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1.  Introduction
In real world stratification applications, two scenarios are common.  Often the survey variable of interest is not available

prior to conducting the survey, leaving the statistician to stratify with an auxiliary variable.  And secondly, many times data
are skewed, suggesting that a certainty stratum is necessary.  Singh (1971) suggested a modification to the Dalenius and
Hodges (D&H) (1959) cum-%f stratification rule when auxiliary data are used.  Lavallée and Hidiroglou (L&H) (1988)
proposed a method for determining stratification boundaries with a certainty stratum.  This paper separately documents the
effect of these two approaches. In addition, a modification to the L&H procedure when stratifying with auxiliary data is
proposed and examined. As a result of this research, a generalized stratification program in SAS was developed. The code
can be obtained from the authors.

Section 2 provides additional details on (a) Singh's procedure, (b) the L&H algorithm, and (c) our modification of the L&H
algorithm.  Topics (a) and (c) postulate a stochastic model relating the survey variable to the auxiliary variable.  In Section
2 we also discuss the estimation of parameters for such a model and the use of models in allocation.  Sections 3 and 4 discuss
the methodology and results of a simulation study that we performed involving skewed populations. Section 5 presents our
conclusions.  The simulation study allowed us to address the following questions:

How does the method of forming intervals for the auxiliary data affect the cum-%f  rule procedure?
How does the method of determining stratum boundaries affect the total sample size resulting from a fixed-precision

Neyman allocation?
How  does the method of determining initial stratum boundaries affect the L&H algorithm and modified L&H algorithm?
What is the effect of model-assisted allocation on the expansion-estimator variance under a fixed-sample-size Neyman

allocation?
What is the effect of the number of strata on total sample size and expansion-estimator variance?

2.  Background
2.1.  Cum-%f  rule

Cochran (1977) provides a detailed description of the cum-%f  rule of Dalenius and Hodges (1959), which constructs strata
from the frequency distribution of the stratification variable.  Cochran (1961) and Hess, Sethi, and Balakrishnan (1966)
compare the performance of the cum-%f  rule with other methods of constructing strata.  The latter authors report that "[t]here
is some evidence that boundary construction by cum-%f  rule is sensitive to discontinuities or zero classes in the frequency
distribution."   They recommend introducing "class intervals of unequal width whenever classes with zero frequencies occur,
the width of the class being such as to bridge the gap from one non-zero class to succeeding non-zero class."  Hess, Sethi, and
Balakrishnan find that this use of unequal intervals in the frequency distribution, along with the corresponding adjustment
to the cum-%f  rule (see Cochran, 1977) , results in a lower expansion-estimator variance than when equal intervals are used.

Cochran (1977) discusses the effect of the number of cum-%f  strata on the expansion-estimator variance when the
stratification variable is used for Neyman allocation.  He concludes that more than six strata produce very little additional
variance reduction unless the correlation between the stratification variable and the survey variable exceeds 0.95.  This
conclusion, however, follows from the assumption that a regression model with homoscedastic errors relates the survey
variable to the stratification variable. Hess, Sethi, Balakrishnan (1966) describe a population in which the correlation between
the survey variable and the stratification variable is 0.91 and Cochran's conclusion appears not to hold.  They attribute this
to the presence of heteroscedasticity of the errors about the regression line.

2.2.  Singh's procedure
Singh's procedure assumes there exists a model y = 8(x  )+e , E (e|x)=0, V (e|x)= N(x),  i=1,...,N, where E  and Vi  i i  m  m      m  m

denote the expectation and variance, respectively, under the assumed model.  Let denote the sample-design
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variance of the expansion estimator for   Singh's procedure finds the stratum boundaries that

minimizes under a fixed-cost optimal allocation.  It is a cum- %p(x) rule, where p(x)=q(x)f(x), with f(x)  being3

the frequency  of units in the particular interval and q(x) = {N (x) C´(x) + C (x) [N´(x)] + 4 C (x) N (x) [8´(x)] -2N(x)2    2  2   2    2

C(x)N´(x) C´(x)} / [N(x)C(x)] , where C(x) is the survey-data collection "cost" for a unit having auxiliary data equal to x.3/2

If C(x) is constant, q(x) simplifies (disregarding multiplicative constant terms) to q(x) = {[N´(x)]  + 4N(x)[8´(x)] } / [N(x)] .2  2   3/2

In the simulation study that we describe below, we used 8(x)="+$x and N(x)=* x .2 2g

2.3.  L&H algorithm
Sigman and Monsour (1995) review methods for constructing strata for economic surveys.  One of these methods is the

algorithm by Lavallée and Hidiroglou (1988), which constructs a certainty stratum and determines stratum boundaries and
stratum sample sizes for a power-allocated stratified sample of non-certainty  sample units.  Hidiroglou and Srinath (1993)
present a more general form of the algorithm, which by assigning different values to operating parameters yields a power
allocation, a Neyman allocation, or a combination of these allocations.  We confine our discussion to the use of the L&H
algorithm with Neyman allocation.

Assume that one wants to construct L strata from stratification data x , i=1,2,...,N, by using the x  to determine stratumi      i

boundaries b  , h=0,1,...,L, such thath

min{x }= b  < b  <. . .<b   < b  = max {x } and b  and b  are the boundaries of the certainty stratum.  Let c denote the fixedi  0  1   L-1   L   i   L-1  L

coefficient of variation for estimating.  From equation 2.2 of Hidiroglou and Srinath (1993) it follows that the needed sample

size under fixed-precision Neyman allocation is wh ere W  = proportion of the population belongingh

to stratum h

(1)

(2)

and   S  = the standard deviation of the y  belonging to stratum h.h        i
(y)

    When constructing strata, however, one has only x  , i=1,...,N, and not the y  , i=1,...,N.  Thus the L&H algorithm replacesi      i

M(y) and S   with M(x) and S , respectively, and then finds the b  that minimize n by setting  for h=1,...,L-1.h      h       h
(y)     (x)

The solution which produces the minimizing b  involves calculating the first and second stratum moments of the  x  and doesh            i

not involve the frequency distribution of the x   as the Singh and D&H methods do. i

A number of papers describe applications of the L&H algorithm.  Detlefsen and Veum (1991), who investigated the L&H
algorithm for 3, 6, 9, and 12 strata, observed that the algorithm's convergence was slow (often 50 to 100 iterations) or non-
existent.  They also found that different starting values of stratum boundaries for the same population resulted in different
ending boundaries, and many times the boundaries differed substantially.  Slanta and Krenzke (1994) carefully studied this
latter problem and concluded that convergence of the algorithm should be determined on the basis of the sample size instead
of the boundary values.  They found that the boundary values can vary greatly in the neighborhood of the minimum sample
size, whereas the sample size varies slightly.
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2.4.  Modified L&H algorithm
We developed a model-assisted version of the L&H algorithm, which we call modified L&H by assuming there exists the

following model:

      (3)

for i=1,2,...,N.  (Hidiroglou (1994) discusses a similar modification to the L&H algorithm for d  = d  = 0.) 1  2

Then, (4)

The modified L&H algorithm replaces M(y),  [S ] , and c in equations (1) and (2) with E M(z),   E [S ] , and  c´,h           m    m h
(y) 2             (z) 2

respectively, where

(5)

and then finds the b  that minimize n by setting  for h=1,...,L-1.  From equation (4) it follows thath

 where M ( ) denotes the mean of values in stratum h, andh

  Since  z  = (y -")/$, it follows that  Substituting this intoi  i

equation (5) and simplifying yields

But   Hence  A straight-forward but tedious derivation yields that each b ,h

h = 1, 2,..., L-1, is the solution of the quadratic equation

The coefficients " , $ , and (  are in terms of M =M (x), S =E [S ] , A, F, d . d , and d , and for h=1, 2, ...,L-2 areh  h   h      h h  h m h    0  1   2
*  *   *      2 (z) 2
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where and for h = L-1,

where ,  = F/S  - A.  Since M , S , A, and F depend on the b , it is necessary to solve for the b  in an iterative fashion.L-1  L-1     h  h        h         h

2.5  Model-assisted allocation
Let n  denote the sample size in stratum h.  If the S  are known, then the Neyman allocation n " W S  can beh           h        h  h h

(y)        (y)

calculated.  A model-assisted Neyman allocation, as discussed by Dayal (1985), is

2.6.  Parameter estimation
If g is known then the model  y  = " + $x  + *x e , can be transformed to v  = "u  + $ u  + *e ,  where  v  = y /x , u =xi    i  i i      i  1i   2i  i     i  i i  1i i

g                   g  -g

and u  = x .  Then " and $ can be estimated via ordinary least squares and *  is estimated by the mean sum of squares for2i  i
1-g               2

error.  Brewer (1963), Harvey (1976), and Knaub (1993) discuss ways to estimate g.  Knaub observes that for economic data
g is frequently close to 0.5. 

3. Methodology
For our simulation study, we generated two sets of skewed populations, which we refer to as study populations.  The model

y  = " + $x  + *x e , was used to generate 10,000 observations, where log x is distributed N(0,1), e ~N(0,1), "=7424, $=17.7,i    i  i i              i
g

g=.5, *=225.  Using this data set and the model in equation (3), we solved for the parameters d =0, d =161.59, and d =0.  This0  1   2

process was repeated 10 times, creating 10 populations, each containing a true survey variable of interest (y) and an auxiliary
or stratification variable (x).  Using these parameters the average correlation between x and y was high at .9979 with a
standard deviation of the correlations of .0006.  The process was repeated using the parameters, "=7424, $=17.7, g=.5,
*=2200, d =0, d =15448.95, and d =0.  Ten additional populations were generated having an average correlation of .8932 with0  1   2

a standard deviation of the correlations of .0330.  This process created ten highly-correlated study populations and ten
moderately-correlated study populations.

In this document we compared four stratification procedures:  D&H, Singh, L&H and our modified L&H procedure using



5

Neyman allocation with a fixed coefficient of variation (CV) of 0.01.  We also examined the effect of model-assisted allocation
with a fixed-sample size.  At minimum, we compared these procedures when assigning 5 or 10 strata.  Paired t-tests were used
to see if differences are significant at the 0.10 level.  The results are documented for the 10 high-correlated study populations
and the 10 moderately-correlated study populations.  

To obtain estimated parameters needed for the Singh and L&H stratification methods and model-assisted allocation,
additional populations, which we refer to as estimation populations, were generated following the same distribution as the
study populations.  The average correlation of the first set of 10 estimation populations was .9976 with a standard deviation
of .0007.  The average correlation of the second set of 10 estimation populations was .8922 with a standard deviation of .0308.
Using the D&H cum %f(x) rule, 5 strata were created.  Using Neyman allocation to meet a CV of 0.01, a sample was drawn
from each population.  To find the parameter estimates, we assumed the sample data fit the model:  y  = " + $x  + *x e ,i    i  i i

g

where e ~N(0,1).  Although we attempted to use the plots discussed in the Knaub paper to estimate g, the plots generated werei

flat, and Knaub didn't present specific criteria to use when plots were flat.  Assuming g=0.5,  we used the sample from each
estimation population to estimate an ", $, *  for each corresponding study population using the methods described in Section2

2.6.  The parameters d and d  were set to 0 and d = * /$ .   Mean estimated parameters and their standard deviations are found0  2      1
2 2

in Tables 1a and 1b.  

Table 1a:  Parameters and Standard Deviations for Populations with mean correlation = .9979
Parameter Actual Mean of Est. Std. Dev.
" 7424 7442.11 92.90
$ 17.7 17.74 0.06
g .5 .5 0
* 225 220.3 9.88
d 0 0 00

d 161.59 154.65 14.261

d 0 0 02

Table 1b:  Parameter and Standard Deviations for Populations with mean correlation = .8932
Parameter Actual Mean of Est. Std. Dev.
" 7424 9322.12 315.36
$ 17.5 30.47 0.75
g .5 .5 0
* 2200 1635.06 28.51
d 0 0 0o

d 15448.95 2888.37 228.271

d 0 0 02

As discussed in the background section, the L&H methods use an iterative procedure.  Due to time and resource limitations,
we limited the number of iterations to 30.  For those nonconverging runs, the boundaries at the 29th iteration were used to
partition the observations into strata. 
 
4. Results

4.1 Interval Class Creation  
Prior to stratification, the data had to be partitioned into interval classes.  Initially we partitioned each population into

500 equal sized intervals based on x.   Because the data were skewed, often the first stratum contained only one interval class.
This was not a problem when 5 strata were requested, but with a large number of strata, the situation occurred where the first
stratum contained over half of the observations and the remaining strata had varying numbers of observations.  As a result,
there was uneven allocation across the strata.  To remedy this, instead of creating interval classes of equal sizes on x, we
created 500 equal sized interval classes on the natural log of x.  When we stratified using the x data, we adjusted our
procedures by the method proposed in Cochran (1977) for unequal interval lengths.

Table 2 shows the effect of interval classes on the D&H stratification with Neyman allocation to meet the 0.01 CV
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requirement on the 10 populations with average correlation of .9979.   As the number of strata increase beyond 5, the total
sample size using interval classes created on the log of x is significantly less than the total sample size using interval classes
created on x.  The stratum sample sizes were more equally distributed using the intervals created using the log of x.  Because
of this trend, all analysis presented in this paper used the interval classes created on the log of x.

Table 2:  Average Total Sample Size using strata created using 500 equal sized 
intervals on the log of x vs. Average Total Sample Size from 

strata created using 500 equal intervals on x.  

Strata Interval Class log (x) Interval Class with x
5      811.01          754.73
10      440.91          533.05
15      350.37          485.42

Some preliminary work was done to find a "reasonable" number of intervals to use.  When less than 500 intervals were used,
often, because the data were skewed, the first stratum contained only one interval, even when we used log(x) to partition the
data.  Using 1,000 intervals produced similar results to using 500 intervals, so we decided to use 500 intervals.  

4.2 Comparison of D&H, Singh, L&H and ML&H Stratification Procedures with fixed-precision Neyman Allocation
Table 3 documents the effect of the D&H and Singh stratification methods on our populations for Neyman allocation.

Table 3 also contains results from Neyman allocation using the L&H procedure and our modified L&H procedure.   All
allocations met the 0.01 CV requirement.  Estimates for the actual parameters are used for Singh, L&H and modified L&H
(ML&H) methods.  See Table 1 for actual parameters.  Strata were created using 500 equal sized intervals on the log(x).
Initial boundaries are needed for both L&H and modified L&H procedures.  To determine initial boundaries, we selected the
method that proved best for each of the populations when comparing the D&H and Singh methods.  For the populations with
average correlation of .9979, initial boundaries were found by the D&H stratification method.  For the populations with
average correlation of .8932, initial boundaries were found by the Singh stratification method. 

Table 3:  Average Total Sample Sizes for four Stratification Procedures

Population with average correlation of .9979 

Strata D&H Singh L&H ML&H
5 811.01 1093.27 629.34 629.78

10 440.91 519.75 413.60 419.73

Population with average correlationof .8932

Strata D&H Singh L&H ML&H
5 2801.71 2615.91 2534.75 2501.75

10 2370.42 2286.22 2314.66 2290.17

For the highly-correlated populations with average correlation of .9979, the total sample size for Neyman allocation using
D&H cum %f(x) stratification method was significantly smaller than the total sample size using the Singh cum %p(x)3

stratification boundaries.  This difference between D&H and Singh was significant when both 5 strata and 10 strata were
created.  However, the opposite occurred for the moderately-correlated populations. When the correlation was .8932,
significantly smaller total sample size occurred when the Singh method of stratification was used compared to the D&H
stratification.  This, too, was significant for both 5 and 10 strata.

For the highly-correlated populations, there was no significant difference in total sample size between L&H and modified
L&H when either 5 or 10 strata were requested.  For the moderately-correlated populations  there was no significant difference
in total sample size between L&H and modified L&H when 5 strata were requested, but there was a significant difference when
10 strata were requested.  When 10 strata were selected, significantly smaller total sample size occurred when the modified
L&H method of stratification was used.  
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These L&H procedures were compared to the D&H and Singh method.  Since the required CV was small, all observations
in the last stratum were selected when using both the D&H and Singh methods, hence we could compare across all four
methods.  The D&H and Singh programs both ran much faster than either of the L&H iterative programs.  Savings in total
sample size would warrant using L&H or modified L&H over D&H or Singh stratification.   In the highly-correlated
populations  the total sample size from Neyman allocation with L&H and modified L&H stratification boundaries was
significantly smaller than the total sample size with both D&H and Singh stratification boundaries for both 5 and 10 strata.
 In the moderately-correlated populations the total sample size from Neyman allocation for L&H and modified L&H was
significantly smaller than both D&H and Singh for 5 strata.  But for 10 strata, the total sample size from Neyman allocation
with Singh boundaries was significantly smaller than with L&H boundaries, and there was no significant difference in total
sample size between Singh and modified L&H boundaries.

4.3 Effect of Initial Boundaries on L&H and ML&H
To test the effect of initial boundaries on the L&H procedures, we compared the allocation needed with Singh initial

bounds and either L&H or ML&H procedure to the corresponding allocation when D&H initial bounds were  used instead.
We did this for the moderately-correlated populations.  Table 4 provides results when the boundaries differ.

Table 4:  Effect of Initial Boundaries between L&H and ML&H on Total Sample Sizes
 from Neyman Allocation

Initial Boundaries:  D&H
Strata L&H ML&H
   5 2545.78 2495.76
  10 2358.69 2294.03

Initial Boundaries:  Singh
Strata L&H ML&H
  5 2534.75 2501.75
 10 2314.66 2290.l7

Unlike when the Singh boundaries were used, when D&H initial boundaries are used, there is significantly smaller total
sample size with the modified L&H (ML&H) for both 5 and 10 strata compared to the total sample size with L&H
stratification.  The total sample size with D&H initial bounds and modified L&H stratification is not significantly different
than the total sample size using Singh initial bounds and modified L&H stratification.  The total sample size with D&H initial
bounds and L&H stratification is significantly larger than the total sample size using Singh initial bounds and L&H
stratification.  This seems to imply that for the moderately-correlated populations the modified L&H procedure can compensate
for non-optimum initial bounds. 

4.4 Effect of Model-Assisted Allocation on the Expansion-Estimator Variance
Table 5 provides average CVs when model-assisted allocation with estimated parameters is used with the four different

stratification procedures:  D&H, Singh, L&H and modified L&H.   The sample size was fixed for each of the two sets of
populations.  For the highly-correlated populations we fixed the sample at 811.  This sample size was the average total sample
size from Neyman allocation for the D&H procedure with 5 strata.   For the moderately-correlated population we fixed the
sample at 2802.  This sample size was the average total sample size from Neyman allocation for the D&H procedure with 5
strata.   As in section 4.3, the L&H and modified L&H stratification procedures use initial boundaries of D&H or Singh.  For
the highly-correlated populations initial boundaries were found by the D&H stratification method.  For the moderately-
correlated populations initial boundaries were found by the Singh stratification method. 

Table 5:  Average CV using the Model-Assisted Allocation on D&H, Singh, L&H and ML&H Stratification Methods
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Population with correlation of .9979 and sample size of 811

Strata D&H Singh L&H ML&H
5 .0100011 .0124100 .0080977 .0082000

10 .0066900 .0074957 .0065214 .0065789

Population with correlation of .8932 and sample size of 2802

Strata D&H Singh L&H ML&H
5 .0100267 .0098264 .0091849 .0084718

10 .0085798 .0084599 .0085695 .0081913

For the highly-correlated populations  D&H stratification provided an estimate with significantly lower variance than Singh
stratification.  Modified L&H stratification provided an estimate with significantly lower variance than both D&H and Singh
stratification.  And L&H stratification provided an estimate with the lowest variance of all the stratification methods.   The
same results apply when both 5 and 10 strata were requested.  But for the moderately-correlated populations,  slightly different
results were found.  When 5 strata were requested, the Singh stratification procedure provided an estimate with significantly
lower variance than the D&H stratification.  The L&H procedure provided an estimate with significantly lower variance than
the D&H and Singh stratification.  And the modified L&H procedure provided an estimate with the lowest variance of all the
stratification methods.  However, when the number of strata increased to 10, the L&H procedure provided no different results
than the D&H procedure.  The Singh procedure provided a significantly lower variance than the D&H and L&H procedure.
And the modified L&H procedure would provided an estimate with the lowest variance.

4.5 Effect of the Number of Strata on Total Sample Size
As stated in the background section, Cochran stated that beyond six strata there is little reduction in variance unless the

correlation is greater than .95.  In the analysis presented in this document, we found continued decrease in sample size beyond
six strata, even with the population with average correlation of .8932.   Cochran assumed the model y  = " + $x  +  *x e ,i    i   i i

g

e  ~N(0,1), and g=0.  This is the model we used to generate our study populations except that g was greater than 0.  Hess,i

Sethi, and Balakrishnan (1966), noted that with a population with correlation of .91, heteroscedasticity was a probable reason
for Cochran's conclusion not to hold.  A "g" greater than 0 causes heteroscedasticity about the regression line of  x and y.  

To test the heteroscedasticity theory, we generated 10 new populations.  Except for *=90,000 and g=0, the same parameters
were used as in our populations with average correlation of .8932.  Table 6 provides the total sample size from Neyman
allocation for D&H stratification for the two sets of populations.  The allocation meets a 0.01 CV for 5, 10, and 15 strata using
the D&H stratification method.  The populations with g=.5 have an average correlation of .8932.   The populations with g=0
have an average correlation of .9013 between the x and y variables.

Table 6:  Average Total Sample Sizes from Neyman Allocation using D&H stratification 
with 500 equal sized intervals on the log ( x)

Strata Populations where g=.5 Populations were g=0
5 2801.71 3110.20
10 2370.42 3063.30
15 2273.30 3047.57

The average percent decrease in total sample size when increasing the number of strata from 5 to 10 was 18% for the
population with g=0.5 and was 1.5% for the population with g=0.  The average percent decrease in total sample size when
increasing the number of strata from 10 to 15 was 1.5% for the population with g=0.5 and only 0.5% for the population with
g=0.

5.  Conclusions
 - The method of forming interval classes effects the ultimate allocation.  For skewed data, we found intervals based on the

log of x improved our stratification.
- For populations with high correlation between the survey variable of interest and the stratification variable,  the Singh
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and modified L&H stratification procedures do not produce more optimum stratum boundaries than the D&H and L&H
procedures.  When the correlation was lower, in our example the correlation was close to .9, there was definite advantages
to using the Singh and modified L&H procedures over the D&H and L&H procedures.  In fact, with a low correlation and
a CV that guaranteed a certainty stratum, the Singh procedure appeared to produce stratum boundaries that lead to
significantly lower total sample size than those boundaries produced by the L&H procedure.

- With a population with correlation around .9, we found that the modified L&H procedure could compensate for poor
initial boundaries.

- With a fixed-sample-size, model assisted allocation and a correlation close to 1, for 5 strata, the CV associated with either
the L&H or modified L&H was approximately 20% lower than the CV associated with a D&H stratification.  When the
number of strata increase to 10, the savings was only 2%.  The Singh procedure produced a higher CV than the D&H
method under those circumstances.  When the correlation between the survey variable and the stratification variable
decreased to .9, for 5 strata, the CV associated with modified L&H was approximately 18% lower than the CV associated
with a D&H.  When the number of strata increase to 10, the savings was approximately 5%.  The CV associated with the
L&H procedure for 5 strata was approximately 9% lower than the CV associated with the D&H method, but when the
number of strata increased to 10, there was no significant difference between the CVs.

- For populations with correlation of .9 and heteroscedasticity between the survey variable and stratification variable, we
found the total sample size continues to decrease beyond Cochran's six-strata rule.  
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