Statistical Investigation of Scientific Review Group Ratings

Valen E. Johnson

Peer Review Advisory Committee

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

< 同 > < 回 > < 回

Outline of talk

Scientific Questions

Example

Analyses

Summary

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-2

Issues surrounding panel ratings

- Do rating criteria vary systematically between panel members within and between SRGs?
- If yes, how do these variations affect scoring ranges provided to non-reading members?
- Do personality traits (e.g., persuasiveness) of discussants differentially affect non-reader scores?
- How do such effects combine to influence the summary score of a proposal, and how might scoring procedures be changed or modified to minimize these effects?

<回ト < 回ト < 回ト

Hypothetical Panel Rating Data

	Proposal			
Reviewer	А	В	С	D
1	1.9			2.3
2	2.7		2.8	
3			1.2	1.7
4	2.9	3.2		
5		1.2		1.3
6	1.8			2.0
7		1.9	2.0	
8	1.8	2.2	2.3	2.7
9		2.2	2.3	
SRG Mean	2.22	2.14	2.12	2.0

 SRG mean assumes that non-reader ratings resulted in average score equal to average of readers' ratings. Order of merit of proposals based on "SRG Mean" is, from best to worst,

 $\mathsf{D}>\mathsf{C}>\mathsf{B}>\mathsf{A}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-2

 Order of merit of proposals based on "SRG Mean" is, from best to worst,

 $\mathsf{D}>\mathsf{C}>\mathsf{B}>\mathsf{A}$

Correct ordering of proposals is exactly the opposite!

< 回 > < 回 > < 回 >

 Order of merit of proposals based on "SRG Mean" is, from best to worst,

 $\mathsf{D}>\mathsf{C}>\mathsf{B}>\mathsf{A}$

- Correct ordering of proposals is exactly the opposite!
- All reviewers agree that

A > B > C > D

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

< 回 > < 回 > < 回 >

Hypothetical Panel Rating Data

	Proposal			
Reviewer	А	В	С	D
1	1.9			2.3
2	2.7		2.8	
3			1.2	1.7
4	2.9	3.2		
5		1.2		1.3
6	1.8			2.0
7		1.9	2.0	
8	1.8	2.2	2.3	2.7
9		2.2	2.3	
SRG Mean	2.22	2.14	2.12	2.0

 SRG mean assumes that non-reader ratings resulted in average score equal to average of readers' ratings.

Hypothetical Panel Rating Data (again)

	Proposal			
Reviewer	А	В	С	D
1	1.9			2.3
2	2.7		2.8	
3			1.2	1.7
4	2.9	3.2		
5		1.2		1.3
6	1.8			2.0
7		1.9	2.0	
8	1.8	2.2	2.3	2.7
9		2.2	2.3	
Midpoint	2.35	2.2	2.0	1.8

Same result at midpoint of range.

・ロト ・四ト ・ヨト ・ヨト

What happened?

	Proposal			Reviewer	
Reviewer	Α	В	С	D	Mean
1	1.9			2.3	2.1
2	2.7		2.8		2.75
3			1.2	1.7	1.45
4	2.9	3.2			3.05
5		1.2		1.3	1.25
6	1.8			2.0	1.9
7		1.9	2.0		1.95
8	1.8	2.2	2.3	2.7	2.25
9		2.2	2.3		2.25
Midpoint	2.35	2.2	2.0	1.8	

 Raters used different thresholds or stringency in rating proposals.

Explanations for reversal

- Variation in "rater thresholds" is common to nearly all rating schemes. College and high school grading suffer from similar effects, as do most employee rating systems.
- If raters employed similar "thresholds" and had similar expertise, then it wouldn't be (as) necessary to have multiple raters evaluate the same proposal!
- Such effects are exacerbated if, say, the "persuasiveness" of raters varies systematically with a raters' critical tendencies.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Statistical Modeling

SRG rating data's primary purpose is the estimation of proposal merit. To better estimate a proposal's merit, it is necessary to also estimate

Rater thresholds

Rater precision

Rater "persuasiveness"

向下 イヨト イヨ

Baseline latent variable model

proposal merit

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

Estimating proposal merit

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

Estimating scoring thresholds

Valen E. Johnson Statistical Investigation of Scientific Review Group Ratings

-31

Tentative model for reader scores

For example,....

- Notation:
 - z_i = latent merit of proposal i
 - z_{i,j} = merit of proposal i as observed by reader j
 - σ_i^2 = variance of reader *j* in observing proposal merit
 - $y'_{i,j}$ = preliminary score assigned by reader *j* to proposal *i*
 - γ_i = scoring thresholds for reader *j*

Then simple model for ratings is

$$z_{i,j} = z_i + \epsilon_{i,j}$$
 $\epsilon_{i,j} \sim N(0, \sigma_j^2)$ $z_i \sim N(0, 1)$

where

$$y_{i,j} = c$$
 if and only if $\gamma_{j,c-1} < z_{i,j} \le \gamma_{j,c}$

< 部 > < 臣 > < 臣 > .

Tentative model for reader scores (cont)

This simple model gives correct scoring of earlier example

Tentative model for non-reader scores

Consider non-reader k's interpretation of reader j's score:

- ► x_k = a value drawn from interval $(\gamma_{k,y_{i,i}-1}, \gamma_{k,y_{i,i}})$
- τ_j² = group's perception of rater *j*'s variance in scoring proposals
- z_{i,j,k} = non-reader k's observation of proposal i's merit based on reader j's score

Assume that

$$z_{i,j,k} \sim N(x_k, \tau_j^2)$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Tentative model for non-reader scores (cont.)

- z_{ik} = non-reader k's overall observation of proposal i's merit based on J readers' scores
- Combination of reader ratings leads to

$$z_{ik} \sim N\left(rac{\sum_j z_{i,j,k}/ au_j^2}{\sum_j 1/ au_j^2}, \ rac{1}{\sum_j 1/ au_j^2}
ight)$$

Tentative model for non-reader scores (cont.)

- a = minimum rating from any reader
- b = maximum rating from any reader

• $y_{ik} = d$ if

$$\gamma_{k,d-1} < z_{i,k} \le \gamma_{k,d}$$
 and $a \le d \le b$

Otherwise,

$$y_{ik} = a \text{ or } b$$

with probability dependent on $z_{i,k}$, or a value outside of range.

< □ > < □ > < □ >

Model Extensions

- A combination of the reader and non-reader models can be specified to model reader scores after discussion
- Models can be expanded to account for tendency of non-readers to rate proposals closer to their mean scores
- Model assessment and sensitivity analyses can be performed to determine the importance of various model assumptions on final inference

< 同 > < 回 > < 回

Summary

 Potentially serious and undetected biases may affect funding decisions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- Potentially serious and undetected biases may affect funding decisions.
- Such biases, if present, can be detected and quantified.

▲ □ ▶ ▲ □ ▶ ▲ □

Summary

- Potentially serious and undetected biases may affect funding decisions.
- Such biases, if present, can be detected and quantified.
- Statistical modeling may suggest mechanisms for improving the collection and interpretation of SRG scoring data.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶