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ABSTRACT

Surface air temperatures from a 1000-yr integration of a coupled atmosphere–ocean model with constant
forcing are analyzed by using a method that decomposes temperature variations into a component associated
with a characteristic spatial structure and a residual. The structure function obtained from the coupled model
output is almost identical to the so-called cold ocean–warm land (COWL) pattern based on observations, in
which above-average spatial mean temperature is associated with anomalously cold oceans and anomalously
warm land. This pattern features maxima over the high-latitude interiors of Eurasia and North America. The
temperature fluctuations at the two continental centers exhibit almost no temporal correlation with each other.
The temperature variations at the individual centers are related to teleconnection patterns in sea level pressure
and 500-mb height that are similar to those identified in previous observational and modeling studies. As in
observations, variations in the polarity and amplitude of this structure function are an important source of
spatially averaged surface air temperature variability.

Results from parallel integrations of models with more simplified treatments of the ocean confirm that the
contrast in thermal inertia between land and ocean is the primary factor for the existence of the COWL pattern,
whereas dynamical air–sea interactions do not play a significant role. The internally generated variability in
structure function amplitude in the coupled model integration is used to assess the importance of the upward
trend in the amplitude of the observed structure function over the last 25 yr. This trend, which has contributed
to the accelerated warming of Northern Hemisphere temperature over recent decades, is unusually large compared
with the trends generated internally by the coupled model. If the coupled model adequately estimates the internal
variability of the real climate system, this would imply that the recent upturn in the observed structure function
may not be purely a manifestation of unforced variability. A similar monotonic trend occurs when the same
methodology is applied to a model integration with time-varying radiative forcing based on past and future CO 2

and sulfate aerosol increases. This finding illustrates that this decomposition methodology yields ambiguous
results when two distinct spatial patterns, the ‘‘natural’’ COWL pattern (i.e., that associated with internally
generated variability) and the anthropogenic fingerprint, are present in the simulated climate record.

1. Introduction

The instrumental climate record contains evidence of
variations on a wide range of spatial and temporal
scales. Of much interest is the persistent warming trend
that extends through much of the past 100 years. This
trend has been linked to the radiative forcing associated
with the ongoing increases in the concentrations of a
variety of greenhouse gases, most notably CO2 (Santer
et al. 1996). However, there are many other potential
sources of climate variability. Forced variations can re-
sult from solar variability, volcanic aerosols, and veg-
etation changes. In addition, the internal dynamics of
the climate system is capable of producing unforced
fluctuations. The El Niño–Southern Oscillation (ENSO)
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phenomenon, which is associated with large-amplitude
atmospheric and oceanic changes affecting vast ex-
panses of the earth’s surface (Rasmusson and Carpenter
1982; Philander 1990), is a noteworthy example of in-
ternal variability. Other interactions among different
components of the atmosphere–ocean–land system may
also contribute to the rich spectrum of climate variability
(e.g., Mann and Park 1994, 1996; Mann et al. 1995;
Parker et al. 1994; Trenberth and Hurrell 1994; Schle-
singer and Ramankutty 1994). To clearly identify the
origin of the global warming trend, it is important to
discern as many other sources of climate variability as
possible and recognize their individual signatures in the
climate record, so that any radiatively induced changes
can be isolated.

Recently, Wallace et al. (1995, hereafter WZR) an-
alyzed observed temperature data in an attempt to better
isolate long-term variations in Northern Hemisphere
mean temperature. They found that much of the month-
to-month variability that dominates the temperature time
series is associated with a spatial pattern in which the
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extratropical temperature anomalies over land and ocean
are of opposite sign. Specifically, when the hemisphere
is warm, the oceans are anomalously cold and the con-
tinents are anomalously warm. This pattern, dubbed the
cold ocean–warm land (COWL) pattern, is responsible
for approximately half of the temporal variance in
monthly mean hemispherically averaged surface air
temperature. WZR speculated that the variability as-
sociated with the COWL pattern results from atmo-
spheric dynamics and the contrast in thermal inertia be-
tween continents and oceans. They argued that lower
frequency fluctuations in global mean temperature, such
as long-term trends and interdecadal variability, could
be isolated by removing the variations associated with
the COWL pattern. Furthermore, WZR argued that the
strong COWL-related contribution to the observed up-
ward trend in hemispheric mean temperature during the
1970s and 1980s was not necessarily linked to radia-
tively induced global warming.

If the interpretations of WZR are correct, the removal
of the COWL pattern signature from the global tem-
perature record would constitute an effective method to
detect anthropogenic climate change. Thus it is desirable
to further test some of the interpretations of WZR. Cli-
mate models offer a means for such testing. Models
allow hypotheses to be critically examined in more con-
trolled settings than can be provided by observational
data alone. Furthermore, the model simulations are not
subject to the limitations associated with incomplete ob-
servational networks. For this approach to be successful,
however, it is important that the climate model be ca-
pable of capturing the essence of the observed climate
variability. For comparison with the results of WZR,
the ability to produce a credible simulation of variability
on timescales from intraseasonal through decadal is a
necessary condition.

At the Geophysical Fluid Dynamics Laboratory, a
very long integration (;1000 yr) of a coupled atmo-
sphere–ocean model has been made for the purpose of
exploring climate variability (Stouffer et al. 1994; Ma-
nabe and Stouffer 1996). The power spectrum of global
mean surface air temperature from this integration has
been compared to its observed counterpart and found
to be reasonably realistic (Manabe and Stouffer 1996),
although the amplitude of ENSO-related variability is
underestimated (Knutson et al. 1997). Other studies
have demonstrated that the atmospheric component of
this model is capable of simulating atmospheric vari-
ability on daily to seasonal timescales (Manabe and
Hahn 1981; Lau 1981; Lau and Nath 1987) and repro-
ducing realistic circulation patterns in response to trop-
ical sea surface temperature (SST) variations (Lau 1985;
Lau and Nath 1994).

Thus we believe that it is appropriate to apply the
analysis techniques introduced by WZR to the output
from the 1000-yr integration of the coupled atmosphere–
ocean model mentioned above. Our purpose is to de-
termine the role of the COWL pattern as a source of

month-to-month surface air temperature variability in
the model, and to explore the physical mechanisms re-
sponsible for its existence. We will examine the im-
portance of air–sea interaction by applying the same
analysis techniques to other integrations in which sim-
pler representations of the ocean have been substituted
for the complete ocean general circulation model. In
addition, we will use a coupled model integration forced
by estimated variations in greenhouse gas and tropo-
spheric sulfate aerosol forcing (Haywood et al. 1997)
to test WZR’s hypothesis that removal of the contri-
bution from the COWL pattern allows radiatively forced
temperature trends to be isolated more clearly.

The remainder of the paper is organized as follows.
Section 2 and the appendix contain a mathematical de-
scription of the method introduced by WZR and its re-
lationship to standard statistical techniques. In section
3 this method is applied to both the coupled model
integration and observed data, and a comparison is made
between the two sets of results. The physical processes
responsible for the existence of the COWL pattern, as
well as the relationship of this pattern to other mani-
festations of atmospheric variability, are explored in sec-
tion 4. Section 5 examines the recent observed warming
trend in the context of the simulated variability asso-
ciated with the COWL pattern. Section 6 contains an
assessment of the impact of anthropogenic radiative
forcing from greenhouse gases and sulfate aerosols on
the signature of the COWL pattern. The paper concludes
with a summary and discussion in section 7.

2. Methodology

Our primary purpose is to search for a single spatial
pattern with temporal variability that is closely related
to fluctuations of the spatially averaged surface tem-
perature field. The identification of this pattern facili-
tates the partitioning of the time series of the spatially
averaged temperature into two components. The first
component represents the contribution of the temporal
changes in the amplitude and polarity of the character-
istic structure function. The second component is the
residual arising from this fitting procedure. In the pres-
ent article, this decomposition is performed by follow-
ing the same methodology developed in WZR. The no-
tation used here is also identical to that adopted in WZR,
with ( ) and ^ & indicating spatial and temporal aver-
aging, respectively, x representing the two-dimensional
(latitude–longitude) space variable, and t the time vari-
able. In computing the spatial averages, the value at
each grid point is weighted by the cosine of latitude for
that point.

To accomplish the goal stated above, we first express
the space–time variations of the surface temperature
anomaly field T(x, t) as the sum of two terms: the prod-
uct between a spatial function A(x) and a time series of
expansion coefficients T1(t), and the residual field, d(x,
t); that is,
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T(x, t) 5 A(x)T1(t) 1 d(x, t). (1)

Here, A(x) can be written as the sum of its spatial av-
erage and deviations from this spatial average; that is,
A(x) 5 A 1 A*(x), with A*(x) 5 0. Performing a spatial
average of Eq. (1), then yields

T(t) 5 AT1(t) 1 T0(t), (2)

where T0(t) 5 d(x, t) . By subtracting Eq. (2) from Eq.
(1), we obtain

T*(x, t) 5 A*(x)T1(t) 1 d*(x, t), (3)

where d*(x, t) 5 d(x, t) 2 d(x, t) .
It is important to note that the same time series of

expansion coefficients T1(t) appear in the first term on
the rhs of Eqs. (1), (2), and (3). Although Eq. (2) ex-
hibits no explicit spatial dependence, the presence of
this common time series in the term AT1(t) in this equa-
tion signifies that fluctuations of the spatial pattern A(x)
do contribute to the variability of T(t). Hence Eq. (2)
is in effect the desired decomposition mentioned in the
beginning of this section; it expresses T(t) as the sum
of a component associated with temporal changes in a
structure function [i.e., AT1(t)] and a residual [T0(t)].

To compute various quantities of interest (see details
in the appendix), certain assumptions need to be made
on the relationship between the residual and the com-
ponent associated with temporal changes in A(x). First,
we require that the two terms resulting from the de-
composition of T(t) in Eq. (2) be orthogonal to each
other in the temporal domain. As a result of this re-
quirement, the spatial mean of the residual [d(x, t) , or
T0(t)] exhibits no temporal correlation with AT1(t), or

^T0(t)T1(t)& 5 0. (4)

Second, we require that the two components of T*(x, t)
on the rhs of Eq. (3) be mutually orthogonal in the
spatial domain, so that deviation of the residual at all t
from its spatial mean [d*(x, t)] has no spatial projection
on A*(x), or

d*(x, t)A*(x) 5 0. (5)

In the following sections, we shall present the spatial
pattern A(x) as well as the time series T1(t) and T0(t)
using observations and model output for selected data
domains. The computational details for obtaining these
quantities are given in the appendix. It is also demon-
strated in the appendix that the procedure described
therein is equivalent to a singular value composition
analysis, with the left and right input fields correspond-
ing to T(t) and T*(x, t), respectively.

Although we have adopted the methodology of WZR
in the present study, it is worth noting that the covar-
iability between local temperature fluctuations and T(t)
could also be analyzed using other conventional tech-
niques. One example of the more standard approaches
is to compute the spatial pattern of the regression co-
efficients of T(x, t) at individual grid points on the area-

averaged index T(t), as was done by Manabe and Stouf-
fer (1996). It can be shown that the regression pattern
thus obtained is linearly related to the structure function
A(x) examined here.

3. Simulation of the COWL pattern

The simulated data to be examined here are primarily
generated by the coupled atmosphere–ocean model de-
veloped at the Geophysical Fluid Dynamics Laboratory.
This model has been used in a variety of studies of
climate change and climate variability (Stouffer et al.
1989; Manabe et al. 1991, 1992; Manabe and Stouffer
1993, 1994, 1996; Delworth et al. 1993; Knutson and
Manabe 1994, 1995; Knutson et al. 1997). For brevity,
it will be called the coupled model in subsequent ref-
erences. The model consists of an atmospheric general
circulation model based on the spectral transform meth-
od coupled with a finite-difference general circulation
model of the ocean. Heat, water, and snow budgets for
continental surfaces are computed, and the seasonal (but
not diurnal) cycle of solar radiation is prescribed at the
top of the model atmosphere. The horizontal resolution
of the atmospheric component is determined by the trun-
cation limit; in this case the so-called rhomboidal trun-
cation at wavenumber 15 (R15) is used. Vertical vari-
ations in the model atmosphere are represented at nine
sigma levels. In the oceanic component, the finite-dif-
ference grid has a spacing of approximately 4.58 lat 3
3.78 long, and there are 12 unevenly spaced levels in
the vertical. The model has realistic geography, surface
topography, and bathymetry, consistent with its com-
putational resolution. To reduce climate drift, the fluxes
of heat and water across the air–sea interface are mod-
ified by amounts that vary spatially and seasonally, but
do not vary from one year to the next. These flux ad-
justments are determined prior to integrating the coupled
model, and are not correlated with the transient anom-
alies of temperature or salinity that evolve during the
coupled model integration. Details of the model struc-
ture, method of time integration, and performance are
described by Manabe et al. (1991).

For comparison with the results of WZR, the method
outlined in section 2 and the appendix is applied to the
output from a 1000-yr integration of the model de-
scribed above in which external forcing is held constant
(Manabe and Stouffer 1996). Thus, only unforced cli-
mate variations resulting from the internal dynamics of
the coupled model are present, except for a very slow
drift that probably results from imperfect initialization
techniques. One of the manifestations of this drift is a
trend of 22.3 3 1024 8C yr21 in global mean surface
air temperature; for reference, this is approximately 20
times smaller than the observed temperature trend dur-
ing the twentieth century.



2746 VOLUME 11J O U R N A L O F C L I M A T E

FIG. 1. Distribution of the structure function A(x) for surface air temperature from (a) the 1000-yr coupled model integration, and (b)
observations during the 1900–95 period. In both cases, the spatial domain of the analysis is restricted to land north of 208N. Contour interval
is 0.5. Positive (negative) values are shaded in red (blue). Unshaded land areas in (b) correspond to sites with inadequate data records during
1900–95.

a. Northern Hemisphere land (208–908N)

Mean monthly surface air temperatures for each of
the 12 000 months of the coupled model integration
serve as input to the analysis. The global temperature
dataset of Jones and Briffa (1992), as extended through
1995, is also analyzed to facilitate comparisons between
the model and observations. This dataset utilizes SST
data in addition to surface air temperature data from
land stations to extend its spatial coverage to oceanic
regions. For consistency with WZR, the spatial domain
of the analysis is limited to Northern Hemisphere land
points north of 208N.

The structure function A(x) is computed based on
output from the coupled model integration (Fig. 1a) and
the observed temperature data for the period 1900–95
(Fig. 1b). (Note that the pattern in Fig. 1b is very similar
to that in Fig. 3 of WZR, which depicts the related
quantity A(x)/A based on the same observations from a
slightly shorter period.) A high degree of similarity ex-
ists between the simulated and observed A(x) patterns,
with prominent positive centers over the northern in-
teriors of Eurasia and North America, and weaker neg-
ative values in most locations south of 308N and over
some coastal regions at higher latitudes. The quantita-
tive values of A(x) in the Eurasian and North American
maxima are also very similar in the simulated and ob-
served results. When the analysis domain is expanded
by including both land and ocean sites, WZR (see their
Fig. 4) reported that the observed pattern of A(x) is
closely related to the underlying land–sea contrast. In
particular, positive values of A(x) prevail over the con-
tinental interiors, whereas negative values are mostly

found in maritime regions. This characteristic distri-
bution has led WZR to coin the term ‘‘cold ocean–warm
land pattern.’’

To enable the reader to maintain the connection be-
tween this paper and the previous work by WZR, the
following terminology is defined. ‘‘COWL pattern’’ re-
fers to the structure function A(x) computed from ob-
servations, as this is the terminology introduced by
WZR. The A(x) computed from the coupled model in-
tegration will also be called the COWL pattern because
of its similarity to the observed A(x). In keeping with
this terminology, the time series AT1(t) (computed from
either observations or the coupled model) may also be
regarded as the contribution of variations in the ampli-
tude and polarity of the COWL pattern to spatially av-
eraged temperature fluctuations. This terminology will
be used consistently in the remainder of the paper, and
should not be construed to imply any particular physical
origin for this pattern.

Time series of the quantities T(t), AT1(t), and T0(t)
provide information on the contribution of the COWL
pattern to the variability of hemispheric mean land tem-
perature. They are displayed in Fig. 2 for a represen-
tative 200-yr segment of the coupled model integration
and for observations from the period 1900–95. The val-
ue for each month is indicated by a single dot, with the
blue and red dots corresponding to months in the cold
season (November–April) and warm season (May–Oc-
tober), respectively. Autocorrelation functions for each
of these three time series are also computed from the
coupled model (Fig. 3a) and observations (Fig. 3b). (For
reference, Figs. 2b and 3b of this paper correspond to
Figs. 1 and 2 of WZR, respectively.)
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FIG. 2. Time series of T (t), AT1(t), and T0(t) from (a) a representative 200-yr segment of the coupled model integration and (b) observations.
Monthly data for cold season months (November–April) are indicated by blue dots, and data for warm season months (May–October) are
indicated by red dots overprinted on the blue. The interval between tick marks on the ordinate is 18C.

In both the coupled model and observations, the
hemispheric mean temperature T(t) exhibits consider-
able month-to-month scatter, particularly in the cold sea-
son. This scatter is comparable in magnitude to the ob-
served warming trend during the twentieth century, and
thus adds to the difficulty of trend detection. The au-
tocorrelation functions based on simulated and observed
T(t) indicate the presence of low-frequency variability,
as evident from the positive autocorrelations at lag in-
tervals through 60 months. The autocorrelations remain
much higher at longer lags for the observed T(t), pri-
marily because the century-scale warming trend in that
time series is much larger than the very slow drift in
the coupled model temperatures. Autocorrelations from
a linearly detrended version of the observed T(t) time
series (not shown) closely resemble those from the cou-
pled model.

The characteristics of AT1(t) are quite different from
those of T(t), as can be seen by both visual inspection
of the plotted time series and the autocorrelation func-
tions. For both the simulated and observed data, the
autocorrelation function of AT1(t) diminishes rapidly
with increasing lag and becomes quite small after just
a few months. The long-term trend evident in the ob-
served T(t) is virtually absent in AT1(t) before 1970 (see

Fig. 2b), although there is evidence of an upward trend
in AT1(t) during the cold season in recent decades.

The standard deviation of AT1(t) during the cold sea-
son is ;2.5 times larger than the warm season in both
the coupled model and observations, indicating that the
COWL pattern is a much more important source of
hemispheric mean temperature variability during the
winter months. When all months are considered, AT1(t)
accounts for 58% of the variance of the observed T(t).1

For the coupled model, the explained variance is some-
what smaller at 37% (Table 1).

Most of the low-frequency variability in hemispheric
mean temperature is found in the residual term T0(t)
that is obtained by subtracting the contribution of the
COWL pattern AT1(t) from T(t) [see Eq. (2)]. This is
evident visually in the time series plot of the observed
T0(t) (Fig. 2b), in which the familiar pattern of warming
from the beginning of the century through the 1940s,
cooling from the mid-1940s through the mid-1970s, and

1 Note that this fraction is larger than the 46% reported by WZR.
A close comparison reveals that this difference arises from our use
of a dataset with higher spatial resolution and the extension of the
analysis through 1995.
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FIG. 3. Autocorrelation functions for the time series plotted in Fig. 2. Lags are given in months.

TABLE 1. Ratio (in percent) of variance in AT1(t) vs variance in
T(t), as computed for various analysis domains and model or obser-
vational datasets. The computations are based on all months of the
year.

Data
208–908N
land only

208–908N
land and

ocean

Global
land

and ocean

Observed
Coupled integration
Mixed layer (ML) integration
Fixed SST (FS) integration

58
37
—
—

48
43
39
47

36
30
—
—

a warming trend thereafter is readily apparent. The au-
tocorrelation functions from both the coupled model and
observations also indicate the prevalence of low-fre-
quency variability in T0(t), as the autocorrelation values
for longer lags are much higher than those computed
from AT1(t), particularly for observations. Autocorre-
lation values for T0(t) are also slightly larger than those
for T(t) in both coupled models and observations. In
general, the coupled model is able to reproduce the gross
characteristics of T(t), AT1(t), and T0(t), providing fur-
ther evidence from a model perspective that, in the ab-
sence of any trends in external forcing, the removal of

the COWL pattern may be an effective means of high-
lighting low-frequency variability.

b. Other spatial domains

The preceding analysis can be extended to other spa-
tial domains to determine if the structure of the COWL
pattern is domain dependent. As a first step, the southern
boundary of the analysis domain is kept at 208N but
temperatures from ocean grid points are included along
with those from land. The resulting structure function
A(x) (Fig. 4a) bears a very strong resemblance to that
computed from land points only (Fig. 1a). Prominent
maxima are located over the high-latitude interiors of
Eurasia and North America, with a minimum centered
north of Iceland and extending over the nearby portions
of the Norwegian Sea and adjacent waters. Slightly
weaker minima are found over the central North Pacific
and the Gulf of Mexico. Positive values of A(x) are
almost completely restricted to the middle- to high-lat-
itude continents, with the only exception being an area
of positive values extending from Alaska and the Ca-
nadian archipelago across the Arctic to Siberia. The
positive values over this portion of the Arctic may be
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FIG. 4. Same as Fig. 1 except that analysis domain includes all grid points north of 208N.

FIG. 5. Same as Fig. 1 except that analysis domain is global and
unshaded areas in (b) correspond to sites with inadequate data records
during 1900–95.

related to the presence of sea ice in this region, which
possesses surface characteristics similar to a continental
surface during the cold season. Negative values domi-
nate over all other ocean grid points in the domain, as
well as many coastal areas and portions of the subtrop-
ical continents. Most of these characteristics also appear
in the A(x) pattern computed from observations using
the same domain (Fig. 4b).

When the analysis domain is extended further to en-
compass the entire globe, the spatial pattern of A(x)
simulated by the coupled model in the Northern Hemi-
sphere extratropics is similar to that computed using the
more restricted domains (Fig. 5a). Prominent positive
centers occupy the high-latitude interiors of Eurasia and
North America, with mainly negative values over the
North Pacific and North Atlantic Oceans. Elsewhere,
the A(x) pattern simulated by the coupled model features
positive values over the continents, with local maxima
over northern Africa, Australia, and northern South
America. A complex pattern of positive values also cov-
ers Antarctica and nearby portions of the Southern
Ocean, primarily over ice-covered regions. Negative
values of A(x) dominate over most oceanic regions, with
the only sizeable exception being an area of weak pos-
itive values over the eastern and central tropical Pacific.
Negative values are also noted in those continental
regions where maritime influences are strong, such as
southeastern Asia, Central America, and southern South
America.

The observed A(x) pattern based on a global analysis
domain (Fig. 5b) has both similarities and differences
with respect to the pattern simulated by the coupled
model. As in the model, the observed A(x) pattern in
the Northern Hemisphere extratropics is dominated by
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the positive centers over the continental interiors, with
a tendency for negative values over the adjacent oceans,
particularly over the central North Pacific and high-lat-
itude North Atlantic. In general, the prevalence of neg-
ative values over most ice-free oceanic regions in the
simulated A(x) pattern does not appear in the observed
A(x) pattern. The two patterns do share the tendency for
positive A(x) values over the central and eastern tropical
Pacific, with negative values surrounding this area to
the north, west, and south. This pattern, which is rem-
iniscent of the signature of ENSO variability or Pacific
interdecadal variability (Zhang et al. 1997; Knutson et
al. 1997), is less pronounced in the coupled model sim-
ulation. Over the Southern Hemisphere continents, the
pattern is rather patchy, although there may be a ten-
dency for A(x) values to be predominately positive.
Some caution is required in comparing the simulated
and observed patterns because of the paucity of obser-
vations in the Southern Hemisphere extratropics and the
use of SST as a substitute for surface air temperatures
in the observational data.

Comparison of the A(x) patterns based on different
spatial domains indicates that the COWL pattern re-
mains dominant as the analysis domain is expanded be-
yond the extratropical Northern Hemisphere. The do-
main-independence of this pattern supports the assertion
that the COWL pattern is not simply an artifact of av-
eraging only over Northern Hemisphere land when de-
termining the spatial mean temperature. Both in the cou-
pled model and in observations, spatial mean temper-
ature fluctuations associated with the COWL pattern
[i.e., AT1(t)] make substantial contributions to the total
variance of spatial mean temperature irrespective of
analysis domain (Table 1). Thus the COWL pattern ap-
pears to be a robust feature that can be extracted from
both the coupled model and observations. Given the
prominence of this pattern in both the simulated and
observed climates, a better understanding of the physical
mechanisms associated with its existence is important,
and this will be addressed in the following section.

4. Physical interpretation of the COWL pattern

a. Impact of air–sea interaction

WZR concluded that the contrast in thermal inertia
between land and ocean is responsible for the existence
of the COWL pattern. They reasoned that surface air
temperatures over land are not as strongly damped by
heat exchange with the underlying surface as are tem-
peratures over sea. This land–sea difference in thermal
capacity leads to much larger temperature fluctuations
over land, such that the overall spatial mean temperature
is disproportionately influenced by the anomalies oc-
curring over land locations. This argument does not in-
voke any complex interactions between the atmosphere
and ocean.

We first evaluate the potential role of air–sea inter-

action in generating the COWL pattern by comparing
the results presented in the previous section, which are
based on the output from a comprehensive atmosphere–
ocean GCM (i.e., the coupled model), with their coun-
terparts obtained from model runs with diminishing de-
grees of air–sea coupling. The latter runs have been
examined in the study on climate variability by Manabe
and Stouffer (1996). They include a 1000-yr integration
of an atmospheric GCM coupled to a static oceanic
mixed layer with a constant depth of 50 m, and a 500-
yr integration of an atmospheric GCM with prescribed
SST climatology at the air–sea interface. We shall
henceforth refer to these experiments as the ML (mixed
layer) and FS (fixed SST) runs, respectively.

In all of the integrations mentioned above the contrast
in thermal inertia between land and ocean is represented.
The atmospheric component of the model is also iden-
tical. The only important difference among the integra-
tions is the degree of air–sea coupling. In the ML ex-
periment, the air–sea interaction is restricted by allow-
ing mixed layer temperatures to vary only as a result
of heat exchanges with the model atmosphere directly
aloft, and by allowing the atmosphere to respond to
mixed layer temperature fluctuations. The mixed layer
in a given grid box does not interact with those in neigh-
boring boxes, nor is it coupled to any model of the deep
ocean. The mixed layer is considered to be a motionless
slab, so that momentum transfers associated with
changes in the surface wind stress have no effect on it.
Air–sea coupling is limited still further in the FS run,
in which the climatological seasonal evolution of the
observed SST field is assigned to all maritime grid
points. The model atmosphere is hence subjected to the
same annual cycle of SST conditions throughout the
experiment.

The analysis procedure described in section 2 has
been applied to the surface air temperature fields pro-
duced in the ML and FS runs. The data at all (land and
ocean) grid points situated north of 208N have been used
in this analysis. The distributions of the spatial function
A(x) are shown in Fig. 6 for the (a) ML and (b) FS
experiments. These patterns are almost identical to each
other, and to that obtained from the output of the coupled
model run (see Fig. 4). There are small variations in the
fraction of temporal variance of T(t) explained by
AT1(t), as evident in Table 1. The smallest explained
variance (39%) occurs in the ML integration, whose 50-
m-deep mixed layer provides the smallest oceanic ther-
mal inertia of the three integrations. The COWL-asso-
ciated variance increases to 43% in the coupled model,
in which the mixed layer is capable of thermal com-
munication with the deep ocean. The variance fraction
increases still further to 47% in the FS integration,
where the prescribed SSTs represent an infinite source
of thermal inertia. In view of the equally prominent
COWL patterns in model environments with substan-
tially reduced air–sea interaction, we are led to conclude
that the land–sea contrast in thermal inertia is the most
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FIG. 6. Same as Fig. 4 except that surface air temperature is taken from experiments with an (a) atmosphere–mixed layer ocean model
and (b) atmospheric model with prescribed SSTs.

FIG. 7. Regression coefficients of T(x, t) on T1(t) for (a) November–April, and (b) May–October, computed using data from the coupled
model integration. Contour interval is 0.58C. Areas with negative values are shaded.

important mechanism for the existence of the COWL
pattern, and that the coupling between atmospheric and
oceanic circulations does not play a critical role in pro-
ducing such patterns.

b. Seasonal dependence of the COWL pattern

To document the seasonal variation in the amplitude
and spatial structure of the COWL pattern, the data field

T(x, t) as well as the time series T1(t) for the coupled
model experiment have been partitioned into two
groups: the cold season (November–April) and the
warm season (May–October). The domain of analysis
used in deriving the time series T1(t) consists of all grid
points located north of 208N, and is the same as that
used in constructing A(x) in Fig. 4. The distributions of
the regression coefficients of T(x, t) on T1(t) for the (a)
cold and (b) warm seasons are shown in Fig. 7. In this
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FIG. 8. Regression coefficients of T(x, t) on T(x0, t) for x0 located in (a) north-central Eurasia (64.48N, 82.58E; point AS), and (b) north-
central North America (68.88N, 112.58W; point AM), as computed using the data from the coupled model integration. Contours and shading
as in Fig. 7. Solid dots in (a) and (b) represent the locations of points AS and AM, respectively.

and other similar charts to be presented in this section,
the regression coefficient of variable a(x, t) on variable
b(t) is defined as ^a(x, t)b(t)&/ ^b2(t)&, and may be in-Ï
terpreted as a measure of the typical amplitude of the
change in a at point x associated with an anomaly of
one standard deviation in b. (Here a and b represent
departures from long-term averages.) Defining the re-
gression coefficient in this way, which differs slightly
from the standard definition, facilitates the comparison
of regression analyses based on different independent
variables.

Comparison between the two panels in Fig. 7 indi-
cates that the spatial patterns of the local temperature
variations accompanying T1(t) during the cold and warm
seasons are very similar to each other. However, the
typical magnitudes of the T(x, t) anomalies in the cold
season are greater than those in the warm season by
approximately a factor of 2. Hence the fluctuations in
both the areal average and the local deviations of surface
temperature associated with T1(t) [i.e., AT1(t) in Fig. 2a,
and T(x, t) in Fig. 7, respectively] attain largest ampli-
tudes during the cold months. We shall therefore focus
on the cold half of the year in the following discussion
on the regional characteristics of the COWL pattern and
the corresponding atmospheric circulation anomalies.

c. Regional components of the COWL pattern

The COWL pattern in the coupled model experiment
during the cold season (Fig. 7a) is evidently hemispheric
in scale, with multiple centers of action scattered
throughout the domain of analysis. The degree of tem-
poral covariability among the temperature fluctuations

at these distant centers may be illustrated by mapping
the regression coefficients (see definition in section 4b)
of T(x, t) at all x on T(x0, t) at a selected reference point
x0. The regression chart thus obtained depicts the pattern
and amplitude of temperature perturbations at individual
grid points associated with a temperature change of one
standard deviation at x0. Two reference sites have been
chosen for the present analysis: the grid point in north-
ern Asia, at 64.48N, 82.58E (hereafter referred to as AS),
and the grid point in North America, at 68.88N, 112.58W
(hereafter referred to as AM). These points correspond
to the locations of the maxima appearing in Fig. 7a. The
patterns of regression coefficients, as computed using
monthly means of T(x, t) from the coupled model run
for the cold season only, are shown in Fig. 8 for x0

located at (a) AS and (b) AM.
The distribution in Fig. 8a indicates that temperature

fluctuations accompanying changes at AS attain notice-
able amplitudes mostly in the Eastern Hemisphere, with
anomalies in northern Eurasia being negatively corre-
lated with those near Greenland, eastern China, and west
of the Bering Strait. Particularly noteworthy is the near-
zero correlation between the variations at AS and those
in northern Canada. Conversely, it is evident from Fig.
8b that the anomaly pattern associated with the reference
site at AM is confined mostly to the Western Hemi-
sphere, where positive temperature changes over the
northern portion of the North American landmass co-
incide with negative fluctuations over the eastern United
States and west of the Bering Strait.

At first glance, the planetary-scale features associated
with the COWL pattern (e.g., see Fig. 7a) seem to sug-
gest the preferred occurrence of simultaneous temper-
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FIG. 9. Scatterplot of T(x, t) at point AS vs T(x, t) at point AM for (a) the 1000-yr coupled model simulation and (b) observations during
the 1900–95 period. Each of the black crosses represents a single month. For the coupled model, red (blue) dots represent the 100 months
with the highest (lowest) values of T1(t). For observations, red (blue) dots represent the 20 months with the highest (lowest) values of T1(t).
Units are 8C.

ature fluctuations spanning the entire Northern Hemi-
sphere. Further diagnosis of the data by using a more
regional approach, as presented in Fig. 8, reveals that
the hemispheric temperature pattern related to COWL
actually receives separate contributions from two dis-
tinct components. One of these components is organized
about the temperature variations over Eurasia, and the
other is prominent over North America only. The neg-
ligible temporal correlation between these two com-
ponents implies that they occur almost independently
of each other.

The relationships between the occurrence of the
COWL pattern and temperature fluctuations at AS and
AM may be further illustrated by the scatterplots con-
structed from the coupled model output (Fig. 9a). The
abscissa and ordinate of this plot correspond to the T(x,
t) values averaged over the nine grid points surrounding
AS and AM, respectively. The temperature fluctuations
at this pair of sites during each month are represented
in this plot by a black cross, so that the scatter diagram
consists of altogether 12 000 data points. Those 100
months within this sample with the largest positive (neg-
ative) values of the temporal coefficients for the COWL
pattern [i.e., T1(t)] are highlighted by red (blue) dots.
The time series for T1(t) has been obtained by analyzing
the temperature data for all grid points situated north
of 208N. A similar plot is constructed based on obser-
vations (Fig. 9b), but in this case there are only 1152
monthly values plotted, with the 20 largest positive and
negative values denoted by the colored dots.

Both scatterplots exhibit very similar characteristics.

In each plot, the relative frequency of occurrence in each
of the four quadrants of the coordinate system is ap-
proximately equal. This result is consistent with the
weak linear correlation between temperature variations
at AS and AM (see Fig. 8). The isotropic character of
the distribution of the general population of points is in
sharp contrast to the distribution of months with strong
COWL signatures. Specifically, a large majority of the
months with extreme positive values of T1(t) (red dots)
reside in the upper-right quadrants of Figs. 9a and 9b,
where positive anomalies at both AS and AM prevail.
Similarly, most of the months with large negative values
of T1(t) (blue dots) lie in the lower-left quadrants, where
temperatures at both AS and AM are below normal.
Very few months in the (just as densely populated) up-
per-left and lower-right quadrants, where the polarities
of the temperature anomalies at AS and AM are opposite
to each other, project strongly on the COWL pattern. It
is hence evident that the COWL pattern preferentially
occurs in a selective set of months with in-phase tem-
perature variations over both the Eurasian and North
American landmasses. Instances of out-of-phase tem-
perature variations at these two continental sites are
equally common. However, such cases would have a
weak spatial projection on the COWL pattern, since the
cancellations among the opposing temperature changes
over Asia and North America would result in only small
changes in T(t).

The recent study of Ting et al. (1996) has linked
observed temperature fluctuations over the Asian and
North American landmasses to the variability of the
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Pacific and Atlantic jet streams, and to the zonally av-
eraged zonal flow. Periods of out-of-phase temperature
anomalies over the two continental sites (as depicted in
the upper-left and lower-right quadrants of the scatter-
plots in Fig. 9) are characterized by in-phase fluctuations
of the jet streams over the two ocean basins. Conversely,
when temperature changes at AS and AM are of the
same polarity (corresponding to the upper-right and low-
er-left quadrants in Fig. 9), the anomalies in the Pacific
and Atlantic jet streams tend to oppose each other, thus
resulting in a near-normal zonal-mean flow. Ting et al.
(1996) further noted that fluctuations of the Pacific and
Atlantic jets are temporally uncorrelated with each other.
This finding is in accord with the independent temper-
ature variations over Asia and North America seen in
our study.

d. Relationships between temperature fluctuations
and atmospheric circulation anomalies

The three-dimensional structure of the atmospheric
circulation changes accompanying the surface temper-
ature variations described in the previous subsections
may be documented by mapping the regression coeffi-
cients (see definition in section 4b) of pressure or geo-
potential height data at selected levels on the relevant
temperature indices. Figure 10 shows the patterns of
such regression charts of sea level pressure (left column)
and 500-mb height (right column) on T1(t) (Figs. 10a
and 10d), T(x0, t) at reference site AS (Figs. 10b and
10e), and T(x0, t) at AM (Figs. 10c and 10f). All com-
putations are based on monthly averages generated in
the coupled model integration during the cold season.
The time series T1(t) is obtained from the analysis of
surface temperature data for all grid points located north
of 208N.

In accord with the negligible correlation between the
temperature changes at AS and those at AM (see Fig.
8), there is almost no spatial overlap between the pres-
sure and height anomalies accompanying the tempera-
ture changes at AS (Figs. 10b and 10e) and those cor-
responding to fluctuations at AM (Figs. 10c and 10f).
The regression maps constructed using T1(t) (Figs. 10a
and 10d) appear as a combination of the individual
anomaly patterns associated with each of the two ref-
erence sites AS and AM.

The warm temperature anomalies at either the AS or
AM sites individually (as in Fig. 8), or at both sites
simultaneously (as in Fig. 7a), are coincident with be-
low-normal sea level pressures at and to the west of the
reference site(s) x0 in question (see left panels of Fig.
10). The anomalous near-surface flow at and to the south
of x0 is directed either eastward or northeastward, and
originates from relatively warmer maritime regions sit-
uated west of x0. On the other hand, the cold anomalies
near the Greenland and Bering Seas in Figs. 7 and 8
are under the influence of anomalous northerly air-
streams to the west of the principal low pressure centers.

Inspection of the right panels in Fig. 10 reveals that
the temperature changes at x0 are also correlated with
well-defined signatures in the middle troposphere. Warm
anomalies at x0 are accompanied at the 500-mb level
by a positive height center to the east or southeast of
x0, and a negative center to the west of x0. Comparison
between the left and right columns of Fig. 10 indicates
that the pressure–height perturbations have a distinctly
baroclinic structure directly over both AS and AM, with
considerable spatial displacements of the anomaly cen-
ters at 500 mb from those at sea level. Particularly note-
worthy is the presence above AM of a positive anomaly
in 500-mb height (Fig. 10f) and in 1000–500-mb thick-
ness (not shown), thus indicating that the below-normal
sea level pressure in that region (Fig. 10c) is charac-
terized by a warm-core structure in the lower and middle
troposphere. The baroclinic nature of geopotential
height fluctuations with weekly and monthly timescales
over the Eurasian and North American landmasses has
previously been noted by Blackmon et al. (1979, see
their Figs. 2, 3, and 12) and Hsu and Wallace (1985,
their Figs. 2 and 5) for the observed atmosphere, and
by Lau and Nath (1987, their Fig. 6) for the output from
an atmospheric GCM similar to that examined here.

The amplitude of the simulated sea level pressure
anomaly at AS and AM is comparable to that of the
500-mb height anomaly directly aloft (note that a pres-
sure change of 1 mb is equivalent to a geopotential
height change of approximately 8 m). This model find-
ing is in agreement with the observation that the ratio
of the standard deviation of 500-mb height to the stan-
dard deviation of 1000 mb height is close to unity in
the vicinity of these reference sites (see Blackmon et
al. 1979, their Fig. 4).

The near-zero or negative correlations between sea
level pressure and 500-mb height anomalies in the vi-
cinity of AS and AM are indicative of the occurrence
of large fluctuations in the thickness field over these
sites. This inference supports the identification by WZR
(see their Fig. 4) and Wallace et al. (1996, see their Figs.
5 and 7) of high-amplitude thickness (or, equivalently,
column-averaged temperature) fluctuations over the
continents as a prominent signature of the COWL pat-
tern.

e. Comparison of the simulated circulation patterns
related to COWL with other observational and
model results

The model patterns in Figs. 10a and 10d are in good
agreement with the analogous regression charts based
on observational data, as presented in Figs. 5 and 7 of
Wallace et al. (1996). The pattern of Fig. 10e has the
same spatial structure as a leading mode of variability
of the atmospheric model used in the present coupled
model experiment [see Fig. 2d of Ting and Lau (1993)].
This chart also exhibits some similarities to the observed
northern Asian pattern (see Fig. 6a of Esbensen 1984),
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FIG. 10. Regression maps of sea level pressure on (a) T1(t), (b) T(x, t) at AS, (c) T(x, t) at AM, and 500-mb height on
(d) T1(t), (e) T(x, t) at AS, (f ) T(x, t) at AM, based on the coupled model integration. Contour intervals for the regression
coefficients are 0.5 mb for sea level pressure and 5 m for 500-mb heights. Areas with negative values are shaded. Solid
dots in (b) and (e) represent the location of point AS, and solid dots in (c) and (f ) represent the location of point AM.



2756 VOLUME 11J O U R N A L O F C L I M A T E

FIG. 11. Time series as in Fig. 2 but smoothed using a 5-yr moving
average applied separately to cold (solid curve) and warm (dashed
curve) season data. The interval between tick marks on the ordinate
is 0.58C.

and the Eurasian (type 1) pattern [see Fig. 7 of Barnston
and Livezey (1987)]. The pattern of Fig. 10f is also
known to be a recurrent pattern in the model atmosphere
[see Fig. 2a of Ting and Lau (1993)]. This model result
resembles an observed teleconnection pattern in the
eastern North Pacific [see Fig. 11b of Esbensen (1984)],
as well as the tropical–Northern Hemisphere pattern [see
Fig. 5 of Barnston and Livezey (1987)]. The distribution
in Fig. 10c is similar to that of the pressure changes
accompanying the observed North Pacific oscillation
(NAO) [see Fig. 12 of Rogers (1981)].

5. Nature of the recent positive trend in observed
temperature

To examine the low-frequency behavior of T(t),
AT1(t), and T0(t) based on observations, 5-yr running
averages of these quantities are computed (for the cold
and warm seasons separately) from their monthly val-
ues, with the analysis domain confined to land poleward
of 208N (Fig. 11). (This corresponds to Fig. 5 of WZR,
except that the temperature dataset has been extended
through 1995 rather than ending in 1990.) The use of
the running average filter effectively removes the high-
frequency variations evident in Fig. 2.

WZR have pointed out the salient characteristics of
these smoothed time series, including the larger vari-
ability of T(t) during the cold season, the similarity of
cold and warm season T0(t) throughout the record, and
the upward trend in cold season AT1(t) that begins in
the late 1960s. The extension of the analysis period
through 1995 reveals that the latter trend has continued
and reached 25 yr in length, with the smoothed AT1(t)
values in the early 1990s exceeding the previous peak
reached in the early 1980s.

The continuation of the upward trend beyond the pe-

riod analyzed by WZR is an intriguing aspect of the
recent climate record. Is it larger than those trends that
would be expected to result from the variability internal
to the atmosphere–ocean system (i.e., that which would
occur even in the absence of variations in radiative forc-
ing)? To answer this question requires a good estimate
of the internal climate variability. One factor that com-
plicates such a determination using observational data
is the relative brevity of the instrumental temperature
record; a second is the likelihood that this record bears
the imprint of both natural and anthropogenic changes
in radiative forcing.

An alternative way to estimate the internal climate
variability is to analyze the output from long climate
model integrations conducted with no time variation in
radiative forcing. Although the utility of this approach
is predicated on the ability of the model to serve as a
surrogate for the real climate system, it circumvents the
difficulty of distinguishing between forced and internal
variability inherent in the observed record, as well as
the sampling problems associated with the brevity of
the instrumental record. This methodology has been ap-
plied by Stouffer et al. (1994) and Manabe and Stouffer
(1996) to assess the likelihood that the ongoing global
temperature increase is due to internal climate vari-
ability. Santer et al. (1996) have applied an analogous
approach to estimate the statistical significance of the
similarity between observed climate changes and fin-
gerprints of anthropogenic climate change generated by
models.

Because the use of model output to estimate internal
climate variability hinges upon the fidelity of the model,
it is appropriate to closely examine the performance of
the coupled model used in this study. We hereby review
a number of studies that serve to demonstrate the ability
of the coupled model to simulate climate fluctuations,
both in terms of preferred modes of variability such as
ENSO and the NAO, and fundamental quantities such
as the standard deviation of surface air temperature.

Knutson et al. (1997) examined the simulation of the
ENSO phenomenon in the coupled model and found
that its life cycle is qualitatively consistent with the
‘‘delayed oscillator’’ mechanism that operates in real-
istic ENSO simulations conducted with high-resolution
ocean models. However, the amplitude of ENSO vari-
ability in the coupled model is only about half of that
observed. Variations in ENSO amplitude on multide-
cadal timescales also occur in the model, and these bear
some similarity to observed variations based on instru-
mental, historical, and proxy records (Knutson and Ma-
nabe 1994; Knutson et al. 1997).

Lau and Nath (1994) examined the atmospheric re-
sponse to tropical SST variability by forcing the at-
mospheric component of the coupled model with ob-
served variations in tropical SST. They found a coupled
mode of covariability between tropical SST and win-
tertime Northern Hemisphere midtropospheric circula-
tion that closely resembles a corresponding mode de-
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FIG. 12. Trends in AT1(t) (1022 8C yr21) for overlapping windows
of various lengths based on surface air temperature observations for
the period 1900–95 using land grid points north of 208N. Trends are
plotted with reference to the time at the end of the window. Green,
red, and blue lines indicate window lengths of 15, 25, and 50 yr,
respectively.

termined from observations. The amplitude of the at-
mospheric component of the simulated mode is smaller
than its observed counterpart by a factor of 2 or 3,
perhaps due to the underestimation in the model of sta-
tionary wave amplitude, degree of eddy-mean flow in-
teractions in the extratropics, and precipitation anom-
alies in the Tropics. One can speculate that the difference
between the simulated and observed variance fraction
associated with the COWL pattern (see Table 1) may
be related to some of these model deficiencies.

The coupled model also exhibits variability associated
with the NAO. Both the spatial pattern and magnitude
of sea level pressure fluctuations associated with the
simulated NAO are very similar to observations, with
a negative center in the vicinity of Iceland and a positive
center extending from the Iberian Peninsula westward
across the central North Atlantic (Delworth 1997, per-
sonal communication).

Surface air temperature variability in the coupled
model has been examined by Manabe and Stouffer
(1996). They found that the standard deviations of ob-
served annual and 5-yr mean surface air temperature
are approximately simulated for most of the area with
available observations, with the exception of the tropical
Pacific, where the underestimation of ENSO amplitude
leads to a concomitant reduction in the variability of
surface air temperature. The power spectrum of the sim-
ulated global mean surface air temperature was also
found to be similar to the observed spectrum, except
for an underestimation of power in the frequency band
associated with ENSO variability.

Thus despite some deficiencies, the ability of the
model in simulating the variability evident in the real
climate system encourages us to utilize the unforced
variability of the model to assess the magnitude of the
recent trend in cold season AT1(t) in the observations.
Although a comparison of this trend with a model-de-
rived estimate of unforced variability has implications
for the detection of climate change, we do not intend
to attribute the recent warming of Northern Hemisphere
land to specific causes.

Observed trends in AT1(t) are computed for overlap-
ping windows of 15, 25, and 50 yr in length by per-
forming linear least squares fits to the monthly values
of AT1(t) using only the values from cold season months
(Fig. 12). The same procedure is applied to the 1000-
yr integration of the coupled model (Fig. 13). Since
there is no variation in radiative forcing during this
integration, the resulting trends in AT1(t) are unforced,
and thus can be used to estimate the likelihood that
internal variability of the coupled model would produce
a trend of a given magnitude. If the coupled model and
the real climate system have similar internal variability,
as suggested by comparisons of simulated and observed
variability (e.g., Manabe and Stouffer 1996), the results
presented in Figs. 12 and 13 will allow us to evaluate
the possibility that the observed trend in AT1(t) has
arisen by chance.

The rise in AT1(t) since the late 1960s is reflected in
the positive trends for all window lengths toward the
end of the observed record (see Fig. 12). For the 25-yr
window that most closely matches the duration of the
recent upturn, the trend has a magnitude of over 2 3
1022 8C yr21 for much of the last decade. Even larger
trends are evident over some 15-yr periods, although
the variations in the trend on the 15-yr timescale are
considerable. Very little systematic trend is noted during
the first half of the record. For all three windows, the
maximum positive trends occur over periods ending in
the last 15 yr of the record.

In the coupled model integration, trends in AT1(t)
arise due to internal variability in the simulated climate
system (see Fig. 13). The range of the trend amplitudes
decreases with increasing period length, as would be
expected in a system with little or no systematic trend.
Trend values of 2.9 3 1022, 1.3 3 1022, and 0.5 3 1022

8C yr21 constitute the 99th percentile for period lengths
of 15, 25, and 50 yr, respectively. Thus the observed
25-yr trend in cold season AT1(t) during much of the
last two decades exceeds the value corresponding to the
99th percentile. This finding does not necessarily imply
that the observed trend is statistically significant at the
1% level for a variety of reasons, including the as-
sumption that the simulated variability is comparable to
that of the real climate system, and difficulties in esti-
mating the number of degrees of freedom in a collection
of trends based on overlapping windows.

For further comparison, the maximum and minimum
values of the observed trend are plotted as the horizontal
dashed lines in each panel of Fig. 13. For each window
length, the maximum values substantially exceed the
largest positive trends in the 1000-yr coupled model
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FIG. 13. Trends in AT1(t) (1022 8C yr21) for overlapping windows based on surface air temperature from the 1000-yr coupled model
integration with constant forcing using land grid points north of 208N for window lengths of 15 (top), 25 (center), and 50 (bottom) yr. Trends
are plotted with reference to the time at the end of the window. The bold, dashed horizontal lines indicate the largest positive and negative
trends in observed AT1(t) for the period 1900–95.

integration. Although the standard deviation of AT1(t)
in the model is only 71% of the corresponding observed
quantity, the substantial disparity in the magnitude of
the observed trend and the largest trends in the 1000-
yr integration seems to be greater than that which could
be attributed to the underestimation of internal vari-
ability by the model. Thus our analysis supports the
possibility that the recent upward trend in AT1(t) may
not be the result of unforced variability internal to the
climate system.

6. Application of the analysis procedure of WZR
to an integration with anthropogenic forcing

The results of the previous section suggest that the
observed positive trend in AT1(t) over the past 25 yr
may not be associated with internal processes. If so, this
would contradict the hypothesis of WZR that the com-
ponent of temperature variability associated with the
COWL pattern is a manifestation of atmospheric dy-
namics. To explore the possibility that this trend could
be radiatively induced, we will apply the method of
section 2 to a model integration in which a change in
radiative forcing is imposed by design and thus the ra-
diatively induced component of the simulated temper-
ature change can be reliably estimated.

Haywood et al. (1997) have performed an integration
of the same coupled model (see description in section
3) by prescribing temporal variations of the atmospheric
greenhouse gas content and surface albedo. The green-
house gas changes are based on past observations and

estimates of future emissions, and the surface albedo
changes are calibrated to mimic the effects of estimated
past and future changes in tropospheric sulfate aerosols.
This integration, subsequently denoted CO2 1 AER, is
intended to crudely simulate the anthropogenic forcing
of climate over the period 1766–2065. Haywood et al.
(1997) provide a more detailed discussion of their ex-
perimental design.

The only difference in forcing between CO2 1 AER
and the 1000-yr coupled model integration is the time-
varying radiative forcing caused by CO2 and aerosol
changes. Thus we assume that any substantial long-term
temperature trend that appears in CO2 1 AER is radia-
tively induced, given that the 1000-yr control integration
does not contain such trends. By the same reasoning,
any substantial long-term trend in AT1(t) determined
from the output of CO2 1 AER is assumed to be ra-
diatively induced.

Surface air temperatures from land points located
north of 208N are extracted from that segment of CO2

1 AER that corresponds to the years 1900–2065. This
model dataset is analyzed by the procedure defined in
section 2, and 5-yr cold and warm season running av-
erages of T(t), AT1(t), and T0(t) are computed (Fig. 14).
The hemispheric mean temperature T(t) undergoes an
increase of ;0.88C over the course of the twentieth
century. This is comparable with the magnitude of the
observed trend. Because of the dominating effect of
future increases in greenhouse gases, an accelerated up-
ward trend is evident in the next century, and T(t) rises
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FIG. 14. Same as Fig. 11 except based on surface air temperatures
from the CO2 1 AER integration for the period 1900–2065.

FIG. 15. Difference in annual mean surface air temperature between
years 2045–65 of CO2 1 AER and the 1000-yr mean of the integration
with constant forcing. Contour interval is 0.58C. Areas with values
less than 48C are shaded.

TABLE 2. Matrix of spatial correlation coefficients among A(x) from
the 1000-yr coupled model integration (Acontrol), A(x) for various seg-
ments of CO2 1 AER (A1900–95, A1900–2015, A1900–2065), and the surface
air temperature difference between years 2045 and 2065 of CO2 1
AER and the 1000-yr coupled model integration (D 1 AER.). AllCO2

patterns for A(x) and DT are based on model data for landCO 1 AER2

points north of 208N. The computations are based on all months of
the year.

A1900–95 A1900–2015 A1900–2065 D 1 AERTCO2

Acontrol

A1900–95

A1900–2015

A1900–2065

0.98 0.94
0.97

0.74
0.75
0.80

0.47
0.48
0.54
0.92

to ;48C above its 1900 level by the end of the inte-
gration.

When separated into the AT1(t) and T0(t) components,
most of the upward trend in T(t) in CO2 1 AER appears
in the residual component T0(t), which experiences a
rise of ;38C over the course of the integration. The
remainder of the trend is found in AT1(t), which begins
a steady increase toward the end of the twentieth century
after a long period of little or no systematic trend. The
rise in the AT1(t) component from CO2 1 AER is larger
in the cold season, a characteristic shared by the be-
havior of the observed AT1(t) during the past 25 yr (see
Fig. 11). By the early part of the next century, the mag-
nitude of the trend in AT1(t) from CO2 1 AER far
exceeds the largest trends present in the 1000-yr coupled
model integration with constant forcing (see Fig. 13).

The results from CO2 1 AER indicate that the ra-
diatively induced warming is not confined to the T0(t)
component of the time series of spatial mean temper-
ature. One possible explanation for this finding is that
the COWL pattern bears some similarity to the pattern
of anthropogenic climate change, as noted by WZR.
Thus the anthropogenic signal contained in CO2 1 AER
could project positively on the COWL pattern and lead
to an upward trend in AT1(t). [In this context, the term
COWL pattern is used only in reference to the A(x)
patterns computed from observations and the control
integration.] To explore this possibility, we compare the
A(x) pattern extracted from the control integration (Fig.
1a) with the pattern of surface air temperature response
to anthropogenic forcing, as estimated by the annual
mean temperature difference (DT) between the period
2045–2065 from CO2 1 AER and the control integra-
tion (Fig. 15). There is broad similarity between these
two patterns, with relatively large values over the north-
ern continents and relatively small values over the
oceans and at low latitudes. However, there are also

subtle differences, such as the relatively large DT values
over Greenland, the adjacent Nordic seas, and along the
Siberian coast toward the Bering Sea, which are not
found in the A(x) pattern from the control integration.
The pattern correlation between A(x) and DT is 0.47
(Table 2) when computed over land points north of
208N. As a consequence of this positive correlation, the
increasing expression of the anthropogenic response
during the course of the CO2 1 AER integration could
lead to a positive trend in AT1(t).

The effect of the spatial projection of the anthropo-
genic signal on the COWL pattern can be assessed by
computing a ‘‘hybrid’’ time series in which A*(x) from
the control integration is projected on T*(x, t) from CO2

1 AER. The product of this time series with A from
the control integration, shown in Fig. 16 (solid curve),
does exhibit a weak positive trend that begins at ap-
proximately the year 2000. The magnitude of the in-
crease in this ‘‘hybrid’’ time series is less than 0.28C,
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FIG. 16. ‘‘Hybrid’’ time series for the period 1900–2065 computed
using the structure function A(x) determined from the control inte-
gration and T(x, t) values taken from CO2 1 AER (solid line). The
actual AT1(t) time series computed using both A(x) and T(x, t) from
CO2 1 AER (dashed line) is shown for comparison. The computations
are based on T(x, t) from the cold season and a 5-yr moving average
has been applied.

FIG. 17. Same as Fig. 1a except based on surface air temperatures
from the CO2 1 AER integration for the period 1900–2065.

which is smaller by a factor of 5 than the increase in
AT1(t) of about 18C during the same period when the
latter quantity is computed entirely from CO2 1 AER
(Fig. 16, dashed curve). Thus the spatial similarity be-
tween the anthropogenic response pattern and the
COWL pattern accounts only for a small portion of the
upward trend in AT1(t) in CO2 1 AER.

Another possible explanation for the upward trend in
AT1(t) in CO2 1 AER is that there is a more fundamental
problem in applying the methodology described in sec-
tion 2 to climate data in which two separate processes,
each with a characteristic spatial pattern, contribute sub-
stantially to the overall variability. CO2 1 AER contains
two such processes: the internal atmospheric variability
on relatively short timescales that produces the ‘‘natu-
ral’’ COWL pattern, and the anthropogenic radiative
forcing. Since the current methodology can extract only
a single pattern, the A(x) pattern that results from its
application to CO2 1 AER is likely a combination of
the natural COWL pattern and the anthropogenic fin-
gerprint. As such, the anthropogenic response will pro-
ject strongly on the A(x) pattern extracted from CO2 1
AER, leading to an upward trend in AT1(t).

The above assertion can be substantiated by com-
paring the A(x) pattern from the period 1900–2065 of
CO2 1 AER (Fig. 17) with its counterpart from the
control integration (Fig. 1a) and the pattern of anthro-
pogenic response in surface air temperature DT (Fig.
15). The A(x) pattern from CO2 1 AER is broadly sim-
ilar to the control, but there are some important differ-
ences in the Arctic. Positive values along virtually all
high-latitude coastal regions replace the negative A(x)
values of the control integration over northeastern Si-
beria, northern Alaska, Greenland, and eastern Canada.

These differences increase the resemblance between
A(x) computed from CO2 1 AER and DT.

The interplay between the effects of anthropogenic
radiative forcing and internal atmospheric variability is
made evident by computing A(x) patterns for different
segments of CO2 1 AER each beginning in 1900. As
the length of the segment increases, the pattern corre-
lation between the A(x) computed from that segment
and A(x) from the control integration decreases, reach-
ing 0.74 for the segment covering the years 1900–2065
(Table 2). Conversely, the pattern correlation between
the A(x) patterns from the different segments of CO2 1
AER and the anthropogenic response pattern DT in-
creases with increasing segment length, reaching 0.92
for the period 1900–2065 (Table 2). These results are
consistent with an increasing imprint on A(x) from the
anthropogenic response pattern as CO2 1 AER pro-
ceeds. Thus the longer samples from this integration are
more likely to yield an A(x) pattern that is a mixture of
the natural COWL pattern and the response to anthro-
pogenic forcing.

These results clearly demonstrate that the analysis
strategy used by WZR is incapable of separating the
dynamically and radiatively forced variations in spatial
mean surface air temperature in the presence of a strong
radiative signal that possesses a distinct spatial pattern.
This limitation exists because the analysis strategy is
constrained to find a single pattern in the surface air
temperature data that is most closely associated with
variations in spatial mean temperature, and thus yields
ambiguous results if two contributing patterns are pres-
ent. It may not be necessary for the two patterns to be
highly correlated with each other to cause this ambi-
guity, provided that the patterns are expressed in the
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data with comparable magnitude. Only in the event that
the response to radiative forcing is spatially uniform
will this method yield a distinct separation of dynam-
ically and radiatively induced variability.

7. Summary and discussion

By applying the same methodology that was devel-
oped by WZR to examine variations in observed tem-
peratures, we have demonstrated that the COWL pattern
can be simulated with a high degree of fidelity by a
coupled atmosphere–ocean model with constant forcing.
As in observations, fluctuations in the amplitude and
polarity of this pattern account for a substantial fraction
of the variability in hemispheric and global mean tem-
perature on monthly timescales. By examining parallel
integrations of models with more simplified oceanic
components, we conclude that the contrast in thermal
inertia between continents and oceans is the primary
physical mechanism responsible for the COWL pattern.

The results presented in this paper have considerable
relevance to the detection of climate change. The meth-
odology we use constitutes a partitioning of the time
series of spatial mean temperature into two components.
One of these is associated with the variability of a char-
acteristic spatial pattern; the other is the residual that
remains after this fitting procedure. In their study of
observed temperature variations, WZR suggested that
radiatively induced temperature variations would be
largely confined to the latter component. However, when
we apply the methodology to a coupled model integra-
tion that incorporates the effects of changes in CO2 and
tropospheric sulfate aerosols (CO2 1 AER), a warming
trend appears in both components. Thus we conclude
that the decomposition associated with this methodol-
ogy is not an appropriate way to isolate radiatively
forced variations in temperature, and that some modi-
fication of the methodology would be required to make
it more suitable for climate change detection.

The finding that the recent 25-yr positive trend in
observed AT1(t) is larger than any trends of comparable
length from the control integration of the coupled model
suggests that it may be due to some external forcing.
This assessment is based on the use of the unforced
variations from the coupled model as an estimate of
unforced variability, and thus hinges upon the assump-
tion that a model is an adequate surrogate for a real
climate system. Because of our inability to clearly sep-
arate forced and unforced variability in the observed
climate record, it is still difficult to fully evaluate this
assumption. Perhaps the continued comparison of model
simulations with climate observations will facilitate a
more rigorous testing of this assumption, particularly if
more accurate estimates of past variations in external
forcing (i.e., tropospheric aerosol forcing, solar irradi-
ance, volcanic effects, etc.) become available.

Other recent studies also suggest that recent changes
in global temperature patterns may be associated with

anthropogenic changes in atmospheric composition.
Trenberth and Hoar (1996) reached such a conclusion
based on their findings that both the recent trend for
more ENSO events since 1976 and the prolonged trop-
ical Pacific warming of the early 1990s are highly un-
likely events in a statistical sense. The analysis of cou-
pled climate simulations by Knutson and Manabe (1998)
also suggests that anthropogenic forcing may have par-
tially contributed to recent interdecadal trends in Pacific
SST. Confirmation of these results using higher reso-
lution model simulations and careful comparison with
observations are necessary for ascertaining the physical
origin for such long-term trends.

Several other issues that emerge from this work are
worthy of further discussion. A very basic issue is the
physical interpretation of the quantities that result from
the methodology of WZR. In particular, there is some
potential for confusion about the nature of the structure
function A(x). Unlike the spatial distributions that might
emerge from the application of pattern recognition tech-
niques (such as various forms of EOF analysis) to the
same surface air temperature data, A(x) does not de-
scribe a mode of variability of the climate system. Thus
there is not necessarily any intercorrelation between the
temperature anomalies in locations where A(x) has the
same sign, such as the positive centers over Eurasia and
North America. The distinction between A(x) and a pre-
ferred mode of variability was noted by Wallace et al.
(1996), and is clearly illustrated by the teleconnection
maps of Fig. 8 and the ensuing discussion.

A final issue regards the applicability of the decom-
position method described in section 2 to other climate
problems. Irrespective of whether or not this method is
useful for separating dynamically induced variability
from radiatively forced trends, we have demonstrated
through analysis of the unforced 1000-yr coupled model
integration that this technique can extract spatial struc-
tures that contribute significantly to areal-averaged tem-
perature changes. Therefore this approach may be useful
for identifying other internally generated patterns in
long model integrations with constant forcing. One pos-
sibility would be to use averaging periods substantially
longer than one month when determining the temper-
ature anomalies. Since different physical mechanisms
are expected to become prominent as the averaging pe-
riod is increased, the A(x) patterns based on longer av-
erages should also be different. The regression maps of
local surface air temperature on global mean surface air
temperature [a spatial pattern linearly related to A(x)]
calculated by Manabe and Stouffer (1996) using aver-
aging periods of different lengths suggest a gradual shift
from a pattern closely resembling the COWL pattern
for 1-yr averages (their Fig. 19a) to a pattern empha-
sizing fluctuations over the high-latitude oceans for 25-
yr averages (their Fig. 19b). They propose that surface
air temperature fluctuations on longer timescales may
be related to low-frequency oscillations in the North
Atlantic thermohaline circulation. This illustrates that
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the methodology used in this paper has potential utility
in identifying mechanisms by which internally driven
variations in spatial mean temperature are produced. The
use of this methodology for such studies may prove to
be valuable as additional long simulations of unforced
climate variability are undertaken in the future.
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APPENDIX

Computational Details

Here we describe the procedure for computing the
spatial pattern A(x) and the time series T1(t) as intro-
duced in section 2. The function A*(x) can be deter-
mined by multiplying both sides of Eq. (3) by T(t) and
then performing a temporal average, and by making use
of Eq. (2) and the orthogonality constraint in Eq. (4).
We obtain

^T (t)T*(x, t)& [ C*(x)
25 ^T (t)&A A*(x) 1 ^d*(x, t)T (t)&. (A1)1

By making the additional assumption that ^d*(x, t)T(t)&
5 0, so that the temporal covariance between T(t) and
T*(x, t) [i.e., C*(x) on the lhs of Eq. (A1)] receives no
contribution from the space–time variability of the re-
sidual d*(x, t), Eq. (A1) then reduces to

C*(x) 5 ^ (t)&AA*(x).2T1 (A2)

By requiring that d*(x, t) be temporally uncorrelated
with T(t), the spatial structure of the covariance function
C*(x) is seen to be solely determined by A*(x). Upon
normalization of the amplitude of A*(x) to unity [i.e.,
A*2(x) 5 1], A*(x) may be obtained as

C*(x)
A*(x) 5 . (A3)

2 1/2[C* (x)]

To compute the common time series of expansion
coefficients T1(t) for the spatial pattern A(x) and its con-
stituents [A and A*(x), see Eq. (1)–(3)], we next multiply
Eq. (3) by A*(x) and perform a spatial average. Noting
the orthogonality condition in Eq. (5), we then have

T1(t) 5 A*(x)T*(x, t) . (A4)

Finally, the constant A can be evaluated by multi-
plying Eq. (2) by T1(t), performing a temporal average,
and applying the constraint in Eq. (4), thus yielding

^T (t)T (t)&1A 5 . (A5)
2^T (t)&1

Noting that both T(t) and T1(t) have zero temporal
means, the form of Eq. (A5) indicates that A is actually
the slope of the linear regression of T(t) upon T1(t).

In summary, the spatial pattern A(x) and its expansion
coefficients T1(t) are obtained in the following sequence:
the function A*(x) is first computed using Eqs. (A1) and
(A3); the expansion coefficients T1(t) are then obtained
from Eq. (A4); and the constant A is determined by Eq.
(A5). Finally, the pattern A(x) is constructed by adding
A to A*(x). Note that the methodology as outlined above
allows for the specification of only one such spatial
pattern.

As noted in WZR, the above procedure is equivalent
to a singular value decomposition (SVD) analysis [see
Bretherton et al. (1992) for details]. The left and right
input data fields are T(t) and T*(x, t), with spatial di-
mensions of 1 and N, respectively. Here N represents
the number of grid points in the domain of interest.
Application of a SVD on the 1 3 N temporal covariance
matrix between T(t) and T*(x, t) [i.e., C*(x), see Eq.
(A1)] yields C*(x) 5 slrT(x), where s is the singular
value, and l and r(x) are the left and right singular vec-
tors, with dimensions of 1 and N, respectively. Com-
parison between this expression for C*(x) and Eq. (A2)
reveals that A*(x) has the same spatial structure as r(x).
The temporal expansion coefficients for the left field are
obtained by projecting l (a constant) on T(t), and have
the same temporal structure as T(t). The expansion co-
efficients for the right field are evaluated by spatially
projecting r(x) [or A*(x)] on T*(x, t), and have the same
temporal structure as T1(t) [see Eq. (A4)]. By construc-
tion, l and r(x) explain the maximal mean-square tem-
poral covariance between T(t) and T*(x, t). The dimen-
sionality of the input data fields is such that only one
pair of singular vectors can be obtained by this method.
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