The smaller the probability
P, the less likely the samples were drawn from the same dis-
tribution. Because the coupled model is chaotic, spinning up
the model from different initial states eventually yields in-
dependent solutions. Since the true and perturbed coupled
solutions are realizations of the same coupled model, inde-
pendent experiments should yield values of P uniformly dis-
tributed on (0, 1]. Thus if we perform a large number of ex-
periments, we expect an average significance P = 0.5 for
the comparison of the true and perturbed coupled solutions.

Table 1 lists the KS significances for each variable and
for various model intercomparisons, averaged over ten ex-
periments (ten realizations of P). The values in row 1 are
close to 0.5, consistent with the assumption that the coupled
system is ergodic on these time scales. However, the very
low significances in rows 2 and 3 confirm that the perturbed
forced solutions do not have the same spatial distribution as
the true or perturbed coupled solutions. This was apparent in
Fig. 4, which showed that forced solutions spend more time
near z = 0 than do coupled solutions. Apparently the forced
model lacks feedback mechanisms which pull the coupled
model away from z = 0. These mechanisms can operate in
the forced model only when the atmosphere is close to the
true solution, so that the prescribed ocean provides forcing
consistent with the coupled system.

3.3 Temporal distributions

As we have seen, the forced ensemble is often too compact
to contain the true solution within its spread, as in years 66
and 69 of Fig. 3. This suggests that the forced model may
be temporally inconsistent with the true coupled system. We
investigate this possibility by analyzing the rank of the true
solution within the forced and coupled ensembles.

At each time ¢, an N-ensemble and the true solution to-
gether provide N + 1 valves for the variable z. If we sort
these N + 1 values in ascending order, the position of the

Table 1. Average, over 10 experiments, of the Kolmogorov-Smimov sig-
nificances for intercomparisons of spatial distributions of the true solution,
the coupled ensemble, and the forced ensemble. Subscripts on P denote
the model variable being compared. P « O(0.5) implies that the spatial
distributions are inconsistent.

Comparison P; P, P, P, P,
coupled & true 54 .58 A4l Sl 36
forced & true 10-% 10— 10-3 * *

coupled & forced 10~4° 10—3% 10-21 »* *
* The ocean is prescribed exactly from the truth in the forced model.
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Fig. 5. Rank probabilities Iz of the true solution for = within (a) the coupled 9-ensemble and (b) the forced 9-ensemble. Trajectories were sampled every 100
days for 2000 years, giving 7306 realizations of I'z. Q denotes the chi-square significance of uniformity; @ < 1 implies inconsistency of the true solution

and ensemble for this model variable.

true value of z(t) defines a rank statistic ;. By definition,
I’z = 1 when the true value of z is smaller than those of all
the ensemble members, and I'; = N + 1 when the true value
of z is larger than those of all the ensemble members. (In
the event that the true z is exactly equal to one or more en-
semble members, the “tie” is resolved by assigning a random
I'; from the set of possible ranks; e.g. if the true z is tied for
third with two ensemble members, I'; is chosen at random
from the set 3,4,5. At 64-bit precision, this almost never
occurs.) The rank statistics I'y, I';, ', and I’y are similarly
defined for the model variables y, z, p, and q.

Since the atmospheric attractor is ergodic on decadal time
scales, infrequent snapshots resemble “random” samples of
the attractor. If the true solution and perturbed samples of
z are selected in independent, random trials from identical
distributions, then they should have no preferred order when
sorted according to rank, and I should assume each value
from 1 to N + 1 with uniform probability (N + 1)~!. If the
rank statistics are observed to be significantly nonuniform,
then the ensemble solutions must be temporally inconsistent
with the true solution (Anderson, 1996).

Fig. 5 gives histograms of I'; for coupled and forced en-
sembles with N = 9. Snapshots of the true solution, the
coupled ensemble and the forced ensemble were taken every
100 days between years 20 and 2020, giving a total of 7306
realizations of I';. In Fig. Sa the rank statistics are nearly
uniform, consistent with the assumption that the coupled sys-
tem is ergodic on these time scales. In Fig. Sb, however, the
rank statistics are skewed toward extreme values, suggesting
that the true solution is too often near the outer edges of the
forced ensemble for the true solution and forced solutions
to be consistent. The true solution also tends to lie toward
greater values of = than does the forced ensemble, confirm-
ing the spatial bias noted in Fig. 4.

The significance of these results is estimated using the chi-
square test (Press et al., 1992). We assign a statistic x? to the
non-uniformity of the '-histogram, with larger values of x?2

indicating less uniformity:

=1 Navg

where nr is the number of hits to the rank T, and navg =
(7306 hits)/(N + 1) is the average number of hits per rank.
In the case of the null hypothesis that the ranks arise from a
uniform distribution, one can calculate the probability @ that
x? could be as large as observed. If the null hypothesis is
correct, independent realizations of @ will be uniformly dis-
tributed on the interval (0, 1]. The smaller the probability Q,
the less likely the I' were drawn from a uniform distribution,
and the less likely the two systems sampled are temporally
consistent. Since the true and perturbed coupled solutions
are realizations of the same coupled model, independent ex-
periments should yield values of Q uniformly distributed on
(0, 1] if the integrations are long enough for the ergodic as-
sumption to hold. Thus if we perform a large number of
experiments, we expect an average significance Q = 0.5 for
the comparison of the true and perturbed coupled solutions.

Table 2 lists the significances of uniformity of ranks for
each model variable, averaged over 10 experiments (10 real-
izations of Q). The values in row 1 are close to 0.5, consis-
tent with the assumption that the coupled model is ergodic on
these time scales. However, the very low significance values
in rows 2 and 3 confirm that the perturbed forced solutions

Table 2. Average, over 10 experiments, of chi-square significances of uni-
formity of rank statistics, for the coupled and forced ensembles. Subscripts
on Q denote the model variable being compared. @ « O(0.5) implies that
the true solution and the ensemble are temporally inconsistent.

Ensemble Q: Qy Q: Qp Qq
Coupled 45 A7 46 42 42
Forced 10740  10—40 1040 = *

* The ocean is prescribed exactly from the truth in the forced model.
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do not have the same temporal distribution as the true or per-
turbed coupled solutions. This lends confidence to the result
pictured in Fig. 5: the true atmosphere is much more often an
outlier of the forced ensemble than of the coupled ensemble.

This section has shown that the statistics of forced vari-
ability can be significantly different from those of coupled
variability, even when the prescribed forcing is error-free and
perfectly compatible with the coupled model. When feed-
backs are absent, as in the forced model, the ensemble atmo-
spheres are inconsistent with the true solution even though
the oceans are the true solution exactly. In this case, it ap-
pears that accurate statistics of variability in the prototype
model depend more on integrated air-sea feedbacks than on
the instantaneous accuracy of the ocean state.

Given the simplicity of the prototype model, it is certainly
feasible to consider ensemble sizes much larger than N = 9.
However, this is not required for delineating the model prob-
ability density, since the runs are long and the model is er-
godic. Nor is it required for the rank statistics, whose chi-
square significance is a function of the number of hits to each
rank; for a fixed number of snapshots, the number of hits
to each rank (and therefore the confidence) decreases as the
ensemble size increases. Although increasing N would in-
crease the rank-resolution of the histograms in Fig. 5, N = 9
appears sufficient to illustrate our main points — that the true
z-value tends to lie outside the forced ensemble, and that the
forced ensemble is skewed toward lower z-values than the
true solution. Using only nine members also demonstrates
that if the runs are long enough, valuable information about
a system can be obtained using only a small ensemble.

.4 Theory
4.1 Formulation of the problem

Consider a dynamical system of the form

dy
i Cy¥ + B(t) (6)

where C, is an autonomous (not explicitly time-dependent)
operator evaluated at the state vector 1, and B(t) represents
a non-autonomous forcing evaluated at time t. We shall use
subscripts on non-constant operators to denote where they
are evaluated in space. Now suppose that (6) represents an
ocean-atmosphere system with linear coupling. Then Cy
consists of an uncoupled autonomous (UA) part and an air-
sea interaction part:

B o= (U+K)Y+BO) &
— AwA 0
Us = ( 0 SwS)
0 KS_'A
K = (KA-)S 0 )

where Uy, contains the uncoupled “air” and “sea” operators,
and K contains the air-sea interaction matrices. A forced
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model, as defined in Section 2, is simply (7) with air-sea in-
teractions prescribed from the true solution:

_d;l)_tp = Uy, ¥r + K¢ + B(t) ®)

-

The vector ¥r here represents the state of two forced mod-
els: a forced-atmosphere (“AMIP”) model and a complemen-
tary forced-ocean (“*OMIP”) model. Uy, is the UA operator
evaluated at Y.

The difference vector between two states is given by

Jm,n = '/’m - ¢n (9)

The second subscript is omitted when ¥, = ¥, so that §,,
denotes an error vector which represents a difference from
the true solution. The subscripts m and n in (9) are place
holders for “C(j)” or “F(j)”, which denote the 7 member
of the coupled or forced ensemble, respectively. The “(5)”
usually will be omitted for readability.

If the vector function Uy defined in (7) is everywhere
analytic, (8) can be expanded about the true solution in pow-
ers of the “forced error” dp = Yp — ¢:

d(¥ + 6F)

. = Uy + Uydr + O(6%) + Ky + B(t) (10)

where O(62) denotes nonlinear error terms obtained from
the multiple power series expansion of Uy, . ¥ r. The UA Ja-
cobian Uy, is the Jacobian of the vector function Uy, ¥F,
evaluated at the true solution . This matrix gives the instan-
taneous linear tendency of any small perturbation 7 relative
to the trajectory ¥:

dn
i " 11
Alya 0
' Y
Yo = ( 0 S'ys )

Eigenvalues of U;, with positive real parts correspond to

“UA-divergent” directions, along which the projection of n

grows. Eigenvalues with negative real parts correspond to

“UA-convergent” directions, along which the projection of

7 shrinks. Eigenvalues of zero correspond to “UA-neutral”

directions along which the projection of 7 is constant.
Subtracting (7) from (10) gives

di

- = Uydr + O(6%) (12)

which simultaneously describes the evolution of forced-
atmosphere and forced-ocean errors. It is now clear that
the forced errors evolve in a completely uncoupled and au-
tonomous manner. When the O(62) terms can be ignored
relative to Uf,,ép in (12), then §F will evolve just like 7 in
(11); forced errors will increase along UA-divergent direc-
tions, decrease along UA-convergent directions, and remain
constant along UA-neutral directions.
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4.2 Analysis of the prototype system

For the prototype system (1)-(5), we have

—-a -y -z
Aya = y -—-c -bz
z bz -—c
—a -2y -2z
wa = y—bz z—c —bz
z+by bz z-c¢
0 —w
§ = (w 0 )= :"s
0 -8 0
A=S
K= (o 0 —ﬂ)
0 0
KS—'A - a 0
0 a
B(t) = (af(t),9,0,0,0)7

Since the coupled model (1)~(5) has only quadratic non-
linearities, the expansion in (12) terminates at second order:

dé
5 = (Uu+Ne)dr (13)

Asja O
N“’z(;;o)

where for the present case .&6;; is simply the UA atmosphere
operator with damping removed (i.e., Ay4 witha = ¢ = 0),
evaluated at §#. Separating (13) into air and sea components,
we have

dép A

ZE = (Aua+Agy)d (14)
dsg s

OF - s 1
dt SO (1

The forced-atmosphere error is governed by two terms in
(14). The first is a local effect which damps errors along
UA-convergent directions and amplifies them along UA-
divergent directions. Suppose that the forced-atmosphere
state ¥4 is close to the true solution ¥4, so that §# is small
and the second term in (14) can be ignored. Then, whenever
the true solution visits regions of phase space where all di-
rections are UA-convergent, the small error §# shrinks expo-
nentially and the forced solution gets even closer to the true
solution. We shall call such regions of phase space binding
regions, since they tend to “bind” forced trajectories to the
true solution.

The UA atmosphere model Ay 494 can be expressed in
cylindrical coordinates as

dz

— -— -— 2—

% = R? —az (16)
dR

- = (z—c)R an
A, (18)

dt

0.5+
0 025

05 075 1 1.25
R

Fig. 6. Real parts of the three eigenvalues of the prototype-atmosphere Ja-
cobian A:ﬁ 4- The bounding box of this figure sweeps out a cylindrical
region of phase space which just contains the attractor of Fig. 1a. Shading
indicates the number of eigenvalues with a positive real part: black=3, dark
shading=2, light shading=1. White demarcates a “binding region” where all
three eigenvalues have a negative real part.

where z is the same as in (1)-(3), R = (¥ + z%)Y?% is
the distance from the z-axis, and # = arctan(z/y) is an
azimuthal angle from the positive y-axis. The evolution of
(16)—(18) is independent of 8, so the vector field defined by
A 414 is invariant under phase-space rotations about the z-
axis. Thus the eigenvalues of the Jacobian Afﬁ 4 are indepen-
dent of 8; their real parts are plotted versus z and R in Fig. 6.
The white area demarcates the binding region where all three
eigenvalues have a negative real part, and all eigendirections
are UA-convergent. Whenever 14 passes through this bind-
ing region, A:p 4 in (14) acts to reduce the magnitude of the
forced error 6§, effectively “binding” forced trajectories to
the true solution. Outside the binding region, A(b 4 acts to
amplify 67 in one or more directions, driving forced trajec-
tories away from the true solution.

The second term in (14) is quadratic in §#, and must be
considered when §# is comparable to 94 in magnitude. The
undamped UA model A 414 takes the form

dz 5

i z°—r (19)
dr

7 0 (20)
dé

E = bz (21)

where r? = z? 4+ y? + z%. Equation (20) implies that trajec-
tories of Ay a ¥4 evolve on a sphere of radius r (Fig. 7). The
equations (19)~(21) are invariant under (z,t) — (—=z, —t),
so time reversal corresponds to mirroring trajectory paths
about the plane z = 0. The equations are also invariant un-
der (z,r,t) = (kz,kr,k~'t), where k is any constant, so
larger spheres support faster trajectories. On each concentric
sphere there are two fixed points ¥4, = (+r,0,0). Since z
can never increase, ¢;‘ is a source while ¢4, is a sink. In
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Fig. 7. Trajectories of A‘M %4 remain on a sphere of radius r centered
about the origin; they spiral out from the source at z = r and into the sink
atr = —r. The trajectories shown (thin lines) emanate from a ring of initial
conditions (crosses) about the z-axis nearz = r.

short, the instantaneous effect of AJA in (14) is to rotate 6‘4
in space, without changing its magmtude
We can now easily explain the strange behavior of the
forced model described in Section 3. Whenever the true solu-
tion approaches the binding region of Fig. 6, the linear term
a0 in (14) acts to reduce d7. If the forced solution lies

near the true solution so that ||§#|| < ||¥*||, the linear term
dominates and the forced model locks to the true solution.
As the true solution continues to evolve, it eventually enters
a UA-divergent region where the forced error begins to grow
exponentially. As 67 grows, the nonlinear term AJA&F in
(14) begins rotating thc error vector. Only when the true so-
lution reenters the binding region, and ||§#|| is small enough
that nonlinearities are negligible, can the forced model again
lock to the true solution.

Expanding one forced state about another gives an equa-
tion for the distance between two forced trajectories, identi-
cal in form to (14):

d‘sl"‘ i),F 2

(d)t = ( :‘?m N A"?(-’).F(:')) Jg(‘)"'(j) (22)
where ¢ # j. Note that (22) reduces to (14) when one of the
forced trajectories is taken to be the true solution. The true
atmosphere ¥4 can be viewed as another forced trajectory,
a very special one in which the ocean “forcing” is always
exactly consistent with the atmospheric state. The binding
region of Fig. 6, which tends to bind forced trajectories to
the true solution, also tends to squeeze forced trajectories to-
gether independent of the state of the true solution. Since the
forced model spends a good deal of time in the binding region
(see Section 3), occasionally all forced trajectories get bound
together as in year 66 of Fig. 3. When the true solution sub-
sequently visits the binding region, the forced atmospheres
lock to the true solution and synchronize with the ocean fore-
ing. The newly-coherent forcing then induces atmospheric
instabilities which drive the forced ensemble out of the bind-
ing region along with the true solution. Outside the binding
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region forced errors grow exponentially along UA-divergent
directions, so that the forced atmospheres diverge from the
true solution and once again become inconsistent with the
ocean forcing.

This conceptual picture helps explain the strange “bind-
ing” and “locking” behavior of the forced ensemble in Fig. 3.
It also explains why the inner portion of the forced ensem-
ble is so poorly populated by the true solution in Fig. 5 and
Table 2: the binding region reduces the spread of the forced
solutions, hampering their ability to encompass the true solu-
tion. Thus it seems that the forced inconsistencies described
in Section 3 stem from the lack of coherent air-sea interac-
tions in the forced model. This causes forced trajectories to
linger and converge in a “binding region” where their spread
decreases independent of the state of the true solution. When
the true solution finally enters the binding region, the forced
ensemble can lock to the true solution and be pulled away
from the binding region by consistent ocean forcing.

According to (15), the OMIP error 6;?, evolves according
to the constant, uncoupled ocean operator S. Thus in the con-
ceptual model, OMIP errors do not grow or shrink; they sim-
ply revolve in a p-q circle with constant frequency w. Adding
dissipation to the ocean model would cause OMIP perturba-
tions to decay, no matter what the prescribed atmospheric
forcing.

This section has shown that in forced models of the form
(8), perturbations evolve according to uncoupled dynamics.
If a subsystem is linear and dissipative in the absence of cou-
pling, then forcing it with prescribed linear fluxes will cause
perturbed trajectories to converge to the true solution. How-
ever, if a subsystem is nonlinear in the absence of coupling,
then forcing it with prescribed fluxes can cause perturbed tra-
jectories to converge to solutions inconsistent with the true
coupled system.

S Predictability in a forced model

Equation (22) indicates that as long as the forced atmo-
spheres are close to the true solution, the spread and the error
of the ensemble are related by similar local effects. Long
after perturbation, however, errors become large and nonlin-
earities become important. Nevertheless, Fig. 3 indicates that
forced trajectories continue to approach one another in the
binding region, independent of the state of the true solution,
so that the spread of the forced ensemble becomes a poor in-
dicator of its instantaneous error. Such is the case in year
66 of Fig. 3b, where the forced ensemble spread decreases
long before the ensemble attains skill by locking to the true
solution.
Let (A) denote the ensemble mean of a variable A:

OV ZA (23)

J..l

where the sum is over the N ensemble members ;. We
define the spread of the coupled ensemble to be its standard
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deviation:

oc = \/ﬁj—g—I <"¢é(j) - (¢é>”2> (24)

The error of the ensemble mean, i.e. the distance between the
ensemble mean and the true solution, is

no = [(v8) - v (25)
The spread o and error p of the forced ensemble are sim-
ilarly defined.

Fig. 8 presents scatterplots of u vs. ¢ (with N = 9) for
snapshots taken every five days during the first year after per-
turbation. Initially the ensemble members are tightly clus-
tered about the true solution so that both ¢ and u are small.
As the ensembles disperse along the attractor of Fig. 1a, both
the spread and the error increase. There are few cases with
both small spread and large error. In a least-squares sense,
the true solution seems to stay “inside” the ensemble, so that
the ensemble mean is almost always as close to the true so-
lution as it is to the ensemble members themselves. Thus o
is nearly an upper bound for y during the first year. There
are also few cases with large spread and small error in Fig. 8;
in fact the points fall fairly close to the line 4 = o. This
is because the attractor of the prototype system has a rather
“hollow” structure, so that its time-mean state lies in a region
of phase space rarely visited by model trajectories. As the
ensemble spread increases, p grows because the ensemble
mean moves inside the attractor shell where it rarely encoun-
ters the true solution.

Fig. 8b is very similar to Fig. 8a, except for an extended
tail of very compact and accurate forced ensembles stretch-
ing toward the lower left of Fig. 8b. This extended tail can be
explained using the concepts of Section 4. Soon after pertur-
bation, the forced solutions are still close to the true solution.
The spread of this compact ensemble is governed by the lin-
ear term in (14), so when the ensemble enters a binding re-
gion, both the spread and the error of the forced ensemble
must decrease. Fig. 8a shows no such low-spread low-error
tail, apparently because coupled feedbacks dominate over the
binding term in the coupled model for small spreads. Thus
at short leads the forced ensembles provide useful informa-
tion about the true solution, because feedbacks have had little
cumulative effect on the coupled system.

Fig. 9 is a scatterplot of u vs. o for snapshots taken ev-
ery 100 days between years 10 and 50 after perturbation.
At these longer leads the coupled ensemble has dispersed
along the model attractor, so that ¢ and puc remain near
their climatological values. The forced ensemble, on the
other hand, exhibits more variability in its spread and error.
Fig. 9b shows that long after perturbation, the spread of the
forced ensemble is a poor indicator of the error of the en-
semble mean. Forced ensembles with small spread can be
quite inaccurate, while the most accurate forced ensembles
do not always have the smallest spread. This is in contrast to
the strong spread-skill relationship evident shortly after per-
‘turbation (Fig. 8). The forced model apparently alters the
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ensemble spread in a manner inconsistent with coupled dy-
namics, and unrelated to the ensemble skill. This highlights a
possible danger in relating the spread of AMIP-type ensem-
bles to the predictability of the climate system: at long leads,
reproducibility in a forced model does not necessarily imply
skill, nor does skill necessarily imply reproducibility, even
in this case where both the model and its prescribed compo-
nents are perfect.

The temporal inconsistency of the true solution and the
forced ensemble, noted in Section 3.3, is evident in Fig. 9b.
At each time, the standard deviation o g of the forced ensem-
ble is the best linear unbiased estimate (in a least-squares
sense) of the distance between an ensemble member and the
ensemble mean. If at each time the true solution were drawn
from the same distribution as the forced ensemble, the expec-
tation for the error ur would simply be the ensemble stan-
dard deviation or. In other words, if the true solution were
consistent with the forced ensemble, the least-squares fit to
the values of up in Fig. 9b would be the line ur = oF.
This is clearly not the case in Fig. 9b; errors are larger than
expected when the ensemble is compact, so that most snap-
shots lie well above the line ur = op. This indicates, as in
Section 3.3, that the forced ensemble has too little temporal
variance to be consistent with the true solution at long leads.

One might suppose that since the forced model has fewer
degrees of freedom than the coupled model, forced trajecto-
ries should exhibit less spread than coupled trajectories. In
other words, one might expect o to always be less than o¢.
Fig. 10a shows that during the first year, o can be a factor
of two greater than oc. Thus at short leads, where initial
values still have influence, reproducibility is not necessarily
greater in a forced model than in a coupled model. At long
leads (Fig. 10b), o F is a good lower bound for o ¢, but this is
only because the two spreads are no longer related: oF can
be large or small, while o¢ is always large.

This section has shown that the spread-skill relationship
in a forced model can be quite different from that in a cou-
pled model. At short leads, the forced ensemble can reduce
its spread and error by locking to the true solution in a bind-
ing region. Despite this, forced trajectories are not generally
more reproducible than coupled trajectories at short leads.
At long leads, reproducibility of forced trajectories does not
necessarily imply skill, even in the “perfect” model context
examined here.

6 Discussion

Creating and testing a realistic coupled GCM is a formidable
task, one which is simplified greatly by breaking the problem
into pieces. It would be nice if each piece could be developed
separately, in an environment where interaction values were
simply prescribed from real-world data. Various parameters
could be then be tuned so that each component looked most
realistic in this forced environment. However, experience has
shown that such separately-developed components are often
incompatible upon coupling (Sausen and Lunkeit, 1990). In
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a phenomenon known as climate drift, long-term means of
dynamical quantities wander to unrealistic values. Climate
drift is often ameliorated by adjusting interfacial fluxes, but
this treats only certain symptoms of the coupled model, not
the underlying problems in its components. In addition, such
“flux adjustments” are worrisome for long-term climate pre-
diction, since it is difficult to gauge their effects as the time-
mean state changes (Neelin and Dijkstra, 1995).

The seeds of climate drift are planted early in the devel-
opment of a coupled model, perhaps as its constituent parts
are separately developed and tested in a forced-model con-
text. This paper has shown that forcing a model with pre-
scribed components can alter statistics of the model’s climate
and variability, yielding trajectories inconsistent with the true
coupled solution. Tuning a model component in this envi-
ronment may cause it to be ill-suited to its ultimate role in a
fully-coupled system. For example, if the forced-model bias
toward small z-values in Figs. 4 and 5 had been erroneously
“corrected” by tuning the atmospheric model, the coupled
system likely would have developed a “climate drift.”

The root of forced-model inconsistency lies in the elimi-
nation of feedbacks vital for coupled instabilities. Remov-
ing these instabilities in the prototype model causes forced
trajectories to linger and converge in a “binding region” of
phase space, where perturbed forced trajectories coalesce
and approach the true solution. As the forced ensemble
spread decreases independent of the ensemble error, the en-
semble becomes too compact to encompass the true solution.
When the true solution visits the binding region, the forced
atmospheres converge toward the true solution and synchro-
nize with their ocean forcing. The consistent ocean forcing
then induces atmospheric instabilities which mimic coupled
instabilities, driving the forced atmospheres out of the bind-

ing region along with the true solution. Outside the binding
region, the forced trajectories diverge from the true solution
and once again become inconsistent with the ocean forcing.
This cycle of error growth and decay differs from that in the
coupled model. As a result, the forced ensemble evolves in
a manner spatially and temporally inconsistent with both the
true solution and the coupled ensemble. In addition, since
the forced ensemble spread depends only on the phase-space
convergence properties of the uncoupled atmosphere model,
the reproducibility of forced trajectories is only loosely re- .
lated to their skill at long leads.

Although the insights of Section 4 could apply to more
complex forced models of the form (8), some caveats are in
order. To facilitate a clear comparison with the true solu-
tion, the forced model in this study was presumed to have in-
stantaneous, error-free forcing and perfect dynamics. Opera-
tional GCMs, however, may yet be too imperfect for forced-
model inconsistencies to merit concern. The errors associ-
ated with sparse observations, coarse resolution, and approx-
imate model equations might be much larger than those as-
sociated purely with prescription. Even in a low-order at-
mosphere model similar to the one in this study, Roebbe:
et al. (1997) noted significant dynamical differences wher
the model was forced with monthly-mean SSTs instead of
instantaneous SSTs.

The idealized AMIP system in this study had only thres
degrees of freedom, making it easy to find a “binding region’
of phase space. In a binding region, all eigenvalues of the
uncoupled, autonomous, tangent-linear forced subsystem arc
negative, so that nearby forced trajectories must converge
These regions might be difficult to find in a GCM with mil
lions of degrees of freedom. However, confluences of flov
in phase space are often found near quasi-stationary points
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such as the ghosts of saddle-node bifurcations (Legras and
Ghil, 1985). As trajectories tend to slow near such points,
they can produce regimes, regions of the attractor preferred
by the system (Mo and Ghil, 1987; Dymnikov et al., 1990,
1992; Marshall and Molteni, 1993; Dymnikov and Kazant-
sev, 1994; Dymnikov and Filatov, 1995). Thus the results of
this study may be relevant more generally to systems which
exhibit regime behavior. In systems without clear regime be-
havior, the inconsistencies associated with prescribing model
subsystems could be more subtle than in the present case.

Often, prescribed forcing can help constrain an imperfect
model to an accurate mean state, which may prove more es-
sential for realistic variability than maintaining accurate cou-
pled dynamics. In some cases, the model climatology itself
is simply prescribed, and deviations from the climatology are
predicted using an anomaly model linearized about a state of
rest (e.g., Zebiak and Cane, 1987). This approach is con-
ceptually usefyl and computationally economical, and has
produced models with remarkable predictive skill. On the
other hand, the lack of anomaly-climatology feedback in an
anomaly model bears analogy with the lack of air-sea feed-
backs in an AMIP model. Where the climate and variability
are inextricably linked, an anomaly model may misrepresent
the behavior of the fully-interacting system (Neelin and Di-
jkstra, 1995).

Despite these caveats, the results of this study could hold
important implications for model development and valida-
tion. Dynamical inconsistencies have been shown to arise
in AMIP GCM runs (see Introduction), and might also af-
fect OMIP runs, two-tiered climate forecasts, and other con-
texts in which one or more model components are specified,
including prescribed-cloud schemes (Ridout and Rosmond,
1996) and studies of troposphere-forced variability in the up-
per atmosphere (Hamilton, 1998). In the prototype system,
accurate variability depends even more on the consistency of
feedback dynamics than on the instantaneous accuracy of the
prescribed forcing. These results could warrant additional
attention to coupled feedbacks and their accurate simulation.

Appendix. The Prototype Coupled System

The prototype “atmosphere” model (1)—(3), in the absence
of coupling to (4)—(5), is that of Lorenz (1984, 1990) and
has been described in detail by Roebber (1995). This system
was originally formulated to qualitatively describe midlati-
tude quasi-geostrophic flow. The variable = represents the
mean meridional temperature gradient, or by thermal wind
balance, the zonal-mean wind velocity. The variables y and
z represent amplitudes of the cosine and sine phases of super-
posed eddies. The model time variable ¢ has been rescaled as
in Goswami et al. (1993) to slow the evolution by a factor c.
The first column on the right of (1)—~(3) represents eddy-mean
flow interactions; terms linear in z, y, and z represent dissi-
pation; the fourth column in (2)—(3) represents advection of
the eddies by the zonal mean wind. The terms containing f
and g in (1)~(2) represent zonally symmetric and asymmetric
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components of diabatic heating. In the absence of eddy-mean
flow interactions, z would be driven toward f with e-folding
time a~?, and y would be driven toward g/c with e-folding
time c~1.

The prototype “ocean” model (4)—(5), in the absence of
coupling to (1)~(3), is a simple-harmonic oscillator. The os-
cillation frequency w corresponds to a period of four years.
The variables p and ¢ could conceptually represent zonal
asymmetries in SST, which interact with the model atmo-
sphere’s eddy field (y and z).

Using the notation of (6), the integration scheme is a
second-order predictor-corrector of the form

Ynt1 = tn+At(Cy.tn + Bn) (Al)
Ytz = Yni1+ At (CJ.“ Y41 + Bn+l) (A2)
Yn41 = '/’_"ﬂlt"l (A3)

2

where At = 0.025 is a nondimensional time step corre-
sponding to 6 model hours. The forced-atmosphere model
consists of (1)—~(3), with p and ¢ prescribed from the true so-
lution at every time step, including the trial steps .
Parameter values for all integrations are as follows:

a=0.125 b=14 c=20.5 a=ﬂ=0,1
- Rt _
f—-3~5+sm<1 ear) 9=0.25
= __lyear 10 days
7= 36525days * Trondimunit 00274 year
4 years

For further details on the coupled system, see Goswami et al.
(1993) and Krishnamurthy et al. (1993).
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