Argonne National Laboratory Newsroom U.S. Department of Energy
  Search

Argonne scientists discover new platinum catalysts for the dehydrogenation of propane

Discovery may lead to new strategies for industrial catalysts

Bookmark and Share (Download printer-friendly, PDF version.)

ARGONNE, Ill. (March 13, 2009) — The process to turn propane into industrially necessary propylene has been expensive and environmentally unfriendly. That was until scientists at U.S. Department of Energy's Argonne National Laboratory devised a greener way to take this important step in chemical catalysis.

“Using platinum clusters, we have devised a way to catalyze propane not only in a more environmentally friendly way, but also using far less energy than previous methods,” said Argonne scientist Stefan Vajda.

Alkanes are typical feedstocks for transformation to alkenes, aromatics and chemicals containing value-added moieties. Dehydrogenation is a route to such transformations, but it is an endothermic process requiring significant energy input.

Oxidative dehydrogenation (ODH) of propane to propylene is a multibillion-dollar industrial process. ODH of alkanes is exothermic (releasing energy), and thus an attractive alternative to dehydrogenation. However, current ODH catalysts have limited activity or poor selectivity resulting from inability to prevent complete oxidation. Two classes of catalysts are used: vanadia and platinum (Pt). The vanadia-based catalysts are highly selective, but their activity is relatively low. Pt-based catalysts are more active, but their selectivity is low.

Argonne scientists showed that the size preselected Pt 8 - 10 clusters stabilized on high-surface-area supports are 40 to 100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products.

This new class of catalysts may lead to energy-efficient and environmentally friendly synthesis strategies and the possible replacement of petrochemical feedstocks by abundant small alkanes.

“The oxidative dehydrogenation of alkanes is a reaction that is exothermic and thus an attractive alternative to the endothermic process of dehydrogenation of alkanes,” said Argonne scientist Larry Curtiss. “The endothermic process requires a significant energy input with an increased chance of environmentally unfriendly by-products.”

Using high-performance computing facilities at Argonne and elsewhere, Vajda and his

colleagues proved theoretically that attractive interaction between the under-coordinated platinum and propane was the cause for the higher selectivity towards propylene and its high activity.

Their paper, "Subnanometre Platinum Clusters as Highly Active and Selective Catalysts for the Oxidative Dehydrogenation of Propane," can be seen Nature Materials 8, 213 (2009).

Funding for this research was provided by the U.S. Department of Energy, Office of Science and by the Air Force Office of Scientific Research.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Brock Cooper (630/252-5565 or media@anl.gov) at Argonne.

Follow Argonne on Twitter at http://twitter.com/argonne.

Resources

Clusters of 8-10 platinum atoms deposited in pores of an aluminum oxide membrane are highly active and selective catalysts for the oxidative dehydrogenation of propane
Clusters of 8-10 platinum atoms deposited in pores of an aluminum oxide membrane are highly active and selective catalysts for the oxidative dehydrogenation of propane. (Download hi-rez image. Art by Michael Sternberg and Faisal Mehmood.)

For more information, please contact Brock Cooper (630/252-5565 or media@anl.gov) at Argonne.

Follow Argonne on Twitter at http://twitter.com/argonne.

Subscribe to What's New at Argonne, a monthly e-mail newsletter that summarizes stories from Argonne's home page and other Argonne news and provides links to additional information.

 

U.S. Department of Energy Office of Science | UChicago Argonne LLC
Privacy & Security Notice | Contact Us | Site Map | Search