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Abstract

Surveys such as the American Community Survey provide samples that cover the country’s geography
more evenly than highly clustered personal interview surveys. As a result, small areas such as census tracts
will usually contain sample both within a tract and also within nearby tracts. The potential for using
nearby data to increase the efficiency of tract level estimates, with spatial models, is investigated for a
group of census tracts in the Delmarva Peninsula. Using Census 2000 counts of housing unit vacancy and
occupancy rates and corresponding 1990 data as covariates, small area estimates of vacancy rate and person
per housing unit are made incorporating conditional auto-regressive (CAR) spatial models.

The following issues related to making model-based estimates are addressed: fitting a parametric small
area model to the housing unit data, comparison of CAR spatial models with a traditional hierarchal model
without spatial components, the practical reduction in variance achieved by using a CAR spatial model
and, lastly, the sampling properties of the small area estimates drawn from samples of 2000 census counts
using both the CAR spatial model and the hierarchical model.

1 Introduction

The small areas of small area estimation are usually prespecified in advance and are typically administrative
units, such as counties or states. The definition of the small area boundaries, however, may or may not corre-
spond to the homogeneity of the population within the small area or the heterogeneity between neighboring
small areas. There may, in fact, be larger geographic regions that contain small areas that share similarities,
including similar outcomes to survey questions. In situations like this, data collected in a small area may
provide some information about its neighboring small areas. The preferential use of nearby similar data, in
small area estimation, can be achieved by including the possibility of spatial similarity in a statistical model.
Whether looking at maps of small area outcomes or just using the corresponding estimates, spatial models
can increase the precision when characteristics of nearby areas are related.

The use of spatial models for small area estimation can be found in Ghosh et al. (1998) and references
therein. For a comprehensive account of small area estimation, see Rao (2003).

The use of spatial models at the Census Bureau is being evaluated at this time because data amenable to
spatial modeling are now available from the American Community Survey (ACS). In order to economically
spread the ACS sample over all census tracts in the United States, the U.S. mail is used as a first contact.
Many other national surveys are collected via personal interviews that, to save costs, are collected within
a sample of large primary sampling units (PSUs) typically made up of a county or a group of contiguous
counties. PSUs are designed to reduce the total interviewer travel time. The use of any spatial model based
on these small samples of PSUs would require extrapolation across large areas where the primary sampling
units were not in sample. Telephone survey responses can be more geographically disperse and still be cost
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effective. However, the use of different area codes or exchanges may only provide a rough idea of geographic
proximity. Mail surveys, however, are linked to an address and, apart from Post Office boxes, can be linked
to a precise geographic location.

This preliminary evaluation of the possible uses of spatial models for small area estimation for the ACS
uses neither ACS data nor, for that matter, much data from the entire United States. Instead, Census
2000 data related to housing unit size and vacancy status will be used for making tract-level estimates for
the Delmarva Peninsula. The reason Census data are used instead of ACS data is that the Census data
provides a complete count, affording more data for model fitting and providing a large data source from
which to sample in order to evaluate the proposed small area estimates. The census items used (housing
characteristics) are also obtained in the ACS but are based on a different residence rule. The reason that
only data from the Delmarva Peninsula are used is to avoid the need for extensive data processing. The
Delmarva Peninsula, comprising Delaware and the eastern seashore parts of Maryland and Virginia, is about
5.45 thousand square miles in size, containing 165 census tracts (see fig. 1). The tracts are contiguous. Resi-
dences on the peninsula are occupied by both permanent and seasonal residents and should provide a variety
of housing characteristics with which to model. Census tracts are picked as the small area because annual
tract-level design-based estimates are not planned to be released due to their poor precision. Instead, ACS
tract-level estimates are only planned for aggregate, multi-year design-based estimates. Previous work on
model-based small area estimation for the ACS also focused on tract-level estimation (see Chand & Alexander
(1995), Chand & Alexander (1996), Chand & Alexander (1999), Chand and Malec (2001) and Malec (2005)).

Figure 1: Census Tracts of the Delmarva Peninsula (Census 2000 definitions)
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2 Overview of the Spatial Model Used and Its Non-spatial Coun-

terpart

Our model can be broken into two components. The first component describes the distribution of outcomes
at the tract level using a model with all tract-specific parameters. The second component describes how
the tract-level parameters relate to one another. This second level model induces ”borrowing strength,” the
signature of small area estimation.

2.1 Within Tract Level Model Component

For each housing unit, h, in tract, t, define Xth to be the housing unit size, Xth ∈ {0, 1, 2, . . .} (see section
3.1 for a detailed description of the data).

It is assumed that the Xth are distributed i.i.d. within tract t and that:

P (Xth = x|ptx) = ptx, (1)

where, x ∈ {0, 1, 2, . . .} and
∑∞

x=0 ptx = 1.

Further, the following parameter transformations and parameter reduction are used:

pt0 = qt0

pt1 = (1 − qt0)qt1

pt2 = (1 − qt0)(1 − qt1)qt2

pt3 = (1 − qt0)(1 − qt1)(1 − qt2)qt3

pt4 = (1 − qt0)(1 − qt1)(1 − qt2)(1 − qt3)qt4

pt5 = (1 − qt0)(1 − qt1)(1 − qt2)(1 − qt3)(1 − qt4)qt4 (2)
...

pt5+� = (1 − qt0)(1 − qt1)(1 − qt2)(1 − qt3)(1 − qt4)�−1qt4

...

The above parameter transformation is based on transforming the joint distribution of Xth in terms of a
product of conditional distributions as follows:

P (Xth = x|Xth ≥ x, qtx) =
{

qtx 0 ≤ x ≤ 3
qt4 3 < x (3)

This conditional approach was used to transform a multinomial model of tract-level household composi-
tion in Chand and Malec (2001) and Malec (2005) because, based on this parameterization, the likelihood
will factor into a product of single parameter terms. This parameterization is an extension of that idea to
include an open-ended upper bound with the additional, data analytic observation, detailed in section 3.2,
that constant conditional probabilities for all but a few values of x are justified.

The reason that a model was fit at the tract level in the first place was to avoid the underlying problems
associated with the use of standard normal theory small area estimation. Specifically, to avoid the problems
connected with assuming that tract-level statistics can be characterized as having a normal distribution
and that the estimated tract-level variances are assumed to be error free and, hence, considered as known
constants. As shown in Malec (2005), this assumption is untenable due to small sample size when applied
to an example of ACS tract-level modeling. There, it was shown that the normality assumption could be
replaced with a multinomial model which accounted for the sample design and, most importantly, accounted

3



for the precision of all parameters in the model, including variance. For a recent account of the problems
inherent in using the normality/precise-variance-estimates assumption for small areas, see Bell (2008).

For tract t, the likelihood function is:

∏
h∈S

P (Xth = x) ∝ ∏3
x=0 qftx

tx (1 − qtx)Rtx

× q

∑Mt

x=4
ftx

t4 (1 − qt4)

∑Mt

x=4
(x−4)ftx

, (4)

where, in tract t, Mt is the maximum housing unit size recorded, ftx is the number of housing units recorded
as size x and Rtx =

∑Mt

�=x+1 ft� is the number of housing units with a size recorded as larger than x.

2.2 Between-Tract-Level Model Component

The model specifying how the tract-level parameters, qt0, qt1, qt2, qt3 and qt4, are related across tracts is
specified on the logistic scale, since all five parameters are between zero and one.

Define

logit(qti) = αi + xtiβi + eti, i ∈ {0, 1, 2, 3, 4} (5)

with possibly spatially correlated errors:

eti|e(−ti) = γi

∑
k∈Bt

eki + εti, i ∈ {0, 1, 2, 3, 4} (6)

where Bt denotes the set of tracts that are nearest neighbors to tract, t, and the notation: y(−i) denotes the
set of all yj such that j �= i.

In addition,
εti ∼ N(0, σ2

i ), i ∈ {0, 1, 2, 3, 4} . (7)

Note that complete independence is assumed between the i.
Issues in constructing covariates, xti and xt are provided in section 3.3. A more detailed description of

the spatial component of the model and alternative spatial models is provided in section 3.4.2.

This spatial model is compared with the “non-spatial” model implicitly defined from (6) by forcing γi = 0.
In this case, a standard hierarchical model remains and equations (6) and (7) can be equivalently re-specified
by the single equation:

eti ∼ N(0, σ2
i ), i ∈ {0, 1, 2, 3, 4}, (8)

3 Choice of Model

The following details how the final model for evaluating the use of spatial models was selected. As will be
seen, data analysis, covariate definition, and available spatial modeling software are all factors.

3.1 Data

In dealing with residential data our fundamental sampling unit is the housing unit. The response of interest
from the housing unit is the number of occupants within the housing unit. From here we will build our model
and facilitate estimation of the population values. These housing units are located within blocks, which are
located within block groups, which are located in tracts. We are dealing with the aggregation of data at the
tract level and so the observations are undifferentiated from each other within the tracts. For the purpose
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of modeling, each housing unit is assumed to be independent of other housing units.

The number of occupants within a housing unit can be as small as zero (a vacant unit) and can range up
to an arbitrarily large number. Often in large occupant cases, a person is more likely dealing with a group
quarter rather than a household, but it is not impossible to have a very large number of occupants within a
housing unit.

As mentioned, the data are aggregated by census tracts. The data within these census tracts are assumed
to be of the same common distributional form with parameters specific to the individual tract. The tract-level
summary of the 2000 Census housing unit data used in this analysis is given in Appendix A.

3.2 Tract Level Marginal Model

Our strategy for picking a tract-level model was to start out with a relatively simple model that covered the
salient features of the data, and then, with the help of data analysis, add complexity as needed.

3.2.1 The Initial Proposal: Zero-Independent Poisson

The first step when dealing with data is to model the data itself. In this case we tasked ourselves to construct
a marginal model for the data with no covariate information or other information used for the purpose of
estimation.

Our initial model was built off the idea of preserving notions of vacancy rate and persons per household. We
knew our geography had within it tracts for which there were a large amount of vacants. A zero-independent
Poisson model was proposed to handle this phenomenon while preserving the term for the probability of zero
as solely relating to the vacancy rate. Letting t represent the index for tracts on t = 1, ..., T then our model
for the number of housing unit occupants has the form

P (Xt = x) = p0t × I(Xt = 0) + (1 − p0t) × e−λtλx
t

x!(1 − e−λt)
I(Xt > 0) (9)

In our models we want to utilize a hierarchical structure so that in the cases where tracts are bereft of
data we can borrow strength from other tracts to reduce error. For this reason, we let logit(pt0) ∼ N(μp, σ2

p)
and log(λt) ∼ N(μλ, σ2

λ). Likewise, since we are operating within a Bayesian framework we further let μp,
μλ, σ2

p, and σ2
λ to have vague or non-informative priors as allowed by computational reality.

Having stated our model for the data we then need to verify the model choice. Assuming that the Poisson
model is suitable in general we must show that we need the separate term for zero occupants and we must
show that only a term for zero occupants (and say, not for zero and one occupants separately) is needed.
While there are numerous ways to invalidate a model these two ways appear to be the most obvious.

To establish the necessity of a term relating to those units with zero vacancies we recall (9). If a simple
Poisson model with parameters varying by tract is sufficient to explain the data then we should be able to
reduce the model. Namely, if we can show that pt0 = e−λt over the values of t then we would find that (9)
reduces to the following simple Poisson model:

P (Xt = xt) = e−λt × I(Xt = 0) +
e−λtλx

t

x!
I(Xt > 0) (10)

To assess if pt0 = e−λt we take the posterior mean of pt0 based on the model in (9) and plot it against
the posterior mean of e−λt based on the model in (10). If we observe values close to a 45-degree line then
we can simplify the model. The points obtained in this manner are shown on figure 2 in the color red.
Another way would be to again estimate e−λt from (10) but compare it to the posterior mean of pt0 from
(1). If the simpler model is true then we should see these values should also be nearly equal. When con-
structing a plot these values should also adhere to a 45-degree line. This is shown in figure 2 in the color blue.
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Note that we give the same type of hierarchical structure to (10) that we did to (9).

Figure 2:

We see in figure 2 that the values do not conform to a line, but they do appear to conform to some sort
of functional relationship with each other. Based on this visual inspection, we conclude that we do need the
housing units with zero occupants to be modeled separately.

Next, we look at the introduction of a term in the model for those housing units occupied by one person.
This distribution for this model has the following formula:

P (Xt = xt) = p0t × I(Xt = 0) + p1t × I(Xt = 1) + (1 − p0t − p1t) × e−λtλxt
t

xt!(1 − e−λt − λte−λt)
I(Xt > 1) (11)

To get from (11) to (9) we would let p1t = (1− p0t) λte
−λt

1−e−λt
. To simplify matters we construct plots based on

p1t

1−p0t
and λte

−λt

1−e−λt
in the same manner as we did for the first plot.

In figure 3 we see some adherence to the ideal 45-degree line but not so much that it leaves us convinced
of the suitability of the zero-independent Poisson model. We see that the majority of the values appear to
be above this 45-degree line. We would expect that values would fall upon either side of this line. It may be
that the nature of hierarchical models may be playing a role but this is uncertain. Since we are faced with
these questions we look in a different direction in an attempt to conclude our model building.

3.2.2 Multinomial Modeling

Since modifying the Poisson models step by step seemed impractical and since our more complex model
could still be a poor fit, we felt it would be wise to go from one end of the modeling spectrum to the other.
Instead of using a parametric model, we used a semi-parametric approach. In this case we sought out the
use of the multinomial distribution. Here we model the individual probabilities of observing a housing unit
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Figure 3:

with a certain number of occupants. The appeal here is that we are able to model each tract with its own
multinomial distribution, thereby avoiding issues of lack of fit on individual tracts or across tracts in general.

Unfortunately, the multinomial distribution does not answer all questions for us. Within the tracts there
exist housing units with a large number of occupants; one housing unit within the Delmarva region has as
many as 30 people. We can place a cap on the values for which we make our multinomial model, but this
will have a trade-off of possibly undercounting population if predictions are made. We may also see tracts
for which the number of units occupied by 6 people, for instance, is zero. While we will continue to use a
hierarchical structure we may become too specific when using a multinomial distribution.

With both advantages and disadvantages in mind we can use the multinomial distribution as an exploratory
data analysis tool. If we can spot any patterns then we may be able to find a different answer to our problem.

For our purposes we model zero through nine housing unit occupant counts as individual multinomial
terms. Housing units of occupant size 10 and above are aggregated into a single term. The multinomial
parameters are treated in a hierarchical fashion similar to 1 but using the multinomial logistic form, i.e.

evtx

1 +
∑J

x=1 evtx

= ptx, vtx ∼ N(μx, σ2
x), (12)

with vague or non-informative priors used in the appropriate fashion.

The best way to look at these probabilities is to work in a conditional fashion. Instead of displaying the
probabilities, ptx, Table 1 uses estimates of qtx = ptx/(1 − pt0 − ... − pt(x−1)), or rather the probability
of observing x occupants given that you will see Xth ≥ x occupants. This will let us see if there are any
patterns in the tails of the densities. If we can find a pattern then we may be able to relate the tails through
a parametric distribution.

We can glean a few features from estimated, tract-level, conditional probabilities (Table 1). One feature is
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qt0 qt1 qt2 qt3 qt4 qt5 qt6 qt7 qt8 qt9

0.036 0.160 0.407 0.380 0.618 0.563 0.511 0.567 0.521 0.514
0.054 0.273 0.434 0.411 0.590 0.659 0.694 0.642 0.558 0.491
0.052 0.221 0.485 0.429 0.618 0.688 0.669 0.579 0.551 0.609
0.054 0.203 0.425 0.460 0.608 0.676 0.642 0.597 0.592 0.559
0.185 0.263 0.490 0.431 0.587 0.681 0.634 0.618 0.517 0.560

...
...

...
...

...
...

...
...

...
...

0.493 0.277 0.696 0.472 0.673 0.704 0.609 0.615 0.516 0.585
0.364 0.293 0.576 0.443 0.594 0.657 0.655 0.627 0.560 0.492
0.742 0.437 0.758 0.514 0.619 0.671 0.640 0.576 0.493 0.524
0.783 0.293 0.772 0.490 0.632 0.752 0.694 0.600 0.544 0.528
0.341 0.212 0.661 0.450 0.640 0.693 0.693 0.600 0.494 0.461
0.291 0.251 0.502 0.466 0.608 0.643 0.633 0.625 0.559 0.493
0.380 0.266 0.628 0.494 0.646 0.691 0.696 0.594 0.517 0.559
0.458 0.246 0.712 0.495 0.668 0.616 0.659 0.623 0.539 0.559

...
...

...
...

...
...

...
...

...
...

0.103 0.219 0.445 0.441 0.567 0.606 0.603 0.586 0.435 0.409
0.050 0.159 0.461 0.408 0.627 0.657 0.627 0.652 0.494 0.551
0.070 0.191 0.455 0.431 0.627 0.683 0.631 0.612 0.587 0.588
0.069 0.236 0.468 0.453 0.618 0.689 0.696 0.576 0.596 0.557
0.103 0.230 0.459 0.386 0.571 0.621 0.606 0.684 0.532 0.552

Table 1: Estimated Conditional Probabilities of Housing Unit Size for Selected Tracts (rows)

that we can see that the vacancy term in the model does appear to have some strong differences across tracts.
We can also see that the conditional tract probabilities appear to be relatively stable for housing units of size
4 and above. This is to say that there is no clear trend but they seem to cluster around a conditional prob-
ability of 0.6. Similarly, while the first few conditional probabilities do differ in a non-obvious way, housing
units with size 2 and 3 do appear to be near to each other. While this does not mean that they should be
summarized by the same single parameter it may be more natural to relate terms in this conditional tail
manner than to rely upon a multinomial logistic hierarchical model. Similarly, the tail conditional behavior
suggests a geometric distribution model at some point.

This table also tells us that the Poisson distribution is not useful for modeling in the tail of the distribu-
tion. The reason for this is that P(x)

1−F (x−1) → 1 as x → ∞ if the data are Poisson in nature on the tails. The
probabilities do not increase as they should so the Poisson distribution does not fit the data.

3.2.3 The Tail Distribution

The need of a tail distribution was implicit in the realization that the number of housing unit occupants is
unbounded and so a model for larger values would be needed. We then ask ourselves, “what form does this
distribution take?”

Given our observation in Table 1, we did two things: We made the tail density function a Geometric
Distribution with parameter, p, as we saw that the tail probabilities are roughly the same. We made the
cut-off at k = 4 since the probabilities appear to become constant starting there.
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3.2.4 Using the Marginal Model

At this point we have modeled the marginal model for the 2000 census data upon these census tracts. We
have not used any possible covariate information available to us nor have we utilized any spatial structure.
Since our goal in making small area estimates is to make estimates of housing unit characteristics during
non-census years, we will only have a small sample of housing units available to us and will need to rely on
the best model that we can assemble in order to make predictions for the unsampled housing units. The use
of good covariates as predictors can help accomplish this goal. In addition, covariates that are themselves
spatially correlated may reduce or eliminate the need for a spatial model. Hence, we will want to include
covariates in our model in order to fairly evaluate a spatial model. In the interest of time, the only covariate
information we entertain is housing unit characteristics, at the census tract level, as measured in the 1990
Census. We chose this covariate information because it is readily available, it should provide good predic-
tors and it should also be spatially correlated (if the 2000 housing unit characteristics are spatially correlated).

The useful thing about first developing the marginal model (i.e. a model without covariates) is that we
now have a better idea of the distributional behavior of the number of occupants within a housing unit.
Nevertheless, for the reasons given above, it may be useful to introduce covariate information for the tracts
while also investigating the usage of spatial structure upon the tracts.

3.3 Covariate Construction

Without delving deeply into the characteristics of each tract on a variety of variables (such as race percent-
ages, income values, etc.) we want to construct useful covariate information to reduce the uncertainty in
parameter estimation. The more certain our parameter estimates the better our population estimates will
be later on.

3.3.1 Using the 1990 Census

As covariates, we are constructing MLEs for the parameters in model (2) using 1990 census data. What we
would like to do is simply take the 1990 data on the 2000 census tract definitions and find the estimates for
the model parameters from (2). The difficulty in this is that some of the 2000 census tabulation tracts are
different from the 1990 census tabulation tracts. (As an indication of the change, around 29% of the tracts
defined for the 2000 census in the fifty states and D.C. exhibited a change in population of 2.5%, or more,
due to a change in their boundaries from 1990∗.

To overcome this difficulty we take the data from the 1990 census tracts and reorganize them on the 2000
census tracts. To do this we break apart the 1990 tracts where needed and then reaggregate them into the
2000 census tracts. We use the land area of the tracts as the mechanism to split the data. Example: Consider
tracts “1” and “2.” “1” is split into two parts. The first part with two-thirds of the land area remains as
tract “1”, the other part becomes part of tract “2.” The next table demonstrates this behavior.

1990 split 2000
housing unit

size 1 2 1 → 1 1 → 2 2 → 2 1 2
0 10 5 6.67 3.33 5 6.67 8.33
1 15 16 10 5 16 10 21
2 12 4 8 4 4 8 8
3 5 8 3.33 1.67 8 3.33 9.67
4 1 0 0.67 0.33 0 0.67 0.33

∗Calculated from public files documenting tract changes, (U.S. Census (2009)).
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Once we get the 1990 census data aligned to the 2000 census tracts we can construct our covariates. Since
our model terms consist of qt0, qt1, qt2, qt3, and qt4 from (2), by tract, we will want to make similar model
estimates for these on the 1990 data. However, in order to use tract-level covariates based only on one tract
at a time, we will use maximum likelihood estimates based on (2) without an additional hierarchical model
(call them q̂[90]t0, q̂[90]t1, q̂[90]t2, q̂[90]t3, and q̂[90]t4). These estimates have the following form:

q̂[90]ti =

⎧⎪⎪⎨
⎪⎪⎩

|{h:Xth=i}|
|{h:Xth≥i}| i ∈ {0, 1, 2, 3}

|{h:Xth≥4}|
|{h:Xth≥4}|+

∑
i≥4

i×|{h:Xth=i}| i = 4
(13)

Since we want to treat these as model covariates and since we want to utilize a hierarchical model in the
same form of the proposed tail model, we take xti = logit(q̂[90]ti) as covariates, centering them by their
means to facilitate computation.

With the covariate terms in place, our non-spatial model can be generally stated as in (5) and (8):

logit(qti) = αi + xtiβi + eti, i ∈ {0, 1, 2, 3, 4}

eti ∼ N(0, σ2
i ), i ∈ {0, 1, 2, 3, 4},

where eti and et represents our error components. Later this will also include our spatial hierarchical term.
Ideally, if covariate information is a perfect baseline, βi should be at or near 1. It can still be useful even
if it only differs from zero as this would say that there is a relation in the parameters at the previous time
point to the current time point. See Appendix B for a complete listing of the covariates used, by tract.

3.4 The Spatial Component

This section provides graphical residual maps to visually inspect how the tracts may be related and summa-
rizes the Conditional Autoregressive model (CAR) used in our comparison.

3.4.1 Exploratory Spatial Analysis

With our covariate model in place we start to consider the usage of a spatial model. One means to explore
if a spatial model may be necessary is to compare the posterior means of qt1, ..., qt4 against their respective
tract-level sample means that do not rely on model assumptions.

We use the logistic scale to keep the analysis on a linear basis as we deal with tracts that have very
different values, especially on the vacancy term.

The chloropleth plots listed in figures 4(a) - 4(e) are constructed from the differences of the model and
true census values for each of the parameters and they are divided by the census tracts. These plots provide
the residual error that was not predicted from the non-spatial hierarchical model. As a reference, a map of
uniform random numbers scaled the same as the residual maps is included in figure 4(f). From these plots
it is difficult to discern an obvious spatial signal.

The plots themselves do show some apparent clustering of positive and negative differences but some
clustering is expected just by the nature of random variation.
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Figure 4: Map of Tract-level Residuals

(a) qi0 terms (b) qi1 terms

(c) qi2 terms (d) qi3 terms

(e) qi4 terms (f) uncorrelated random terms
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3.4.2 Using the CAR Model

The Conditional Autoregressive model is a model which can allow us to utilize neighboring tracts and some
properties of those tracts to investigate the existence of spatial structure.

There are two equivalent statements for the definition of the CAR model: the full model and the conditional
model. We apply a CAR model to each of the five components, qt0, ..., qt4, separately. For component, i,
i ∈ {0, 1, 2, 3, 4}, define, generically: st = eti. For component i, the full model and conditional model
specifications are, respectively:

s ∼ N(μ, ν(I− γC)−1M)

si|s(−i) ∼ N(μi + γ

T∑
j=1

Cij(sj − μj), νMii),

where Cii = 0 and M is a diagonal matrix with positive diagonal elements. It must also be noted that for
(I − γC)−1M to be a valid covariance structure, CijMjj = CjiMii must be true and |γ| must be restricted
(see GeoBUGS (2004) for details).

The conditional form of the model is more intuitive as we see that it behaves like a linear model. For our
purposes Ci,j and Mii are fixed, leaving γ as the sole ”covariate” term of the conditional model. γ is our
proxy for spatial dependence. If we can show that it is different from zero then we have evidence of spatial
dependence within the model. For the purpose of Bayesian inference we let ν have a vague prior and γ has
a uniform prior between its bounds.

There are many choices for Cij and Mii based on the information available to us. Our most basic choice
is to let Cij = 1 for neighboring pairs of tracts, Cij = 0 for disconnected tracts, and let Mii = 1. There does
exist an inter-play of the choices of C and M . Changing M will increase or decrease the initial (no data)
variation in the parameters and changing C can shift the parameter estimates depending on the values of
the other tracts as shown through the γ term. As a generalization we can write a valid choice of C and M
in the following manner:

Cij =
Wij∑

j∈Bi
Wij

(14)

Mii ∝ 1∑
j∈Bi

Wij
(15)

Wij needs to be symmetric but can be any weight that one may want to apply. As defined following equation
(6), Bi is the set of neighbors of i. In our case we sought to use perimeter distance information and centroid
values but had difficulty in obtaining these values due to various challenges inherent in the boundary file
we were using. We were able to define neighboring pairs of tracts that shared a boundary, including only
a corner point. So, we used the corresponding basic specification: Cij = 1 for these neighboring pairs of
tracts, Cij = 0 for disconnected tracts, and let Mii = 1 throughout.

3.5 Evaluation of CAR model using complete 2000 Census Data

We choose one spatial model to evaluate. This is the aforementioned “basic” CAR model with Cij = 1 if the
tracts are neighbors, Cij = 0 otherwise, and Mii = 1 (see Appendix C for a listing of the neighbors). This
is perhaps the simplest CAR model in use. Estimates using GeoBUGS (2004) can be readily made given
the data and a map boundary file, where tracts with common boundary are neighbors. We obtained esti-
mates of model parameters from both the hierarchical model (with covariates, referenced as the “non-spatial
model”) and the spatial model (also with covariates) using the full 2000 census data. We obtained 10,000
samples from 5 MCMC chains after a burn in phase of 4,000 samples. Summaries of the posterior parameter
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quantiles
Mean Std. Dev. 2.5% Med 97.5%

α0 -2.146 0.03462 -2.212 -2.146 -2.081
α1 -1.186 0.01708 -1.221 -1.186 -1.153
α2 -0.05643 0.01571 -0.08754 -0.05622 -0.02543
α3 -0.2408 0.01534 -0.2702 -0.2411 -0.21
α4 0.5366 0.01652 0.5407 0.5363 0.5697
β0 1.806 0.06574 1.673 1.805 1.947
β1 1.072 0.05039 0.974 1.071 1.174
β2 0.9997 0.04887 0.9008 1.001 1.094
β3 0.7193 0.09078 0.5461 0.7175 0.8982
β4 0.6925 0.08373 0.5293 0.693 0.8557
σ0 0.4313 0.02524 0.3851 0.4302 0.4838
σ1 0.207 0.01238 0.1843 0.2064 0.2328
σ2 0.1912 0.01135 0.1704 0.1906 0.2149
σ3 0.1744 0.01074 0.1547 0.174 0.1968
σ4 0.1929 0.0121 0.1708 0.1923 0.2181

Table 2: Posterior parameter summaries from the non-spatial hierarchical model

distributions for the non-spatial hierarchical model are presented in table 2 and those for the spatial model
are presented in table 3.

There are a few features to see here as it relates to the census data on the Delmarva region. With regards
to spatial signal we see some evidence within the credible interval information that there is some spatial
dependence for the vacancy model term (i.e., the 95% quantile bounds for γ0 excludes zero) but for the
other terms there do not appear to be enough evidence to say that there is spatial dependence (i.e., the
95% quantile bounds for the γ1, ..., γ4 each includes zero). (Note that a Bonferroni adjusted simultaneous
interval for all five parameters amounts to only a 75% simultaneous interval, and, hence, this observation
may have no practical significance.) Regardless of the magnitude of the posterior probability γ0 near the
value 0, its non-zero values may have an effect on the posterior inference for other parameters. (In other
words, if the spatial model is better, one would expect that the posterior distribution of the other parameters
of the model would become more precise. However, examining the corresponding parameters in tables 2 and
3, there does not appear to be a great reduction.) We do have a lot of data but only upon the 165 tracts
dealing with the tract-to-tract characteristics. With more tracts one may see a finer estimate, but doing
so would move us away from assessing the Delmarva region and towards analyzing a larger geographic region.

In both models we see that the β terms all suggest positive association between the covariate values from
the 1990 census and the values for the current census. This is evidenced by observing that the credible
intervals exclude 0 for each β.

4 Repeated Sampling Evaluation of Tract-level Small Area Esti-

mates

To this point we have demonstrated our model and its application on the census data, and began evaluat-
ing the posterior distribution of the spatial correlation parameter. Each of these have their utility but our
main desire is to investigate the usage of this model upon a small sample taken during an intercensal year.
From the survey we seek to estimate such values as total population, the count of vacant housing units, the
vacancy rate, and the person per household. We want to get estimates for these values at the census tract
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quantiles
Mean Std. Dev. 2.5% Med 97.5%

α0 -2.129 0.03915 -2.211 -2.13 -2.055
α1 -1.182 0.01495 -1.21 -1.182 -1.151
α2 -0.05893 0.01574 -0.08985 -0.05868 -0.02836
α3 -0.2388 0.01509 -0.2685 -0.2391 -0.2089
α4 0.5354 0.01605 0.5036 0.5352 0.5668
β0 1.754 0.06485 1.623 1.766 1.858
β1 1.063 0.03425 0.9989 1.063 1.133
β2 0.9783 0.03961 0.8999 0.9788 1.052
β3 0.7031 0.07265 0.5643 0.7025 0.8463
β4 0.6856 0.0668 0.5556 0.6847 0.8219
σ0 0.414 0.02493 0.3686 0.413 0.4659
σ1 0.2057 0.01218 0.1834 0.2052 0.2311
σ2 0.1897 0.01125 0.1692 0.1892 0.2131
σ3 0.1727 0.01064 0.1531 0.1722 0.1948
σ4 0.1918 0.01189 0.1699 0.1913 0.2165
γ0 0.09526 0.02938 0.02854 0.09893 0.1413
γ1 0.02425 0.04661 -0.0747 0.02706 0.1068
γ2 0.03875 0.0455 -0.05881 0.04217 0.1171
γ3 0.05026 0.04351 -0.04479 0.05388 0.1237
γ4 0.03455 0.04682 -0.06533 0.03796 0.1156

Table 3: Posterior parameter summaries from the spatial model

Finite Population Tract Over all
Parameter Specific Tracts
Population Xt =

∑Ht

h=1 Xth X =
∑

t Xt

Vacancy Count Vt =
∑Ht

h=1 I[Xth=0] V =
∑

t Vt

Vacancy Rate V Rt = Vt/Ht V R = V/H
Persons Per Housing Unit PPHt = Xt/(Ht − Vt) PPH = X/(H − V )

Table 4: Definition of Finite Population Parameters

level. We will also look at estimates for the entire Delmarva region, obtained by summing up the tract-level
components that make up the regional population parameters of interest.

4.1 Finite Population Parameters of Interest

Let Ht be the total number of housing units in tract t. Using the definition of household size from (2.1), the
finite population parameters of interest are defined in table 4.

Following the Bayesian paradigm, small area estimates will be obtained from the posterior predictive dis-
tribution of the finite population parameters (e.g., Scott and Smith (1969)). A posteriori, only the unsampled
observations are unknown. Due to the independence assumptions made, their predictive distribution can
be obtained from their conditional distribution as specified in (1), (2) and (3) coupled with the posterior
distribution of the underlying parameters. For estimation, the posterior mean will be used as the small
area estimate since it minimizes a quadratic loss function and the posterior variance will be used as the
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corresponding measure of uncertainty. For example, the posterior mean of the population count is:

E(Xt|sample) =
∑
h∈st

Xth +
∑
h∈st

E(Xth|sample), (16)

where, st denotes the set of sampled housing units in tract t, and st denotes the set of housing units in tract
t that were not in sample.

Posterior means of vacancy counts and vacancy rates can be made similarly, although vacancy rates are
not linear functions of the predictive outcomes.

In a production setting, given a sample, we would numerically estimate the posterior mean and posterior
variance of the finite population of interest and be finished. However, we want to evaluate how this whole
procedure behaves over repeated samples. Even though our development is completely Bayesian, our proce-
dure should still have good repeated sampling properties for it to be of value to a wide variety of users.

Since we have 2000 census data at our disposal, the easiest method would be to draw a sample from
the 2000 census on the Delmarva region at a rate similar to that for the ACS. The ACS has a relatively
simple sample design consisting of a systematic sample of housing units within four size-based strata defined
nationwide (see U.S. Census Bureau (2003)); the strata are defined at the block group level. Replicating
the ACS strata sample within Delmarva would have required obtaining block-level design files which would
have delayed this demonstration project. In our case we simplified the sample design by eliminating the
ACS strata, instead drawing simple random sample without replacement (SRSWOR) of housing units in the
census based on a 2.4% sampling rate. From this we can get a grasp on the accuracy of the estimates by
comparing them to the true values given by the census data.

Our goal is to evaluate the hierarchical model proposed earlier against the hierarchical spatial CAR model
and determine which may perform better.

4.2 Repeated Sampling Study

Our repeated sampling consists of 400 samples of Delmarva 2000 census data. The data were sampled at
a rate of 2.4% as a SRSWOR across the entire region as mentioned earlier. We did not attempt to sample
on a tract level basis. Our hierarchical model and our hierarchical spatial model were then applied to these
samples. These models were executed through the WinBUGS (2003) software and the GeoBUGS (2004)
extension.

Within this we sought out model comparisons of bias, mean square error, and credible interval coverage
rates at Delmarva level and tract level. Many of these were obtained; for the sake of brevity, not all are
included here.

The bias and MSE considered in our evaluation are given in the following description. Let θ represent
the true value for our quantity of interest at the Delmarva level (e.g., the total household population of the
Delmarva Peninsula). Let θt represent the true value for our quantity of interest at the tract level (e.g. the
actual vacancy rate in tract, t). Let θ̂s represent the Delmarva level estimate for the s-th repeated sample
and let θ̂s,t represents the tract level estimate for the s-th repeated sample from the t-th tract. Let M be
the number of repeated samples; in our case M = 400.

In formal terms we have the bias which takes the form of B = ( 1
M

∑M
s=1 θ̂s) − θ whether at the tract level

or Delmarva level.

Mean Square Error is MSE = 1
M

∑M
s=1 (θ̂s − θ)2 whether at the tract level or Delmarva level.

Mean Square Error aggregated across tracts is MSEagg = 1
M

∑M
s=1

∑T
t=1 (θ̂s,t − θt)2. Since this is an aggre-
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Non-Spatial Spatial 2.5% difference 97.5% difference design-based
Bias 226.266 252.3122 -1125.878 973.904 0∗

MSE (Population) 28,168,364 28,111,009 -11,669,549 11,501,894 28,384,011
MSE (Tract Aggregation) 11,249,222 11,271,673 -641,635.1 538,033.5 28,924,298

Table 5: Repeated sampling bias and MSE for estimates of population

Non-Spatial Spatial
50% 51.50% 50.25%
80% 82.25% 81.50%
90% 91.25% 90.75%
95% 94.75% 94.75%

Table 6: Percent of time coverage intervals actually cover the true population

gation across tracts, this is only a Delmarva level assessment.

We are also interested in the rates of credible interval coverage, or 1
M

∑M
s=1 I(θs ∈ (θ̂s[α/2], θ̂s[1−α/2])).

Likewise we can consider this on an individual tract basis or at the Delmarva level.

Since we are operating with a non-linear model in the Bayesian paradigm, obtaining estimates is not so
straight-forward. Due to time constraints we let our model be a single-chain from an MCMC of 1000 burn-in
iterations followed by 1000 iterations of samples from the density. Longer runs of the MCMC chain would
result in more precise estimates of posterior parameters.

4.2.1 Results of the Repeated Sampling Study

To start the analysis we looked at the performance of the bias and mean square error at the Delmarva level
for the population estimate. At this point a design-based (i.e. non-model based) estimate for the population
in each tract was introduced for the purpose of acting as a baseline with which to compare the hierarchical
and spatial model estimates. By running GeoBugs for a long number of iterations for one sample for both
spatial and non-spatial models, we observed that the numerical bias caused by running GeoBugs for only
400 iterations did not appear to be too influential as the value is smaller than one person (not shown).
Bayes estimates tend to be biased estimates but this suggests that the performance in terms of bias is good.
Looking at the MSE as it relates to the overall population, the spatial model appears to perform slightly
better than the non-spatial model. Table 5 appears to show that the aggregate tract MSE for the spatial
model is better than that for the non-spatial model. This table also provides 95% confidence bounds for
the differences between the non-spatial and spatial estimates. Based on these bounds, there is no statistical
difference in the bias or MSE between the spatial and non-spatial estimates of population size. Lastly, table
5 documents that, at the tract level, both the spatial and non-spatial models provide estimates with much
smaller MSE than the design based estimates, demonstrating the power of “borrowing strength” using small
area estimation methodology.

Next, table 6 estimates the percentage of time each designated coverage interval of total population actu-
ally covers the true value. Looking at the associated credible intervals for both models at the 50%, 80%, 90%,
and 95% levels we see that there does not appear to be any clear evidence of over-coverage or under-coverage.

∗The bias under this model is known to be zero.
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Non-Spatial Spatial 2.5% difference 97.5% difference
Vacancy Count Bias 29.68679 26.21703 -216.184 255.030

Vacancy Count MSE (Pop.) 1563084 1559765 -603909.3 643161.4
Vacancy Count MSE (Tract Agg.) 938303.8 936672.0 -71678.98 83920.31

Vacancy Rate Bias 2.163 ∗ 10−7 1.911 ∗ 10−7 -0.0006303365 0.0007436014
Vacancy Rate MSE (Pop.) 1.329 ∗ 10−5 1.326 ∗ 10−5 -5.134162e-06 5.467865e-06

Vacancy Rate MSE (Tract Agg.) 0.1707873 0.1692201 -0.006998501 0.010901630
PPH Bias 1.139 ∗ 10−3 1.121 ∗ 10−3 -0.003438485 0.003088989

PPH MSE (Pop.) 2.706 ∗ 10−4 2.700 ∗ 10−4 -0.0001365973 0.0001182237
PPH MSE (Tract Agg.) 2.003925 2.017699 -0.1259202 0.0937945

Table 7: Repeated sampling bias and variance for estimates of vacancy and PPH

Turning our attention to the vacancy count, vacancy rate, and persons per household statistics, in table
7, it would appear that for bias, MSE at Delmarva level, and MSE aggregated by tract, the spatial model
appears to perform better but in a way that is not significant.

Figure 5 shows the coverage rates, by tract, of the credible intervals for the population. We saw some
interesting phenomena in the plots where the trend was for over-coverage on many of the tracts but there
were some severe outliers on the under-coverage side of the plots. Our plots exhibited a stronger leftward
skew than what we would otherwise see from natural variation.

Lastly, we look at the coefficient of variation, σ/μ by tract for the population estimate by tract on our
two models, in figures 6(a) and 6(b), and the design-based estimate in figure 6(c). The two models produce
nearly the same result and they both performed better than the design-based estimate, again underlying the
decrease in variation against the best traditional estimate available using this data.

5 Remarks

In the project there were a few issues and concerns to address and obstacles that we needed to overcome.
Naturally, as with any project, more time would be have been useful to answer other questions, but it is also
useful to outline the limitations of the project.

5.1 Difficulties

To complete this project we utilized SAS, WinBUGS, R, and GeoBUGS, which is an internal branch of
WinBUGS. The usage of WinBUGS and GeoBUGS proved to the most problematic aspect of our project.
Naturally, when using MCMC methods, time constraints may begin to impose themselves. In our case,
as we worked with more and more tracts on more and more geographies we ran into serious computation
issues which was natural considering the stark increase of the number of tracts. Similarly, when applying
the spatial model to the larger geographies our desktop computer (a Dell Optiplex GX280 running Windows
SP professional) used for computation could not allocate enough memory.

We also were not able to use the GeoBUGS option to use a variety of spatial adjacency information in
our models. Some of the models we tried that satisfied the necessary variance constraint would not run
for us in GeoBUGS and vice versa. This was in relation to the CAR spatial modeling for Cij and Mii not
explicitly equal to some constant. In some cases the software would accept invalid structures and in other
cases it would reject valid structures on the basis that the covariance matrix was not positive definite. This
made investigating ways in which neighboring tracts may influence each other difficult. The investigation of
modeling C and M was an initial item of interest when we started our investigation. Alternative avenues
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Figure 5: Distribution of Tract-level Estimated Coverage Rates
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Figure 5: Distribution of Tract-level Estimated Coverage Rates (Cont.)
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Figure 6: Distribution of Tract-level CVs

(a) (b) (c)

may need to be pursued if one is to investigate using the CAR model within this context.

Another issue which came up during our investigation was the use of the publicly available, generalized
ARC/INFO Ungenerate (ASCII) Cartographic Boundary Files relating to the 2000 census data. GeoBUGS
has a tool which automatically detects neighbors when imported into a proper format. Our issue is not with
this format but that the boundaries themselves did not suit our needs (i.e., identifying tracts with shared
perimeters, non-identification of neighbors). While the boundaries for tracts match each other within state
we found instances where along state boundaries the points used to define the state line for those tracts would
differ resulting in a non-identified neighbor. This issue also meant that we could not accurately (and consis-
tently) define objects like shared tract perimeter which we desired to use in proposals for CAR model terms.
We learned subsequently that these problems arose because the boundary files we used are a generalized
extract from the U.S. Census Bureau’s TIGER database and were subject to line simplification/smoothing,
coordinate reduction, and small polygons were eliminated when the combination of geographic codes existed
elsewhere. Thankfully, GeoBUGS has a mechanism to manually augment and alter the identification of
neighbors allowing us to add and subtract neighbors as needed and to finish this project. If this project were
done over multiple states we would have difficulties in adding and subtracting, both because the number of
revisions could be large and also because the system is graphically based, requiring tract boundaries to be
visually identifiable. Although requiring an extra processing step and more software, tract-level boundary
files with matching neighbor boundary points are available and will be used in any future work. Instead
of using the ASCII tract-level boundaries, with their inherent problems, non-generalized tract boundaries
are available and can be freely downloaded through the National Historic Geographic Information System†.
These shapefiles can then be translated into ASCII files using commercial GIS software and then used as
input to GeoBugs. For the complete overview of the Cartographic Boundary File generalization process see
U.S. Census Bureau (December 31, 2008).

5.2 Data Quirks

Along the way we came across some interesting features in the data and the tract level geography. Within
the Delmarva region one tract was nested within the space of another tract. This tract contained no housing
units but did, on further investigation using an overlay of census tracts on a Google map from the Internet,
contain a prison. We came to find out later that prisons often are assigned their own tracts but this is not
something that is done on a consistent basis. There may be a rule governing such features but we are not
aware of it. Since this prison did not contain housing units in either census collection (and more specifically
in the 2000 collection), it does not contribute to the residential population and thus we can omit this tract

†Minnesota Population Center, University of Minnesota, http://nhgis.org/
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from the analysis.

Another quirk revealed itself when testing out the model on other geographies to see what would happen.
We found a situation in which a tract contained no persons in the 1990 census but did so in the 2000 census.
This would be a cause for modeling concern as this type of situation would have no available covariates for
usage in the model. We believe remedies could be proposed to alleviate such phenomena, but we were not
going to concern ourselves with this behavior as we were using the Delmarva region as our dataset.

5.3 Remarks

We have picked tract level as our small area of interest, and arbitrarily used tracts as the basic component
of spatial correlation. Although this use of tracts will capture spatial variation due to larger or different
geographic scales, the scale at which the outcomes of interest become homogeneous has not been investigated.
An approach using the data to inform the appropriate geographic scale of the data, such as in Louie and
Kolaczyk (2006), may be of use. Another way to approach the problem would be to operate on the block
or block-group level. It may be that these objects will have stronger spatial signal since neighboring blocks
or block groups are geographically closer than neighboring tracts. On the other hand by separating into
smaller units the inferential power on any one unit will be smaller and thus may not necessarily lead to
a more precise estimate for spatial correlation. Working with smaller units will also pose a challenge in
computation, similar to the problems mentioned earlier, and may pose its own challenges when dealing with
geographic shape. Also, we have evaluated estimates based on MSE. Another evaluation which may be
important in some applications is how well the true spatial correlation is maintained. For this latter concern,
a spatial model is likely to be of more importance.

5.4 Conclusions

With regards to the housing unit model, a model for housing unit occupant size based on non-parametric
terms for small values and a parametric term for larger values appears to be the best option. We saw
flaws in the usage of simple parametric models, specifically the Poisson distribution. There was plenty of
evidence to suggest that the tracts behaved differently and should not be aggregated into a single summary
parameter for all the tracts. This was most evident in modeling the housing unit vacancies as evidence by
their associated estimated variance shown in tables 2 and 3. This was also evidenced by the consistency
of conditional probabilities for one occupant, two occupants, and three occupants. The tail behavior, as
evidenced by the appearance of consistently equal probability values, led to using a geometric distribution
on those tails as a better model. However, the slow decrease observed in the estimated conditional tail prob-
abilities, apparent in table 1, suggests that more modeling, or at least formal testing, may yield better results.

From the analysis, the case for spatial dependence on the Delmarva geography as illustrated through the
CAR model is plausible but not a certainty. If spatial signal does exist then it appears to exist through the
vacancy term. As the vacancy term also has more variability associated with it, it just might be that the
covariates used may have not been able to remove spatial dependence - a conjecture which could be further
investigated. In our experience with this project, the use of GeoBugs provided excellent support when using
the simplest CAR model denoting spatial correlation based only on tract boundary contiguity. However,
implementing other CAR models in GeoBugs presented problems. Hence, our investigation of spatial behav-
ior is not exhaustive, and there may yet be a manner in which a healthy spatial signal is revealed. Further
modeling may require writing specialized software or, at a minimum, further ascertaining the strengths and
weaknesses of GeoBugs.

The repeated sampling study does not assure that using a hierarchical model with a spatial component
is better than using only a hierarchical model. With more samples we may be able to establish that the
spatial model does perform better in estimation than the non-spatial model but we were unable to discern
any advantage. It is also important to recall that we used only one type of spatial model, a CAR model
postulated independently for each household size component, and we used only the simplest spatial correla-
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tion structure (tracts that share a county or not) with our CAR model. However, we suspect that if spatial
correlation had been an extremely important component of household size in the Delmarva Peninsula, our
basic model would have shown better results.
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APPENDIX

A Counts of Housing Unit Size by Tract (Census 2000)

state
| county Household count by size of household
| | tract 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 19 30

10 001 040100 68 294 630 346 358 120 48 30 12 6 3 1 2 0 0 0 0 0 0
10 001 040201 77 375 431 230 196 92 35 10 2 0 1 0 0 0 0 0 0 0 0
10 001 040202 105 422 723 328 271 118 35 9 4 3 0 0 0 0 0 0 0 0 0
10 001 040203 65 234 391 247 173 77 23 8 4 1 0 0 0 0 0 0 0 0 0
10 001 040400 107 125 169 75 57 31 8 4 0 1 0 0 0 0 0 0 0 0 0
10 001 040500 304 785 1213 597 425 181 62 21 7 4 0 0 0 0 0 0 0 0 0
10 001 040600 31 134 93 47 34 12 4 2 0 0 0 0 0 0 0 0 0 0 0
10 001 040700 82 365 539 330 254 107 41 11 1 1 1 0 0 0 1 0 0 0 0
10 001 040800 59 442 384 187 109 44 19 9 2 1 0 1 1 0 0 0 0 0 0
10 001 040900 27 577 279 98 61 20 4 0 0 0 0 0 0 0 0 0 0 0 0
10 001 041000 146 563 650 324 193 101 43 11 7 1 2 0 0 0 0 0 0 0 0
10 001 041100 213 15 257 338 336 79 26 3 0 1 0 0 0 0 0 0 0 0 0
10 001 041200 96 336 456 251 155 93 36 7 4 2 1 0 0 0 0 0 0 0 0
10 001 041300 81 352 313 132 97 36 14 6 2 0 0 0 0 0 0 0 0 0 0
10 001 041400 144 442 356 206 136 57 25 10 4 0 0 2 0 0 0 0 0 0 0
10 001 041500 70 265 524 297 181 99 40 10 2 0 0 0 0 0 0 0 0 0 0
10 001 041600 43 196 354 157 120 44 28 3 0 1 0 0 0 2 0 0 0 0 0
10 001 041701 94 364 536 273 196 84 36 9 4 1 1 0 0 0 0 0 0 0 0
10 001 041702 54 155 367 239 237 102 35 5 2 2 0 0 0 0 0 0 0 0 0
10 001 041801 129 609 934 562 442 181 59 31 10 4 4 2 4 0 0 0 0 0 0
10 001 041802 41 167 295 165 155 57 17 17 9 7 5 2 0 1 1 0 0 0 0
10 001 041900 83 306 612 310 308 123 36 13 12 3 3 2 4 0 0 0 0 0 0
10 001 042000 63 181 368 187 169 90 34 14 4 3 3 0 0 0 0 0 0 0 0
10 001 042100 62 253 468 241 173 63 22 4 4 6 0 2 1 0 0 0 1 0 0
10 001 042201 220 317 640 433 339 222 73 27 6 1 2 0 0 1 0 0 0 0 0
10 001 042202 91 410 700 427 399 155 51 19 6 2 1 0 0 0 0 0 0 0 0
10 001 042400 183 233 400 173 158 55 18 5 0 0 0 0 0 0 0 0 0 0 0
10 001 042500 93 435 347 192 149 65 20 10 2 0 0 1 1 0 0 0 0 0 0
10 001 042600 22 194 331 155 118 39 15 2 2 0 0 0 0 0 0 0 0 0 0
10 001 042700 41 114 151 73 70 24 11 4 0 2 0 0 1 0 0 0 0 0 0
10 001 042800 113 374 738 404 376 107 43 11 5 1 0 0 0 0 0 0 0 0 0
10 001 042900 65 214 448 246 202 92 31 13 4 1 0 0 0 0 0 0 0 0 0
10 001 043000 128 439 583 292 237 114 50 14 7 3 1 0 0 0 0 0 0 0 0
10 001 043100 40 154 328 165 134 71 15 8 6 3 0 1 0 0 0 0 0 0 0
10 003 016601 80 229 570 382 450 184 40 19 5 3 1 2 0 0 0 0 0 0 0
10 003 016602 36 87 398 272 388 167 36 11 3 3 0 0 1 0 0 0 0 0 0
10 003 016603 22 142 367 242 314 135 32 14 1 2 0 0 0 0 0 0 0 0 0
10 003 016604 153 402 562 361 323 133 35 12 5 5 3 1 0 0 0 0 0 0 0
10 003 016801 55 150 379 205 207 72 34 6 1 2 0 0 0 0 0 0 0 0 0
10 003 016802 43 104 296 159 183 66 29 3 4 2 0 0 0 0 0 0 0 0 0
10 003 016901 27 124 288 172 138 63 12 4 1 0 0 1 0 0 0 0 0 0 0
10 003 016902 27 86 196 87 77 36 17 1 1 1 0 0 0 0 0 0 0 0 0
10 005 050101 38 235 465 213 203 72 22 10 5 0 1 3 0 0 0 0 0 0 0
10 005 050102 261 673 1019 563 357 218 81 27 18 7 4 1 3 1 0 0 0 0 0
10 005 050103 351 202 430 181 100 36 19 5 1 1 0 0 0 0 0 0 0 0 0
10 005 050200 109 205 307 182 167 74 36 13 5 2 1 1 0 1 0 0 0 0 0
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10 005 050301 250 522 700 378 296 134 71 23 3 6 0 0 1 0 0 0 0 0 0
10 005 050302 84 207 454 277 222 104 52 11 5 2 0 0 0 0 0 0 0 0 0
10 005 050401 62 216 469 259 196 82 16 10 5 0 1 0 0 0 0 0 0 0 0
10 005 050402 211 964 1055 499 358 170 65 23 9 4 3 0 0 0 0 0 0 0 0
10 005 050403 93 249 341 216 157 81 30 7 6 4 2 2 0 0 0 0 0 0 0
10 005 050404 316 553 1005 606 472 209 84 18 10 6 1 1 0 0 0 0 0 0 0
10 005 050501 46 195 387 219 177 62 20 7 3 1 0 0 1 0 0 0 0 0 0
10 005 050502 230 569 712 395 364 191 74 53 35 17 17 8 3 0 2 0 1 1 0
10 005 050601 57 231 478 277 197 86 25 4 1 1 0 0 1 0 0 0 0 0 0
10 005 050602 179 516 586 238 165 76 22 11 4 1 0 0 0 1 0 0 0 0 0
10 005 050701 283 244 443 165 140 73 27 4 1 0 1 0 0 0 0 0 0 0 0
10 005 050702 3436 1049 2138 491 300 146 48 19 5 4 1 0 2 0 0 0 0 0 0
10 005 050801 127 302 364 196 138 49 18 8 4 0 0 0 0 0 0 0 0 0 0
10 005 050802 200 267 500 208 178 92 21 11 5 1 0 0 1 0 0 0 0 0 0
10 005 050803 861 439 871 278 227 102 18 11 0 2 0 1 0 0 0 0 0 0 0
10 005 050900 1581 815 1059 239 189 65 12 2 3 0 0 0 0 0 0 0 0 0 0
10 005 051001 1024 578 1113 298 236 72 28 7 1 1 0 0 0 0 0 0 0 0 0
10 005 051002 2386 679 1248 254 192 63 13 7 1 2 0 0 0 0 0 0 0 0 0
10 005 051003 794 406 565 182 135 62 22 8 2 0 1 0 0 0 0 0 0 0 0
10 005 051100 4529 690 674 112 57 24 7 2 0 1 1 0 0 0 0 0 0 0 0
10 005 051200 7647 619 1161 167 105 50 8 1 0 0 0 0 0 0 0 0 0 0 0
10 005 051301 885 362 896 204 161 62 19 4 0 0 0 1 1 0 0 0 0 0 0
10 005 051302 413 252 378 177 120 49 18 8 2 0 0 1 0 0 0 0 0 0 0
10 005 051303 782 338 588 174 111 41 13 2 0 1 0 0 0 0 0 0 0 0 0
10 005 051304 1533 443 972 195 131 33 17 6 1 1 0 0 0 0 0 0 0 0 0
10 005 051400 96 213 374 176 149 81 31 19 7 5 2 2 0 0 0 0 0 0 0
10 005 051500 180 344 546 302 213 100 41 17 3 2 3 3 0 0 1 0 0 0 0
10 005 051701 65 197 489 231 215 83 27 13 1 2 0 0 1 0 0 0 0 0 0
10 005 051702 138 347 672 347 289 119 33 13 5 2 0 0 0 0 0 0 0 0 0
10 005 051801 123 390 590 306 226 98 31 6 4 1 0 0 0 0 0 0 0 0 0
10 005 051802 174 349 535 239 221 105 40 22 3 2 1 0 0 0 0 0 0 0 0
10 005 051900 125 375 500 293 194 97 42 6 6 1 0 1 2 0 0 0 0 0 0
24 011 955000 104 201 312 173 175 96 39 22 8 4 1 3 0 1 0 0 0 0 0
24 011 955100 146 383 596 367 303 127 57 10 6 2 2 1 0 0 0 0 0 0 0
24 011 955200 134 390 640 365 326 154 47 15 5 2 1 0 0 0 0 0 0 0 0
24 011 955300 173 580 779 389 291 112 34 9 4 2 2 0 0 0 0 0 0 0 0
24 011 955400 64 113 291 134 148 46 12 4 2 0 0 0 0 0 0 0 0 0 0
24 011 955500 143 257 554 287 230 88 27 7 2 2 0 0 0 0 0 0 0 0 0
24 011 955600 135 464 643 319 266 103 41 11 7 2 1 0 0 0 0 0 0 0 0
24 015 030100 733 375 616 278 205 77 27 9 2 0 0 2 0 0 0 0 0 0 0
24 015 030200 389 391 738 357 315 119 35 15 5 2 2 0 0 1 0 0 0 0 0
24 019 970100 134 279 423 192 158 52 19 8 2 0 0 0 0 0 0 0 0 0 0
24 019 970200 178 418 601 340 299 136 51 13 5 0 0 2 0 0 0 0 0 0 0
24 019 970300 166 374 678 333 222 79 20 8 1 0 2 1 0 0 0 0 0 0 0
24 019 970400 204 635 528 227 142 51 10 12 9 0 0 1 0 0 0 0 0 0 0
24 019 970500 227 597 436 273 176 79 26 11 3 0 1 0 1 0 0 0 0 0 0
24 019 970600 166 446 505 297 171 62 17 7 0 0 0 0 0 0 0 0 0 0 0
24 019 970700 255 401 732 264 161 58 13 4 0 0 1 0 0 0 0 0 0 0 0
24 019 970800 343 224 394 124 82 40 6 5 0 1 1 0 0 0 0 0 0 0 0
24 019 970900 273 214 280 135 89 33 3 0 2 0 0 0 0 0 0 0 0 0 0
24 029 950100 232 293 467 199 170 72 24 9 3 2 0 1 0 0 0 0 0 0 0
24 029 950200 514 380 733 282 279 115 31 10 5 2 1 0 0 0 0 0 0 0 0
24 029 950300 280 815 752 255 157 50 13 6 1 1 0 0 0 0 0 0 0 0 0
24 029 950400 306 275 555 215 168 62 18 7 2 0 0 0 0 0 0 0 0 0 0
24 029 950500 375 365 509 172 134 41 12 2 1 0 0 0 0 0 0 0 0 0 0
24 035 810100 136 215 425 217 146 55 16 8 1 1 0 0 0 0 0 0 0 0 0
24 035 810200 70 187 304 163 149 71 20 5 1 1 0 0 0 0 0 0 0 0 0
24 035 810300 108 310 564 211 214 91 20 4 4 0 0 0 0 0 0 0 0 0 0
24 035 810400 110 305 564 249 257 89 38 3 3 1 0 0 0 0 0 0 0 0 0
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24 035 810500 55 236 355 207 188 75 13 7 1 4 0 0 0 0 0 0 0 0 0
24 035 810600 204 268 794 283 270 134 40 7 3 0 0 0 0 0 0 0 0 0 0
24 035 810700 186 296 465 198 146 67 24 2 6 0 0 0 0 0 0 1 0 0 0
24 035 810800 166 382 619 365 310 144 38 14 2 4 0 0 1 0 0 0 0 0 0
24 035 810900 204 459 1097 485 494 188 52 17 10 2 1 0 0 0 0 0 0 0 0
24 035 811000 97 343 608 281 259 100 29 5 2 1 0 0 1 0 0 0 0 0 0
24 039 980101 262 618 480 287 203 86 35 10 5 4 1 0 0 0 0 0 0 0 0
24 039 980102 217 355 512 243 176 62 26 7 3 1 0 0 0 0 0 0 0 0 0
24 039 980200 396 241 372 124 90 41 17 2 1 2 0 0 0 0 0 0 0 0 0
24 039 980300 245 308 394 194 146 59 12 4 4 2 3 0 2 0 0 0 0 0 0

24 039 980400‡ 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
24 039 980500 360 485 711 298 214 90 24 10 4 5 2 1 1 0 0 0 0 0 0
24 039 980600 236 453 463 228 152 55 20 5 5 1 2 0 0 0 0 0 0 0 0
24 041 960100 96 246 533 281 285 110 29 11 1 0 0 1 0 0 0 0 0 0 0
24 041 960200 222 354 700 166 137 48 12 7 0 0 0 0 0 0 0 0 0 0 0
24 041 960300 85 486 417 199 152 62 18 11 3 2 0 0 0 0 0 0 0 0 0
24 041 960400 222 1054 781 315 192 95 21 8 3 0 1 0 0 0 0 0 0 0 0
24 041 960500 143 505 840 417 338 134 38 11 3 1 1 0 0 0 0 0 0 0 0
24 041 960600 239 177 358 103 82 30 10 1 0 0 0 0 0 0 0 0 0 0 0
24 041 960700 456 540 838 210 150 58 19 1 4 0 0 0 0 0 0 0 0 0 0
24 041 960800 335 227 385 110 96 28 12 1 2 0 0 0 0 0 0 0 0 0 0
24 041 960900 340 393 800 289 223 96 26 7 1 1 0 0 0 0 0 0 0 0 0
24 045 000100 119 572 597 350 237 129 56 23 12 5 1 2 1 0 0 0 0 0 0
24 045 000200 70 280 269 120 79 33 11 9 1 0 2 0 0 0 0 0 0 0 0
24 045 000300 46 172 143 114 71 38 20 8 4 1 0 0 0 0 0 0 0 0 0
24 045 000400 119 652 516 278 213 82 18 7 3 3 0 2 0 0 0 0 0 0 0
24 045 000500 72 291 336 192 142 67 24 10 6 3 1 0 0 0 0 0 0 0 0
24 045 010101 81 617 761 415 285 107 37 18 6 3 1 0 0 0 0 0 0 0 0
24 045 010102 62 385 491 187 160 47 10 2 2 0 0 0 0 0 0 0 0 0 0
24 045 010200 138 470 563 386 300 142 69 15 15 0 1 2 0 0 0 0 0 0 0
24 045 010300 65 274 697 409 465 188 41 15 2 3 1 0 0 0 0 0 0 0 0
24 045 010400 114 654 737 324 297 119 21 7 3 2 4 0 0 0 0 0 0 0 0
24 045 010500 230 1054 1141 591 387 128 34 10 0 2 1 0 0 0 0 0 0 0 0
24 045 010602 159 516 1121 616 535 199 47 9 1 1 2 0 0 0 0 0 0 0 0
24 045 010603 93 379 736 378 328 122 36 20 5 1 1 0 0 0 0 0 0 0 0
24 045 010604 132 408 644 409 293 93 33 9 5 1 1 0 0 0 0 0 0 0 0
24 045 010701 145 289 450 230 209 80 27 6 1 3 1 0 0 0 0 0 0 0 0
24 045 010702 206 527 826 501 401 150 64 17 10 5 2 0 0 0 0 0 0 0 1
24 045 010800 320 461 816 418 313 108 27 7 5 0 0 0 0 0 0 0 0 0 0
24 047 990100 21756 1477 1638 358 197 78 23 7 1 0 0 1 0 0 1 0 0 0 0
24 047 990200 203 347 631 315 266 97 24 5 3 0 0 0 0 0 0 0 0 0 0
24 047 990300 113 459 455 289 213 96 29 6 7 0 0 2 1 0 0 0 0 0 0
24 047 990400 122 160 295 134 112 36 11 7 0 0 0 1 0 0 0 0 0 0 0
24 047 990500 1549 487 1350 301 221 91 22 5 2 1 0 1 1 0 0 0 0 0 0
24 047 990600 943 422 1138 320 211 72 20 2 2 0 0 0 0 0 0 0 0 0 0
24 047 990700 1298 481 843 264 219 75 21 4 4 0 1 0 0 0 0 0 0 0 0
24 047 990800 125 222 442 226 180 60 17 9 4 1 0 0 0 0 0 0 0 0 0
24 047 990900 115 304 349 179 108 57 18 7 4 1 1 0 1 0 0 0 0 0 0
24 047 991000 105 244 416 210 178 78 25 2 5 0 0 1 0 0 0 0 0 0 0
24 047 991100 200 577 592 338 284 129 33 18 5 1 4 1 0 0 0 0 0 0 0
51 001 990100 1875 700 832 301 164 58 8 3 1 1 0 0 0 0 0 0 0 0 0
51 001 990200 485 847 1065 604 510 207 65 34 13 12 2 2 1 1 0 0 0 0 0
51 001 990300 233 277 430 185 154 44 30 11 5 5 2 0 0 0 0 0 0 0 0
51 001 990400 339 501 623 367 296 143 71 25 11 8 3 2 2 1 0 0 0 0 0
51 001 990500 181 347 366 211 137 47 18 10 3 2 2 0 0 1 0 0 0 0 0
51 001 990600 356 619 697 343 218 81 18 6 3 0 1 0 0 0 0 0 0 0 0
51 001 990700 364 498 736 362 274 94 36 11 8 3 0 0 0 1 0 0 0 0 0

‡tract 980400 in Somerset County, MD contained no residential population in 2000 and was dropped from the analysis
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51 001 990800 324 452 535 235 175 77 28 8 6 2 0 0 1 0 0 0 0 0 0
51 131 990100 359 476 636 292 197 72 24 14 1 1 0 1 0 0 0 0 0 0 0
51 131 990200 393 474 656 261 202 80 37 10 5 6 1 2 0 0 0 0 0 0 0
51 131 990300 444 615 594 277 205 108 45 15 8 4 2 0 0 0 0 0 0 0 0

Table 8: Number of housing units by housing unit size and tract

B Covariates used

state
| county Covariates
| | tract logist0 logist1 logist2 logist3 logistprop

10 001 040100 -1.273 -1.61907 -0.52961 -0.5736 0.269333
10 001 040201 -1.3029 -1.2712 -0.30418 -0.31393 0.633803
10 001 040202 -1.3029 -1.2712 -0.30418 -0.31393 0.633803
10 001 040203 -1.3029 -1.2712 -0.30418 -0.31393 0.633803
10 001 040400 -0.58766 -1.01543 -0.26688 -0.21706 0.71784
10 001 040500 -1.0423 -1.46505 -0.2243 -0.12024 0.54932
10 001 040600 -1.02029 -0.42973 -0.08224 -0.21131 0.904456
10 001 040700 -1.08219 -1.54464 -0.67188 -0.4873 0.693147
10 001 040800 -1.42742 -0.92716 -0.33386 -0.13119 0.332382
10 001 040900 -1.23245 -0.09421 0.300486 0.144581 0.548566
10 001 041000 -1.20798 -1.06352 -0.17605 -0.22253 0.572631
10 001 041100 -1.95148 -3.64087 -1.62924 -0.58901 0.972732
10 001 041200 -1.2417 -1.23752 -0.46557 -0.32886 0.411855
10 001 041300 -1.13423 -0.5066 0.066797 -0.10536 0.402345
10 001 041400 -1.1333 -0.79116 0.028581 -0.33881 0.359084
10 001 041500 -1.80163 -1.70397 -0.40352 -0.32182 0.695387
10 001 041600 -1.7262 -1.6484 -0.11872 -0.43457 0.555526
10 001 041701 -1.48053 -1.49428 -0.44594 -0.31626 0.415081
10 001 041702 -1.48053 -1.49428 -0.44594 -0.31626 0.415081
10 001 041801 -1.4489 -1.30915 -0.35914 -0.38038 0.121782
10 001 041802 -1.4489 -1.30915 -0.35914 -0.38038 0.121782
10 001 041900 -1.4624 -1.61187 -0.49485 -0.46788 0.314216
10 001 042000 -1.23736 -1.65823 -0.63173 -0.5221 0.202712
10 001 042100 -1.31251 -1.41923 -0.31356 -0.28986 0.30305
10 001 042201 -1.16303 -1.67019 -0.46472 -0.34935 0.510467
10 001 042202 -1.16303 -1.6702 -0.46473 -0.34936 0.510476
10 001 042400 -0.5724 -1.35473 -0.11675 0.00551 0.623786
10 001 042500 -1.11973 -0.64064 -0.23832 -0.36546 0.228259
10 001 042600 -1.42916 -1.49789 -0.02899 -0.17185 0.731466
10 001 042700 -1.11011 -1.0033 -0.40547 -0.20271 0.272507
10 001 042800 -1.26804 -1.40127 -0.51045 -0.23436 0.64755
10 001 042900 -1.20119 -1.56255 -0.59289 -0.22642 0.381251
10 001 043000 -1.19658 -1.15568 -0.28172 -0.21035 0.434342
10 001 043100 -1.13121 -1.62892 -0.58179 -0.16579 0.81093
10 003 016601 -1.30884 -1.46553 -0.64543 -0.39453 0.652117
10 003 016602 -1.21631 -2.03708 -0.73216 -0.47987 0.723878
10 003 016603 -1.21534 -2.04534 -0.7331 -0.48077 0.724623
10 003 016604 -1.34914 -1.29737 -0.60958 -0.35759 0.620693
10 003 016801 -1.21347 -1.69867 -0.4634 -0.47776 0.542067
10 003 016802 -1.21347 -1.69867 -0.4634 -0.47776 0.542067
10 003 016901 -1.32424 -1.66627 -0.41468 -0.43614 0.587183
10 003 016902 -1.32424 -1.66627 -0.41468 -0.43614 0.587183
10 005 050101 -0.79932 -1.38806 -0.25804 -0.32736 0.47324
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10 005 050102 -0.79932 -1.38806 -0.25804 -0.32736 0.47324
10 005 050103 -0.79932 -1.38806 -0.25804 -0.32736 0.47324
10 005 050200 -0.98346 -1.35239 -0.7126 -0.44848 0.349184
10 005 050301 -1.00987 -1.31019 -0.32105 -0.32051 0.328752
10 005 050302 -1.00987 -1.31019 -0.32105 -0.32051 0.328752
10 005 050401 -1.12208 -1.34703 -0.30938 -0.26993 0.511749
10 005 050402 -1.12208 -1.34703 -0.30938 -0.26993 0.511749
10 005 050403 -1.12195 -1.34695 -0.30924 -0.26987 0.511624
10 005 050404 -1.12208 -1.34703 -0.30938 -0.26993 0.511749
10 005 050501 -1.01589 -1.21337 -0.28241 -0.23291 0.57089
10 005 050502 -1.01589 -1.21337 -0.28241 -0.23291 0.57089
10 005 050601 -0.8549 -1.10636 -0.1882 -0.1283 0.527979
10 005 050602 -0.8549 -1.10636 -0.1882 -0.1283 0.527979
10 005 050701 0.199329 -1.29536 0.454844 0.015748 0.501796
10 005 050702 0.199562 -1.29234 0.454722 0.014693 0.502513
10 005 050801 -0.51931 -1.26919 -0.19699 -0.28676 0.532292
10 005 050802 -0.51931 -1.26919 -0.19699 -0.28676 0.532292
10 005 050803 -0.51931 -1.26919 -0.19699 -0.28676 0.532292
10 005 050900 -0.0572 -0.89128 0.262942 0.022557 0.6449
10 005 051001 0.121618 -1.02645 0.379056 -0.16913 0.607718
10 005 051002 0.121618 -1.02645 0.379056 -0.16913 0.607718
10 005 051003 0.121618 -1.02645 0.379056 -0.16913 0.607718
10 005 051100 0.593812 -0.34324 0.892829 0.126477 0.596819
10 005 051200 0.963078 -1.01555 0.966441 0.229574 0.661398
10 005 051301 0.079594 -1.30211 0.283923 0.030021 0.795338
10 005 051302 0.079594 -1.30211 0.283923 0.030021 0.795338
10 005 051303 0.08412 -1.30162 0.284847 0.030209 0.795216
10 005 051304 0.079698 -1.3021 0.283944 0.030025 0.795335
10 005 051400 -0.89787 -1.27841 -0.26311 -0.20972 0.119474
10 005 051500 -0.88757 -1.60421 -0.44056 -0.21927 0.289411
10 005 051701 -1.10171 -1.58329 -0.33693 -0.21191 0.750185
10 005 051702 -1.05428 -1.59655 -0.40364 -0.15169 0.796032
10 005 051801 -1.03678 -1.28591 -0.20215 -0.22553 0.418265
10 005 051802 -1.03678 -1.28591 -0.20215 -0.22553 0.418265
10 005 051900 -1.07918 -1.43423 -0.33501 -0.28662 0.325668
24 011 955000 -1.1821 -1.46674 -0.4317 -0.48752 0.310447
24 011 955100 -1.17412 -1.29377 -0.29881 -0.11846 0.337017
24 011 955200 -1.15104 -1.42583 -0.44764 -0.32559 0.461723
24 011 955300 -1.16505 -1.05842 -0.14537 -0.31312 0.586972
24 011 955400 -1.04402 -1.71816 -0.5042 -0.35114 0.430036
24 011 955500 -0.98674 -1.43547 -0.33713 -0.26469 0.562527
24 011 955600 -1.16425 -1.10553 -0.21074 -0.27071 0.411596
24 015 030100 -0.24172 -1.30218 0.013501 -0.25378 0.588477
24 015 030200 -0.57673 -1.53212 -0.21319 -0.38329 0.607257
24 019 970100 -0.84433 -1.14419 -0.26654 -0.28611 0.560713
24 019 970200 -0.95764 -1.37982 -0.52818 -0.34134 0.405465
24 019 970300 -0.91673 -1.44533 -0.12117 -0.03604 0.763405
24 019 970400 -0.9398 -0.58144 0.138402 -0.06252 0.763765
24 019 970500 -0.98756 -0.67056 -0.38792 -0.26706 0.470004
24 019 970600 -1.06482 -1.09538 -0.11263 0.046596 0.609009
24 019 970700 -0.73444 -1.28864 0.188596 0.024103 0.96953
24 019 970800 -0.30973 -1.22118 0.134781 -0.03433 1.12592
24 019 970900 -0.35539 -1.08163 -0.02055 0.101783 0.814508
24 029 950100 -0.65282 -1.31053 -0.33647 -0.41871 0.283306
24 029 950200 -0.5838 -1.36451 -0.24769 -0.35378 0.51521
24 029 950300 -0.88461 -0.61149 0.126294 -0.09409 0.610909
24 029 950400 -0.70426 -1.43527 0.009372 -0.29208 0.660782
24 029 950500 -0.58978 -1.01371 0.02076 -0.03037 0.859697
24 035 810100 -0.74819 -1.38236 -0.35317 -0.16593 0.324152
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24 035 810200 -1.0196 -1.69105 -0.53178 -0.33489 0.451985
24 035 810300 -1.08052 -1.37671 -0.15833 -0.30228 0.825792
24 035 810400 -1.15585 -1.15467 -0.2265 -0.04565 0.458002
24 035 810500 -1.15507 -1.37932 -0.26204 -0.16248 0.449954
24 035 810600 -0.91524 -1.81573 0.001528 -0.27076 0.456617
24 035 810700 -0.67071 -1.4433 -0.20654 -0.24039 0.355455
24 035 810800 -0.74768 -1.59302 -0.36817 -0.33922 0.659474
24 035 810900 -0.989 -1.85982 -0.30675 -0.27549 0.885333
24 035 811000 -1.07636 -1.40264 -0.2646 -0.38692 0.806262
24 039 980101 -0.92176 -1.00719 -0.18808 -0.12584 0.402092
24 039 980102 -0.92176 -1.00719 -0.18808 -0.12584 0.402092
24 039 980200 -0.40193 -1.16904 -0.12579 -0.10131 0.634896
24 039 980300 -0.77383 -1.21227 -0.13954 -0.32513 0.309464
24 039 980500 -0.72721 -1.21367 0.03473 -0.01047 0.486811
24 039 980600 -0.8957 -0.76092 -0.27647 -0.11058 0.394282
24 041 960100 -1.10443 -1.7618 -0.39132 -0.35449 0.555161
24 041 960200 -0.68649 -1.4144 0.244278 -0.40344 0.855428
24 041 960300 -1.14578 -0.59694 0.064061 0.158089 0.573524
24 041 960400 -1.15405 -0.59717 0.153738 0.05782 0.786673
24 041 960500 -1.14856 -1.43813 -0.12334 -0.08088 0.752519
24 041 960600 -0.47108 -1.35001 0.406858 -0.07538 0.747505
24 041 960700 -0.62571 -1.04744 0.512099 0.089231 0.841389
24 041 960800 -0.44731 -1.10621 0.129887 -0.18544 0.814265
24 041 960900 -0.69818 -1.16093 0.133744 -0.11255 0.655168
24 045 000100 -1.25746 -0.94995 -0.35634 -0.2863 0.568472
24 045 000200 -0.91867 -0.56761 -0.06372 -0.18987 0.586284
24 045 000300 -1.17386 -0.89355 -0.48893 -0.31508 0.099372
24 045 000400 -1.26603 -0.64267 -0.04725 -0.07656 0.581891
24 045 000500 -1.31903 -1.11343 -0.10303 -0.1354 0.535882
24 045 010101 -1.35373 -1.48416 -0.11953 0.050644 0.675129
24 045 010102 -1.22416 -1.03936 0.0743 0.209051 1.070193
24 045 010200 -1.24853 -1.40738 -0.61996 -0.31707 0.13644
24 045 010300 -1.03641 -1.37988 -0.43258 -0.54598 0.831197
24 045 010400 -1.1261 -1.223 -0.05329 -0.23397 0.543867
24 045 010500 -1.20955 -0.8958 -0.02077 -0.06862 0.713955
24 045 010602 -1.16789 -1.67225 -0.47 -0.30291 0.981719
24 045 010603 -1.05463 -1.45621 -0.33033 -0.12212 0.629691
24 045 010604 -1.05463 -1.45621 -0.33033 -0.12212 0.629691
24 045 010701 -0.92256 -1.24009 -0.43233 -0.23879 0.42028
24 045 010702 -1.00886 -1.31824 -0.39427 -0.20435 0.486481
24 045 010800 -0.63283 -1.18941 -0.20802 -0.07059 0.68784
24 047 990100 0.92682 -0.57972 0.734467 0.29502 0.692864
24 047 990200 -0.74006 -1.43028 -0.22469 -0.01858 0.529402
24 047 990300 -0.88137 -0.99446 -0.33008 -0.27339 0.423907
24 047 990400 -0.65612 -1.3138 -0.09029 -0.28978 0.29822
24 047 990500 0.160148 -1.77843 0.357218 -0.02174 0.571786
24 047 990600 -0.00673 -1.62123 0.293547 -0.16508 0.884202
24 047 990700 -0.04085 -1.13273 0.190129 -0.11575 0.990268
24 047 990800 -0.90304 -1.44675 -0.3474 -0.3119 0.516973
24 047 990900 -1.1706 -1.096 -0.23078 0.070287 0.415221
24 047 991000 -0.88484 -1.41694 -0.30002 -0.35753 0.602175
24 047 991100 -1.05219 -0.92191 -0.21936 -0.32609 0.54024
51 001 990100 -0.06394 -0.7582 0.436481 0.296662 1.04835
51 001 990200 -0.74785 -1.08177 -0.29759 -0.26145 0.285405
51 001 990300 -0.74348 -0.98165 -0.01966 -0.33898 0.192372
51 001 990400 -0.96213 -1.14051 -0.34166 -0.22259 0.23935
51 001 990500 -0.90887 -0.93922 -0.16705 -0.14505 0.464114
51 001 990600 -0.84581 -0.87609 0.021673 -0.10338 0.669617
51 001 990700 -0.82088 -1.02945 -0.19924 -0.31869 0.439481
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51 001 990800 -0.81218 -1.00744 -0.17655 -0.26387 0.324496
51 131 990100 -0.65931 -1.08766 -0.04912 -0.18232 0.257829
51 131 990200 -0.65003 -0.99857 -0.11463 -0.33079 0.239502
51 131 990300 -0.811 -0.81921 -0.16227 -0.39623 0.205322

Table 9: Covariates by tract

C Tracts and Their Neighbors

state
| county
| | tract ID # Neighbor ID’s

10 001 0401 1 7 15 , 51 , 57 , 112 , 113 , 117 , 127
10 001 040201 112 5 1 , 113 , 114 , 127 , 128
10 001 040202 113 5 1 , 3 , 112 , 114 , 117
10 001 040203 114 6 2 , 3 , 112 , 113 , 127 , 128
10 001 0404 2 7 3 , 8 , 9 , 18 , 114 , 120 , 128
10 001 0405 3 7 2 , 4 , 7 , 8 , 113 , 114 , 117
10 001 0406 4 5 3 , 5 , 6 , 7 , 117
10 001 0407 5 4 4 , 6 , 12 , 117
10 001 0408 6 5 4 , 5 , 7 , 11 , 12
10 001 0409 7 6 3 , 4 , 6 , 8 , 11 , 12
10 001 0410 8 6 2 , 3 , 7 , 9 , 10 , 11
10 001 0411 9 6 2 , 8 , 10 , 18 , 119 , 120
10 001 0412 10 6 8 , 9 , 11 , 14 , 116 , 119
10 001 0413 11 7 6 , 7 , 8 , 10 , 12 , 13 , 14
10 001 0414 12 8 5 , 6 , 7 , 11 , 13 , 115 , 117 , 118
10 001 0415 13 4 11 , 12 , 14 , 115
10 001 0416 14 5 10 , 11 , 13 , 115 , 116
10 001 041701 115 7 12 , 13 , 14 , 17 , 116 , 118 , 119
10 001 041702 116 5 10 , 14 , 17 , 115 , 119
10 001 041801 117 8 1 , 3 , 4 , 5 , 12 , 15 , 113 , 118
10 001 041802 118 6 12 , 15 , 16 , 17 , 115 , 117
10 001 0419 15 6 1 , 16 , 33 , 57 , 117 , 118
10 001 0420 16 6 15 , 17 , 22 , 33 , 34 , 118
10 001 0421 17 7 16 , 22 , 115 , 116 , 118 , 119 , 120
10 001 042201 119 6 9 , 10 , 17 , 115 , 116 , 120
10 001 042202 120 7 2 , 9 , 17 , 18 , 21 , 22 , 119
10 001 0424 18 7 2 , 9 , 19 , 20 , 21 , 120 , 131
10 001 0425 19 5 18 , 20 , 129 , 130 , 131
10 001 0426 20 6 18 , 19 , 21 , 23 , 129 , 130
10 001 0427 21 5 18 , 20 , 22 , 23 , 120
10 001 0428 22 8 16 , 17 , 21 , 23 , 24 , 25 , 34 , 120
10 001 0429 23 8 20 , 21 , 22 , 24 , 25 , 129 , 132 , 133
10 001 0430 24 3 22 , 23 , 25
10 001 0431 25 7 22 , 23 , 24 , 34 , 36 , 132 , 133
10 003 016601 121 6 40 , 41 , 122 , 124 , 125 , 126
10 003 016602 122 3 121 , 123 , 124
10 003 016603 123 3 122 , 124 , 126
10 003 016604 124 5 121 , 122 , 123 , 125 , 126
10 003 016801 125 7 40 , 51 , 121 , 124 , 126 , 127 , 128
10 003 016802 126 6 121 , 123 , 124 , 125 , 127 , 128
10 003 016901 127 6 1 , 112 , 114 , 125 , 126 , 128
10 003 016902 128 6 2 , 112 , 114 , 125 , 126 , 127
10 005 050101 129 6 19 , 20 , 23 , 26 , 130 , 133
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10 005 050102 130 5 19 , 20 , 26 , 129 , 131
10 005 050103 131 6 18 , 19 , 26 , 27 , 130 , 144
10 005 0502 26 8 129 , 130 , 131 , 133 , 138 , 139 , 144 , 145
10 005 050301 132 9 23 , 25 , 36 , 37 , 39 , 133 , 134 , 135 , 137
10 005 050302 133 7 23 , 25 , 26 , 129 , 132 , 137 , 138
10 005 050401 134 7 39 , 42 , 132 , 135 , 136 , 156 , 165
10 005 050402 135 4 132 , 134 , 136 , 137
10 005 050403 136 5 134 , 135 , 137 , 154 , 156
10 005 050404 137 8 132 , 133 , 135 , 136 , 138 , 140 , 154 , 156
10 005 050501 138 5 26 , 133 , 137 , 139 , 140
10 005 050502 139 5 26 , 138 , 140 , 142 , 145
10 005 050601 140 9 31 , 137 , 138 , 139 , 141 , 142 , 143 , 154 , 155
10 005 050602 141 3 31 , 140 , 143
10 005 050701 142 5 139 , 140 , 143 , 145 , 147
10 005 050702 143 9 28 , 29 , 31 , 140 , 141 , 142 , 147 , 148 , 150
10 005 050801 144 5 26 , 27 , 131 , 145 , 146
10 005 050802 145 7 26 , 27 , 139 , 142 , 144 , 146 , 147
10 005 050803 146 4 27 , 144 , 145 , 147
10 005 0509 27 7 28 , 131 , 144 , 145 , 146 , 147 , 149
10 005 051001 147 7 27 , 142 , 143 , 145 , 146 , 148 , 149
10 005 051002 148 4 28 , 143 , 147 , 149
10 005 051003 149 4 27 , 28 , 147 , 148
10 005 0511 28 6 27 , 29 , 143 , 148 , 149 , 150
10 005 0512 29 6 28 , 90 , 143 , 150 , 152 , 153
10 005 051301 150 6 28 , 29 , 31 , 143 , 151 , 152
10 005 051302 151 5 30 , 31 , 150 , 152 , 153
10 005 051303 152 4 29 , 150 , 151 , 153
10 005 051304 153 6 29 , 30 , 90 , 91 , 151 , 152
10 005 0514 30 5 31 , 91 , 151 , 153 , 155
10 005 0515 31 7 30 , 140 , 141 , 143 , 150 , 151 , 155
10 005 051701 154 6 136 , 137 , 140 , 155 , 156 , 157
10 005 051702 155 9 30 , 31 , 32 , 91 , 140 , 154 , 157 , 163 , 164
10 005 051801 156 8 32 , 42 , 134 , 136 , 137 , 154 , 157 , 165
10 005 051802 157 4 32 , 154 , 155 , 156
10 005 0519 32 5 155 , 156 , 157 , 165 , 166
24 011 9550 33 5 15 , 16 , 34 , 57 , 60
24 011 9551 34 8 16 , 22 , 25 , 33 , 35 , 36 , 57 , 60
24 011 9552 35 5 34 , 36 , 37 , 60 , 71
24 011 9553 36 5 25 , 34 , 35 , 37 , 132
24 011 9554 37 6 35 , 36 , 38 , 39 , 71 , 132
24 011 9555 38 6 37 , 39 , 43 , 71 , 75 , 79
24 011 9556 39 6 37 , 38 , 42 , 43 , 132 , 134
24 015 0301 40 5 41 , 51 , 52 , 121 , 125
24 015 0302 41 2 40 , 121
24 019 9701 42 7 39 , 43 , 44 , 50 , 134 , 156 , 165
24 019 9702 43 5 38 , 39 , 42 , 44 , 79
24 019 9703 44 5 42 , 43 , 48 , 50 , 79
24 019 9704 45 4 46 , 47 , 48 , 79
24 019 9705 46 3 45 , 47 , 48
24 019 9706 47 3 45 , 46 , 48
24 019 9707 48 7 44 , 45 , 46 , 47 , 49 , 50 , 79
24 019 9708 49 2 48 , 50
24 019 9709 50 7 42 , 44 , 48 , 49 , 66 , 89 , 165
24 029 9501 51 6 1 , 40 , 52 , 56 , 57 , 125
24 029 9502 52 5 40 , 51 , 53 , 54 , 56
24 029 9503 53 4 52 , 54 , 56 , 58
24 029 9504 54 5 52 , 53 , 55 , 58 , 59
24 029 9505 55 1 54
24 035 8101 56 5 51 , 52 , 53 , 57 , 58

30



24 035 8102 57 8 1 , 15 , 33 , 34 , 51 , 56 , 58 , 60
24 035 8103 58 6 53 , 54 , 56 , 57 , 59 , 60
24 035 8104 59 4 54 , 58 , 60 , 61
24 035 8105 60 8 33 , 34 , 35 , 57 , 58 , 59 , 61 , 71
24 035 8106 61 5 59 , 60 , 62 , 71 , 72
24 035 8107 62 3 61 , 63 , 65
24 035 8108 63 3 62 , 64 , 65
24 035 8109 64 2 63 , 65
24 035 8110 65 3 62 , 63 , 64
24 039 980101 158 5 67 , 87 , 99 , 159 , 162
24 039 980102 159 6 66 , 67 , 87 , 89 , 158 , 162
24 039 9802 66 4 50 , 67 , 106 , 159
24 039 9803 67 7 66 , 68 , 69 , 99 , 100 , 158 , 159
24 039 9804 68 1 67
24 039 9805 69 5 67 , 70 , 100 , 102 , 103
24 039 9806 70 1 69
24 041 9601 71 7 35 , 37 , 38 , 60 , 61 , 72 , 75
24 041 9602 72 8 61 , 71 , 73 , 74 , 75 , 76 , 77 , 79
24 041 9603 73 3 72 , 74 , 75
24 041 9604 74 3 72 , 73 , 75
24 041 9605 75 6 38 , 71 , 72 , 73 , 74 , 79
24 041 9606 76 3 72 , 77 , 79
24 041 9607 77 3 72 , 76 , 78
24 041 9608 78 1 77
24 041 9609 79 8 38 , 43 , 44 , 45 , 48 , 72 , 75 , 76
24 045 0001 80 6 81 , 83 , 84 , 88 , 160 , 161
24 045 0002 81 6 80 , 82 , 83 , 84 , 85 , 160
24 045 0003 82 4 81 , 83 , 85 , 86
24 045 0004 83 7 80 , 81 , 82 , 84 , 86 , 87 , 88
24 045 0005 84 6 80 , 81 , 83 , 87 , 88 , 161
24 045 010101 160 7 80 , 81 , 85 , 161 , 162 , 163 , 166
24 045 010102 161 6 80 , 84 , 88 , 160 , 162 , 163
24 045 0102 85 5 81 , 82 , 86 , 160 , 166
24 045 0103 86 6 82 , 83 , 85 , 87 , 89 , 166
24 045 0104 87 8 83 , 84 , 86 , 88 , 89 , 158 , 159 , 162
24 045 0105 88 6 80 , 83 , 84 , 87 , 161 , 162
24 045 010602 162 11 87 , 88 , 91 , 97 , 99 , 158 , 159 , 160 , 161 , 163 , 164
24 045 010603 163 6 155 , 160 , 161 , 162 , 164 , 166
24 045 010604 164 4 91 , 155 , 162 , 163
24 045 010701 165 7 32 , 42 , 50 , 89 , 134 , 156 , 166
24 045 010702 166 7 32 , 85 , 86 , 89 , 160 , 163 , 165
24 045 0108 89 6 50 , 86 , 87 , 159 , 165 , 166
24 047 9901 90 5 29 , 91 , 95 , 96 , 153
24 047 9902 91 12 30 , 90 , 92 , 93 , 94 , 95 , 96 , 97 , 153 , 155 , 162 , 164
24 047 9903 92 2 91 , 93
24 047 9904 93 6 91 , 92 , 94 , 95 , 96 , 97
24 047 9905 94 3 91 , 93 , 95
24 047 9906 95 5 90 , 91 , 93 , 94 , 96
24 047 9907 96 8 90 , 91 , 93 , 95 , 97 , 99 , 101 , 102
24 047 9908 97 6 91 , 93 , 96 , 98 , 99 , 162
24 047 9909 98 2 97 , 99
24 047 9910 99 8 67 , 96 , 97 , 98 , 100 , 102 , 158 , 162
24 047 9911 100 4 67 , 69 , 99 , 102
51 001 9901 101 2 96 , 102
51 001 9902 102 7 69 , 96 , 99 , 100 , 101 , 103 , 104
51 001 9903 103 4 69 , 102 , 104 , 105
51 001 9904 104 5 102 , 103 , 105 , 107 , 108
51 001 9905 105 4 103 , 104 , 106 , 107
51 001 9906 106 3 66 , 105 , 107
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51 001 9907 107 5 104 , 105 , 106 , 108 , 109
51 001 9908 108 3 104 , 107 , 109
51 131 9901 109 4 107 , 108 , 110 , 111
51 131 9902 110 2 109 , 111
51 131 9903 111 2 109 , 110

Table 10: Tract neighbors by ID

32


