RESEARCH REPORT SERIES

(Statistics \#2009-03)

Population Estimation Using Tract Level
 Geography and Spatial Information

Patrick M. Joyce ${ }^{1}$
Donald Malec
${ }^{1}$ University of Connecticut

Statistical Research Division
U.S. Census Bureau

Washington, D.C. 20233

Report Issued: February 27, 2009
Disclaimer: This report is released to inform interested parties of research and to encourage discussion. The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau

Population Estimation Using Tract Level Geography and Spatial Information*

Patrick M. Joyce
University of Connecticut

Donald Malec
U.S. Census Bureau

Abstract

Surveys such as the American Community Survey provide samples that cover the country's geography more evenly than highly clustered personal interview surveys. As a result, small areas such as census tracts will usually contain sample both within a tract and also within nearby tracts. The potential for using nearby data to increase the efficiency of tract level estimates, with spatial models, is investigated for a group of census tracts in the Delmarva Peninsula. Using Census 2000 counts of housing unit vacancy and occupancy rates and corresponding 1990 data as covariates, small area estimates of vacancy rate and person per housing unit are made incorporating conditional auto-regressive (CAR) spatial models.

Abstract

The following issues related to making model-based estimates are addressed: fitting a parametric small area model to the housing unit data, comparison of CAR spatial models with a traditional hierarchal model without spatial components, the practical reduction in variance achieved by using a CAR spatial model and, lastly, the sampling properties of the small area estimates drawn from samples of 2000 census counts using both the CAR spatial model and the hierarchical model.

1 Introduction

The small areas of small area estimation are usually prespecified in advance and are typically administrative units, such as counties or states. The definition of the small area boundaries, however, may or may not correspond to the homogeneity of the population within the small area or the heterogeneity between neighboring small areas. There may, in fact, be larger geographic regions that contain small areas that share similarities, including similar outcomes to survey questions. In situations like this, data collected in a small area may provide some information about its neighboring small areas. The preferential use of nearby similar data, in small area estimation, can be achieved by including the possibility of spatial similarity in a statistical model. Whether looking at maps of small area outcomes or just using the corresponding estimates, spatial models can increase the precision when characteristics of nearby areas are related.

The use of spatial models for small area estimation can be found in Ghosh et al. (1998) and references therein. For a comprehensive account of small area estimation, see Rao (2003).

The use of spatial models at the Census Bureau is being evaluated at this time because data amenable to spatial modeling are now available from the American Community Survey (ACS). In order to economically spread the ACS sample over all census tracts in the United States, the U.S. mail is used as a first contact. Many other national surveys are collected via personal interviews that, to save costs, are collected within a sample of large primary sampling units (PSUs) typically made up of a county or a group of contiguous counties. PSUs are designed to reduce the total interviewer travel time. The use of any spatial model based on these small samples of PSUs would require extrapolation across large areas where the primary sampling units were not in sample. Telephone survey responses can be more geographically disperse and still be cost

[^0]effective. However, the use of different area codes or exchanges may only provide a rough idea of geographic proximity. Mail surveys, however, are linked to an address and, apart from Post Office boxes, can be linked to a precise geographic location.

This preliminary evaluation of the possible uses of spatial models for small area estimation for the ACS uses neither ACS data nor, for that matter, much data from the entire United States. Instead, Census 2000 data related to housing unit size and vacancy status will be used for making tract-level estimates for the Delmarva Peninsula. The reason Census data are used instead of ACS data is that the Census data provides a complete count, affording more data for model fitting and providing a large data source from which to sample in order to evaluate the proposed small area estimates. The census items used (housing characteristics) are also obtained in the ACS but are based on a different residence rule. The reason that only data from the Delmarva Peninsula are used is to avoid the need for extensive data processing. The Delmarva Peninsula, comprising Delaware and the eastern seashore parts of Maryland and Virginia, is about 5.45 thousand square miles in size, containing 165 census tracts (see fig. 1). The tracts are contiguous. Residences on the peninsula are occupied by both permanent and seasonal residents and should provide a variety of housing characteristics with which to model. Census tracts are picked as the small area because annual tract-level design-based estimates are not planned to be released due to their poor precision. Instead, ACS tract-level estimates are only planned for aggregate, multi-year design-based estimates. Previous work on model-based small area estimation for the ACS also focused on tract-level estimation (see Chand \& Alexander (1995), Chand \& Alexander (1996), Chand \& Alexander (1999), Chand and Malec (2001) and Malec (2005)).

Figure 1: Census Tracts of the Delmarva Peninsula (Census 2000 definitions)

2 Overview of the Spatial Model Used and Its Non-spatial Counterpart

Our model can be broken into two components. The first component describes the distribution of outcomes at the tract level using a model with all tract-specific parameters. The second component describes how the tract-level parameters relate to one another. This second level model induces "borrowing strength," the signature of small area estimation.

2.1 Within Tract Level Model Component

For each housing unit, h, in tract, t, define $X_{t h}$ to be the housing unit size, $X_{t h} \in\{0,1,2, \ldots\}$ (see section 3.1 for a detailed description of the data).

It is assumed that the $X_{t h}$ are distributed i.i.d. within tract t and that:

$$
\begin{equation*}
P\left(X_{t h}=x \mid p_{t x}\right)=p_{t x} \tag{1}
\end{equation*}
$$

where, $x \in\{0,1,2, \ldots\}$ and $\sum_{x=0}^{\infty} p_{t x}=1$.

Further, the following parameter transformations and parameter reduction are used:

$$
\begin{align*}
p_{t 0} & =q_{t 0} \\
p_{t 1} & =\left(1-q_{t 0}\right) q_{t 1} \\
p_{t 2} & =\left(1-q_{t 0}\right)\left(1-q_{t 1}\right) q_{t 2} \\
p_{t 3} & =\left(1-q_{t 0}\right)\left(1-q_{t 1}\right)\left(1-q_{t 2}\right) q_{t 3} \\
p_{t 4} & =\left(1-q_{t 0}\right)\left(1-q_{t 1}\right)\left(1-q_{t 2}\right)\left(1-q_{t 3}\right) q_{t 4} \\
p_{t 5} & =\left(1-q_{t 0}\right)\left(1-q_{t 1}\right)\left(1-q_{t 2}\right)\left(1-q_{t 3}\right)\left(1-q_{t 4}\right) q_{t 4} \tag{2}\\
\vdots & \\
p_{t 5+\ell} & =\left(1-q_{t 0}\right)\left(1-q_{t 1}\right)\left(1-q_{t 2}\right)\left(1-q_{t 3}\right)\left(1-q_{t 4}\right)^{\ell-1} q_{t 4}
\end{align*}
$$

The above parameter transformation is based on transforming the joint distribution of $X_{t h}$ in terms of a product of conditional distributions as follows:

$$
P\left(X_{t h}=x \mid X_{t h} \geq x, q_{t x}\right)= \begin{cases}q_{t x} & 0 \leq \mathrm{x} \leq 3 \tag{3}\\ q_{t 4} & 3<\mathrm{x}\end{cases}
$$

This conditional approach was used to transform a multinomial model of tract-level household composition in Chand and Malec (2001) and Malec (2005) because, based on this parameterization, the likelihood will factor into a product of single parameter terms. This parameterization is an extension of that idea to include an open-ended upper bound with the additional, data analytic observation, detailed in section 3.2, that constant conditional probabilities for all but a few values of x are justified.

The reason that a model was fit at the tract level in the first place was to avoid the underlying problems associated with the use of standard normal theory small area estimation. Specifically, to avoid the problems connected with assuming that tract-level statistics can be characterized as having a normal distribution and that the estimated tract-level variances are assumed to be error free and, hence, considered as known constants. As shown in Malec (2005), this assumption is untenable due to small sample size when applied to an example of ACS tract-level modeling. There, it was shown that the normality assumption could be replaced with a multinomial model which accounted for the sample design and, most importantly, accounted
for the precision of all parameters in the model, including variance. For a recent account of the problems inherent in using the normality/precise-variance-estimates assumption for small areas, see Bell (2008).

For tract t, the likelihood function is:

$$
\begin{align*}
\prod_{h \in S} P\left(X_{t h}=x\right) \propto & \prod_{x=0}^{3} \quad
\end{align*} q_{t x}^{f_{t x}}\left(1-q_{t x}\right)^{R_{t x}} .
$$

where, in tract t, M_{t} is the maximum housing unit size recorded, $f_{t x}$ is the number of housing units recorded as size x and $R_{t x}=\sum_{\ell=x+1}^{M_{t}} f_{t \ell}$ is the number of housing units with a size recorded as larger than x.

2.2 Between-Tract-Level Model Component

The model specifying how the tract-level parameters, $q_{t 0}, q_{t 1}, q_{t 2}, q_{t 3}$ and $q_{t 4}$, are related across tracts is specified on the logistic scale, since all five parameters are between zero and one.

Define

$$
\begin{equation*}
\operatorname{logit}\left(q_{t i}\right)=\alpha_{i}+x_{t i} \beta_{i}+e_{t i}, \quad i \in\{0,1,2,3,4\} \tag{5}
\end{equation*}
$$

with possibly spatially correlated errors:

$$
\begin{equation*}
e_{t i} \mid e_{(-t i)}=\gamma_{i} \sum_{k \in B_{t}} e_{k i}+\epsilon_{t i}, \quad i \in\{0,1,2,3,4\} \tag{6}
\end{equation*}
$$

where B_{t} denotes the set of tracts that are nearest neighbors to tract, t, and the notation: $y_{(-i)}$ denotes the set of all y_{j} such that $j \neq i$.

In addition,

$$
\begin{equation*}
\epsilon_{t i} \sim N\left(0, \sigma_{i}^{2}\right), \quad i \in\{0,1,2,3,4\} \tag{7}
\end{equation*}
$$

Note that complete independence is assumed between the i.
Issues in constructing covariates, $x_{t i}$ and x_{t} are provided in section 3.3. A more detailed description of the spatial component of the model and alternative spatial models is provided in section 3.4.2.

This spatial model is compared with the "non-spatial" model implicitly defined from (6) by forcing $\gamma_{i}=0$. In this case, a standard hierarchical model remains and equations (6) and (7) can be equivalently re-specified by the single equation:

$$
\begin{equation*}
e_{t i} \sim N\left(0, \sigma_{i}^{2}\right), \quad i \in\{0,1,2,3,4\} \tag{8}
\end{equation*}
$$

3 Choice of Model

The following details how the final model for evaluating the use of spatial models was selected. As will be seen, data analysis, covariate definition, and available spatial modeling software are all factors.

3.1 Data

In dealing with residential data our fundamental sampling unit is the housing unit. The response of interest from the housing unit is the number of occupants within the housing unit. From here we will build our model and facilitate estimation of the population values. These housing units are located within blocks, which are located within block groups, which are located in tracts. We are dealing with the aggregation of data at the tract level and so the observations are undifferentiated from each other within the tracts. For the purpose
of modeling, each housing unit is assumed to be independent of other housing units.
The number of occupants within a housing unit can be as small as zero (a vacant unit) and can range up to an arbitrarily large number. Often in large occupant cases, a person is more likely dealing with a group quarter rather than a household, but it is not impossible to have a very large number of occupants within a housing unit.

As mentioned, the data are aggregated by census tracts. The data within these census tracts are assumed to be of the same common distributional form with parameters specific to the individual tract. The tract-level summary of the 2000 Census housing unit data used in this analysis is given in Appendix A.

3.2 Tract Level Marginal Model

Our strategy for picking a tract-level model was to start out with a relatively simple model that covered the salient features of the data, and then, with the help of data analysis, add complexity as needed.

3.2.1 The Initial Proposal: Zero-Independent Poisson

The first step when dealing with data is to model the data itself. In this case we tasked ourselves to construct a marginal model for the data with no covariate information or other information used for the purpose of estimation.

Our initial model was built off the idea of preserving notions of vacancy rate and persons per household. We knew our geography had within it tracts for which there were a large amount of vacants. A zero-independent Poisson model was proposed to handle this phenomenon while preserving the term for the probability of zero as solely relating to the vacancy rate. Letting t represent the index for tracts on $t=1, \ldots, T$ then our model for the number of housing unit occupants has the form

$$
\begin{equation*}
P\left(X_{t}=x\right)=p_{0 t} \times I\left(X_{t}=0\right)+\left(1-p_{0 t}\right) \times \frac{e^{-\lambda_{t}} \lambda_{t}^{x}}{x!\left(1-e^{-\lambda_{t}}\right)} I\left(X_{t}>0\right) \tag{9}
\end{equation*}
$$

In our models we want to utilize a hierarchical structure so that in the cases where tracts are bereft of data we can borrow strength from other tracts to reduce error. For this reason, we let $\operatorname{logit}\left(p_{t 0}\right) \sim N\left(\mu_{p}, \sigma_{p}^{2}\right)$ and $\log \left(\lambda_{t}\right) \sim N\left(\mu_{\lambda}, \sigma_{\lambda}^{2}\right)$. Likewise, since we are operating within a Bayesian framework we further let μ_{p}, $\mu_{\lambda}, \sigma_{p}^{2}$, and σ_{λ}^{2} to have vague or non-informative priors as allowed by computational reality.

Having stated our model for the data we then need to verify the model choice. Assuming that the Poisson model is suitable in general we must show that we need the separate term for zero occupants and we must show that only a term for zero occupants (and say, not for zero and one occupants separately) is needed. While there are numerous ways to invalidate a model these two ways appear to be the most obvious.

To establish the necessity of a term relating to those units with zero vacancies we recall (9). If a simple Poisson model with parameters varying by tract is sufficient to explain the data then we should be able to reduce the model. Namely, if we can show that $p_{t 0}=e^{-\lambda_{t}}$ over the values of t then we would find that (9) reduces to the following simple Poisson model:

$$
\begin{equation*}
P\left(X_{t}=x_{t}\right)=e^{-\lambda_{t}} \times I\left(X_{t}=0\right)+\frac{e^{-\lambda_{t}} \lambda_{t}^{x}}{x!} I\left(X_{t}>0\right) \tag{10}
\end{equation*}
$$

To assess if $p_{t 0}=e^{-\lambda_{t}}$ we take the posterior mean of $p_{t 0}$ based on the model in (9) and plot it against the posterior mean of $e^{-\lambda_{t}}$ based on the model in (10). If we observe values close to a 45 -degree line then we can simplify the model. The points obtained in this manner are shown on figure 2 in the color red. Another way would be to again estimate $e^{-\lambda_{t}}$ from (10) but compare it to the posterior mean of $p_{t 0}$ from (1). If the simpler model is true then we should see these values should also be nearly equal. When constructing a plot these values should also adhere to a 45-degree line. This is shown in figure 2 in the color blue.

Note that we give the same type of hierarchical structure to (10) that we did to (9).

Figure 2:

Model Check p0 term (Poisson)

We see in figure 2 that the values do not conform to a line, but they do appear to conform to some sort of functional relationship with each other. Based on this visual inspection, we conclude that we do need the housing units with zero occupants to be modeled separately.

Next, we look at the introduction of a term in the model for those housing units occupied by one person. This distribution for this model has the following formula:

$$
\begin{equation*}
P\left(X_{t}=x_{t}\right)=p_{0 t} \times I\left(X_{t}=0\right)+p_{1 t} \times I\left(X_{t}=1\right)+\left(1-p_{0 t}-p_{1 t}\right) \times \frac{e^{-\lambda_{t}} \lambda_{t}^{x_{t}}}{x_{t}!\left(1-e^{-\lambda_{t}}-\lambda_{t} e^{-\lambda_{t}}\right)} I\left(X_{t}>1\right) \tag{11}
\end{equation*}
$$

To get from (11) to (9) we would let $p_{1 t}=\left(1-p_{0 t}\right) \frac{\lambda_{t} e^{-\lambda_{t}}}{1-e^{-\lambda_{t}}}$. To simplify matters we construct plots based on $\frac{p_{1 t}}{1-p_{0 t}}$ and $\frac{\lambda_{t} e^{-\lambda_{t}}}{1-e^{-\lambda_{t}}}$ in the same manner as we did for the first plot.

In figure 3 we see some adherence to the ideal 45-degree line but not so much that it leaves us convinced of the suitability of the zero-independent Poisson model. We see that the majority of the values appear to be above this 45-degree line. We would expect that values would fall upon either side of this line. It may be that the nature of hierarchical models may be playing a role but this is uncertain. Since we are faced with these questions we look in a different direction in an attempt to conclude our model building.

3.2.2 Multinomial Modeling

Since modifying the Poisson models step by step seemed impractical and since our more complex model could still be a poor fit, we felt it would be wise to go from one end of the modeling spectrum to the other. Instead of using a parametric model, we used a semi-parametric approach. In this case we sought out the use of the multinomial distribution. Here we model the individual probabilities of observing a housing unit

Figure 3:

Model Check p1 term (Poisson)

with a certain number of occupants. The appeal here is that we are able to model each tract with its own multinomial distribution, thereby avoiding issues of lack of fit on individual tracts or across tracts in general.

Unfortunately, the multinomial distribution does not answer all questions for us. Within the tracts there exist housing units with a large number of occupants; one housing unit within the Delmarva region has as many as 30 people. We can place a cap on the values for which we make our multinomial model, but this will have a trade-off of possibly undercounting population if predictions are made. We may also see tracts for which the number of units occupied by 6 people, for instance, is zero. While we will continue to use a hierarchical structure we may become too specific when using a multinomial distribution.

With both advantages and disadvantages in mind we can use the multinomial distribution as an exploratory data analysis tool. If we can spot any patterns then we may be able to find a different answer to our problem.

For our purposes we model zero through nine housing unit occupant counts as individual multinomial terms. Housing units of occupant size 10 and above are aggregated into a single term. The multinomial parameters are treated in a hierarchical fashion similar to 1 but using the multinomial logistic form, i.e.

$$
\begin{equation*}
\frac{e^{v_{t x}}}{1+\sum_{x=1}^{J} e^{v_{t x}}}=p_{t x}, v_{t x} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right) \tag{12}
\end{equation*}
$$

with vague or non-informative priors used in the appropriate fashion.
The best way to look at these probabilities is to work in a conditional fashion. Instead of displaying the probabilities, $p_{t x}$, Table 1 uses estimates of $q_{t x}=p_{t x} /\left(1-p_{t 0}-\ldots-p_{t(x-1)}\right)$, or rather the probability of observing x occupants given that you will see $X_{t h} \geq x$ occupants. This will let us see if there are any patterns in the tails of the densities. If we can find a pattern then we may be able to relate the tails through a parametric distribution.

We can glean a few features from estimated, tract-level, conditional probabilities (Table 1). One feature is

$q_{t 0}$	$q_{t 1}$	$q_{t 2}$	$q_{t 3}$	$q_{t 4}$	$q_{t 5}$	$q_{t 6}$	$q_{t 7}$	$q_{t 8}$	$q_{t 9}$
0.036	0.160	0.407	0.380	0.618	0.563	0.511	0.567	0.521	0.514
0.054	0.273	0.434	0.411	0.590	0.659	0.694	0.642	0.558	0.491
0.052	0.221	0.485	0.429	0.618	0.688	0.669	0.579	0.551	0.609
0.054	0.203	0.425	0.460	0.608	0.676	0.642	0.597	0.592	0.559
0.185	0.263	0.490	0.431	0.587	0.681	0.634	0.618	0.517	0.560
\vdots									
0.493	0.277	0.696	0.472	0.673	0.704	0.609	0.615	0.516	0.585
0.364	0.293	0.576	0.443	0.594	0.657	0.655	0.627	0.560	0.492
0.742	0.437	0.758	0.514	0.619	0.671	0.640	0.576	0.493	0.524
0.783	0.293	0.772	0.490	0.632	0.752	0.694	0.600	0.544	0.528
0.341	0.212	0.661	0.450	0.640	0.693	0.693	0.600	0.494	0.461
0.291	0.251	0.502	0.466	0.608	0.643	0.633	0.625	0.559	0.493
0.380	0.266	0.628	0.494	0.646	0.691	0.696	0.594	0.517	0.559
0.458	0.246	0.712	0.495	0.668	0.616	0.659	0.623	0.539	0.559
\vdots									
0.103	0.219	0.445	0.441	0.567	0.606	0.603	0.586	0.435	0.409
0.050	0.159	0.461	0.408	0.627	0.657	0.627	0.652	0.494	0.551
0.070	0.191	0.455	0.431	0.627	0.683	0.631	0.612	0.587	0.588
0.069	0.236	0.468	0.453	0.618	0.689	0.696	0.576	0.596	0.557
0.103	0.230	0.459	0.386	0.571	0.621	0.606	0.684	0.532	0.552

Table 1: Estimated Conditional Probabilities of Housing Unit Size for Selected Tracts (rows)
that we can see that the vacancy term in the model does appear to have some strong differences across tracts. We can also see that the conditional tract probabilities appear to be relatively stable for housing units of size 4 and above. This is to say that there is no clear trend but they seem to cluster around a conditional probability of 0.6. Similarly, while the first few conditional probabilities do differ in a non-obvious way, housing units with size 2 and 3 do appear to be near to each other. While this does not mean that they should be summarized by the same single parameter it may be more natural to relate terms in this conditional tail manner than to rely upon a multinomial logistic hierarchical model. Similarly, the tail conditional behavior suggests a geometric distribution model at some point.

This table also tells us that the Poisson distribution is not useful for modeling in the tail of the distribution. The reason for this is that $\frac{P(x)}{1-F(x-1)} \rightarrow 1$ as $x \rightarrow \infty$ if the data are Poisson in nature on the tails. The probabilities do not increase as they should so the Poisson distribution does not fit the data.

3.2.3 The Tail Distribution

The need of a tail distribution was implicit in the realization that the number of housing unit occupants is unbounded and so a model for larger values would be needed. We then ask ourselves, "what form does this distribution take?"

Given our observation in Table 1, we did two things: We made the tail density function a Geometric Distribution with parameter, p, as we saw that the tail probabilities are roughly the same. We made the cut-off at $k=4$ since the probabilities appear to become constant starting there.

3.2.4 Using the Marginal Model

At this point we have modeled the marginal model for the 2000 census data upon these census tracts. We have not used any possible covariate information available to us nor have we utilized any spatial structure. Since our goal in making small area estimates is to make estimates of housing unit characteristics during non-census years, we will only have a small sample of housing units available to us and will need to rely on the best model that we can assemble in order to make predictions for the unsampled housing units. The use of good covariates as predictors can help accomplish this goal. In addition, covariates that are themselves spatially correlated may reduce or eliminate the need for a spatial model. Hence, we will want to include covariates in our model in order to fairly evaluate a spatial model. In the interest of time, the only covariate information we entertain is housing unit characteristics, at the census tract level, as measured in the 1990 Census. We chose this covariate information because it is readily available, it should provide good predictors and it should also be spatially correlated (if the 2000 housing unit characteristics are spatially correlated).

The useful thing about first developing the marginal model (i.e. a model without covariates) is that we now have a better idea of the distributional behavior of the number of occupants within a housing unit. Nevertheless, for the reasons given above, it may be useful to introduce covariate information for the tracts while also investigating the usage of spatial structure upon the tracts.

3.3 Covariate Construction

Without delving deeply into the characteristics of each tract on a variety of variables (such as race percentages, income values, etc.) we want to construct useful covariate information to reduce the uncertainty in parameter estimation. The more certain our parameter estimates the better our population estimates will be later on.

3.3.1 Using the 1990 Census

As covariates, we are constructing MLEs for the parameters in model (2) using 1990 census data. What we would like to do is simply take the 1990 data on the 2000 census tract definitions and find the estimates for the model parameters from (2). The difficulty in this is that some of the 2000 census tabulation tracts are different from the 1990 census tabulation tracts. (As an indication of the change, around 29% of the tracts defined for the 2000 census in the fifty states and D.C. exhibited a change in population of 2.5%, or more, due to a change in their boundaries from 1990*.

To overcome this difficulty we take the data from the 1990 census tracts and reorganize them on the 2000 census tracts. To do this we break apart the 1990 tracts where needed and then reaggregate them into the 2000 census tracts. We use the land area of the tracts as the mechanism to split the data. Example: Consider tracts " 1 " and "2." " 1 " is split into two parts. The first part with two-thirds of the land area remains as tract "1", the other part becomes part of tract "2." The next table demonstrates this behavior.

1990		split					
housing unit size	1	2	$1 \rightarrow 1$	$1 \rightarrow 2$	$2 \rightarrow 2$	1	2
0	10	5	6.67	3.33	5	6.67	8.33
1	15	16	10	5	16	10	21
2	12	4	8	4	4	8	8
3	5	8	3.33	1.67	8	3.33	9.67
4	1	0	0.67	0.33	0	0.67	0.33

[^1]Once we get the 1990 census data aligned to the 2000 census tracts we can construct our covariates. Since our model terms consist of $q_{t 0}, q_{t 1}, q_{t 2}, q_{t 3}$, and $q_{t 4}$ from (2), by tract, we will want to make similar model estimates for these on the 1990 data. However, in order to use tract-level covariates based only on one tract at a time, we will use maximum likelihood estimates based on (2) without an additional hierarchical model (call them $\hat{q}_{[90] t 0}, \hat{q}_{[90] t 1}, \hat{q}_{[90] t 2}, \hat{q}_{[90] t 3}$, and $\left.\hat{q}_{[90] t 4}\right)$. These estimates have the following form:

$$
\hat{q}_{[90] t i}=\left\{\begin{array}{cc}
\frac{\left|\left\{h: X_{t h}=i\right\}\right|}{\left|\left\{h: X_{t h} \geq i\right\}\right|} & i \in\{0,1,2,3\} \tag{13}\\
\frac{\left|\left\{h: X_{t h} \geq 4\right\}\right|}{\left|\left\{h: X_{t h} \geq 4\right\}\right|+\sum_{i \geq 4} i \times\left|\left\{h: X_{t h}=i\right\}\right|} & i=4
\end{array}\right.
$$

Since we want to treat these as model covariates and since we want to utilize a hierarchical model in the same form of the proposed tail model, we take $x_{t i}=\operatorname{logit}\left(\hat{q}_{[90] t i}\right)$ as covariates, centering them by their means to facilitate computation.

With the covariate terms in place, our non-spatial model can be generally stated as in (5) and (8):

$$
\begin{gathered}
\operatorname{logit}\left(q_{t i}\right)=\alpha_{i}+x_{t i} \beta_{i}+e_{t i}, \quad i \in\{0,1,2,3,4\} \\
e_{t i} \sim N\left(0, \sigma_{i}^{2}\right), \quad i \in\{0,1,2,3,4\},
\end{gathered}
$$

where $e_{t i}$ and e_{t} represents our error components. Later this will also include our spatial hierarchical term. Ideally, if covariate information is a perfect baseline, β_{i} should be at or near 1 . It can still be useful even if it only differs from zero as this would say that there is a relation in the parameters at the previous time point to the current time point. See Appendix B for a complete listing of the covariates used, by tract.

3.4 The Spatial Component

This section provides graphical residual maps to visually inspect how the tracts may be related and summarizes the Conditional Autoregressive model (CAR) used in our comparison.

3.4.1 Exploratory Spatial Analysis

With our covariate model in place we start to consider the usage of a spatial model. One means to explore if a spatial model may be necessary is to compare the posterior means of $q_{t 1}, \ldots, q_{t 4}$ against their respective tract-level sample means that do not rely on model assumptions.

We use the logistic scale to keep the analysis on a linear basis as we deal with tracts that have very different values, especially on the vacancy term.

The chloropleth plots listed in figures $4(\mathrm{a})-4(\mathrm{e})$ are constructed from the differences of the model and true census values for each of the parameters and they are divided by the census tracts. These plots provide the residual error that was not predicted from the non-spatial hierarchical model. As a reference, a map of uniform random numbers scaled the same as the residual maps is included in figure $4(\mathrm{f})$. From these plots it is difficult to discern an obvious spatial signal.

The plots themselves do show some apparent clustering of positive and negative differences but some clustering is expected just by the nature of random variation.

Figure 4: Map of Tract-level Residuals

3.4.2 Using the CAR Model

The Conditional Autoregressive model is a model which can allow us to utilize neighboring tracts and some properties of those tracts to investigate the existence of spatial structure.

There are two equivalent statements for the definition of the CAR model: the full model and the conditional model. We apply a CAR model to each of the five components, $q_{t 0}, \ldots, q_{t 4}$, separately. For component, i, $i \in\{0,1,2,3,4\}$, define, generically: $s_{t}=e_{t i}$. For component i, the full model and conditional model specifications are, respectively:

$$
\begin{gathered}
\mathbf{s} \sim N\left(\mu, \nu(\mathbf{I}-\gamma \mathbf{C})^{-1} \mathbf{M}\right) \\
s_{i} \mid \mathbf{s}_{(-i)} \sim N\left(\mu_{i}+\gamma \sum_{j=1}^{T} C_{i j}\left(s_{j}-\mu_{j}\right), \nu M_{i i}\right),
\end{gathered}
$$

where $C_{i i}=0$ and \mathbf{M} is a diagonal matrix with positive diagonal elements. It must also be noted that for $(\mathbf{I}-\gamma \mathbf{C})^{-1} \mathbf{M}$ to be a valid covariance structure, $C_{i j} M_{j j}=C_{j i} M_{i i}$ must be true and $|\gamma|$ must be restricted (see GeoBUGS (2004) for details).

The conditional form of the model is more intuitive as we see that it behaves like a linear model. For our purposes $C_{i, j}$ and $M_{i i}$ are fixed, leaving γ as the sole "covariate" term of the conditional model. γ is our proxy for spatial dependence. If we can show that it is different from zero then we have evidence of spatial dependence within the model. For the purpose of Bayesian inference we let ν have a vague prior and γ has a uniform prior between its bounds.

There are many choices for $C_{i j}$ and $M_{i i}$ based on the information available to us. Our most basic choice is to let $C_{i j}=1$ for neighboring pairs of tracts, $C_{i j}=0$ for disconnected tracts, and let $M_{i i}=1$. There does exist an inter-play of the choices of C and M. Changing M will increase or decrease the initial (no data) variation in the parameters and changing C can shift the parameter estimates depending on the values of the other tracts as shown through the γ term. As a generalization we can write a valid choice of C and M in the following manner:

$$
\begin{align*}
& C_{i j}=\frac{W_{i j}}{\sum_{j \in B_{i}} W_{i j}} \tag{14}\\
& M_{i i} \propto \frac{1}{\sum_{j \in B_{i}} W_{i j}} \tag{15}
\end{align*}
$$

$W_{i j}$ needs to be symmetric but can be any weight that one may want to apply. As defined following equation (6), B_{i} is the set of neighbors of i. In our case we sought to use perimeter distance information and centroid values but had difficulty in obtaining these values due to various challenges inherent in the boundary file we were using. We were able to define neighboring pairs of tracts that shared a boundary, including only a corner point. So, we used the corresponding basic specification: $C_{i j}=1$ for these neighboring pairs of tracts, $C_{i j}=0$ for disconnected tracts, and let $M_{i i}=1$ throughout.

3.5 Evaluation of CAR model using complete 2000 Census Data

We choose one spatial model to evaluate. This is the aforementioned "basic" CAR model with $C_{i j}=1$ if the tracts are neighbors, $C_{i j}=0$ otherwise, and $M_{i i}=1$ (see Appendix C for a listing of the neighbors). This is perhaps the simplest CAR model in use. Estimates using GeoBUGS (2004) can be readily made given the data and a map boundary file, where tracts with common boundary are neighbors. We obtained estimates of model parameters from both the hierarchical model (with covariates, referenced as the "non-spatial model") and the spatial model (also with covariates) using the full 2000 census data. We obtained 10,000 samples from 5 MCMC chains after a burn in phase of 4,000 samples. Summaries of the posterior parameter

		quantiles			
	Mean	Std. Dev.	2.5%	Med	97.5%
α_{0}	-2.146	0.03462	-2.212	-2.146	-2.081
α_{1}	-1.186	0.01708	-1.221	-1.186	-1.153
α_{2}	-0.05643	0.01571	-0.08754	-0.05622	-0.02543
α_{3}	-0.2408	0.01534	-0.2702	-0.2411	-0.21
α_{4}	0.5366	0.01652	0.5407	0.5363	0.5697
β_{0}	1.806	0.06574	1.673	1.805	1.947
β_{1}	1.072	0.05039	0.974	1.071	1.174
β_{2}	0.9997	0.04887	0.9008	1.001	1.094
β_{3}	0.7193	0.09078	0.5461	0.7175	0.8982
β_{4}	0.6925	0.08373	0.5293	0.693	0.8557
σ_{0}	0.4313	0.02524	0.3851	0.4302	0.4838
σ_{1}	0.207	0.01238	0.1843	0.2064	0.2328
σ_{2}	0.1912	0.01135	0.1704	0.1906	0.2149
σ_{3}	0.1744	0.01074	0.1547	0.174	0.1968
σ_{4}	0.1929	0.0121	0.1708	0.1923	0.2181

Table 2: Posterior parameter summaries from the non-spatial hierarchical model
distributions for the non-spatial hierarchical model are presented in table 2 and those for the spatial model are presented in table 3 .

There are a few features to see here as it relates to the census data on the Delmarva region. With regards to spatial signal we see some evidence within the credible interval information that there is some spatial dependence for the vacancy model term (i.e., the 95% quantile bounds for γ_{0} excludes zero) but for the other terms there do not appear to be enough evidence to say that there is spatial dependence (i.e., the 95% quantile bounds for the $\gamma_{1}, \ldots, \gamma_{4}$ each includes zero). (Note that a Bonferroni adjusted simultaneous interval for all five parameters amounts to only a 75% simultaneous interval, and, hence, this observation may have no practical significance.) Regardless of the magnitude of the posterior probability γ_{0} near the value 0 , its non-zero values may have an effect on the posterior inference for other parameters. (In other words, if the spatial model is better, one would expect that the posterior distribution of the other parameters of the model would become more precise. However, examining the corresponding parameters in tables 2 and 3 , there does not appear to be a great reduction.) We do have a lot of data but only upon the 165 tracts dealing with the tract-to-tract characteristics. With more tracts one may see a finer estimate, but doing so would move us away from assessing the Delmarva region and towards analyzing a larger geographic region.

In both models we see that the β terms all suggest positive association between the covariate values from the 1990 census and the values for the current census. This is evidenced by observing that the credible intervals exclude 0 for each β.

4 Repeated Sampling Evaluation of Tract-level Small Area Estimates

To this point we have demonstrated our model and its application on the census data, and began evaluating the posterior distribution of the spatial correlation parameter. Each of these have their utility but our main desire is to investigate the usage of this model upon a small sample taken during an intercensal year. From the survey we seek to estimate such values as total population, the count of vacant housing units, the vacancy rate, and the person per household. We want to get estimates for these values at the census tract

		quantiles			
		Mean	Std. Dev.	2.5%	Med
α_{0}	-2.129	0.03915	-2.211	-2.13	-2.055
α_{1}	-1.182	0.01495	-1.21	-1.182	-1.151
α_{2}	-0.05893	0.01574	-0.08985	-0.05868	-0.02836
α_{3}	-0.2388	0.01509	-0.2685	-0.2391	-0.2089
α_{4}	0.5354	0.01605	0.5036	0.5352	0.5668
β_{0}	1.754	0.06485	1.623	1.766	1.858
β_{1}	1.063	0.03425	0.9989	1.063	1.133
β_{2}	0.9783	0.03961	0.8999	0.9788	1.052
β_{3}	0.7031	0.07265	0.5643	0.7025	0.8463
β_{4}	0.6856	0.0668	0.5556	0.6847	0.8219
σ_{0}	0.414	0.02493	0.3686	0.413	0.4659
σ_{1}	0.2057	0.01218	0.1834	0.2052	0.2311
σ_{2}	0.1897	0.01125	0.1692	0.1892	0.2131
σ_{3}	0.1727	0.01064	0.1531	0.1722	0.1948
σ_{4}	0.1918	0.01189	0.1699	0.1913	0.2165
γ_{0}	0.09526	0.02938	0.02854	0.09893	0.1413
γ_{1}	0.02425	0.04661	-0.0747	0.02706	0.1068
γ_{2}	0.03875	0.0455	-0.05881	0.04217	0.1171
γ_{3}	0.05026	0.04351	-0.04479	0.05388	0.1237
γ_{4}	0.03455	0.04682	-0.06533	0.03796	0.1156

Table 3: Posterior parameter summaries from the spatial model

Finite Population Parameter	Tract Specific	Over all Tracts
Population	$X_{t}=\sum_{h}^{H_{t}} X_{t h}$	$X=\sum_{t} X_{t}$
Vacancy Count	$V_{t}=\sum_{h=1}^{H_{t}} I_{\left[X_{t h}=0\right]}$	$V=\sum_{t} V_{t}$
Vacancy Rate	$V R_{t}=V_{t} / H_{t}$	$V R=V / H$
Persons Per Housing Unit	$P P H_{t}=X_{t} /\left(H_{t}-V_{t}\right)$	$P P H=X /(H-V)$

Table 4: Definition of Finite Population Parameters
level. We will also look at estimates for the entire Delmarva region, obtained by summing up the tract-level components that make up the regional population parameters of interest.

4.1 Finite Population Parameters of Interest

Let H_{t} be the total number of housing units in tract t. Using the definition of household size from (2.1), the finite population parameters of interest are defined in table 4.

Following the Bayesian paradigm, small area estimates will be obtained from the posterior predictive distribution of the finite population parameters (e.g., Scott and Smith (1969)). A posteriori, only the unsampled observations are unknown. Due to the independence assumptions made, their predictive distribution can be obtained from their conditional distribution as specified in (1), (2) and (3) coupled with the posterior distribution of the underlying parameters. For estimation, the posterior mean will be used as the small area estimate since it minimizes a quadratic loss function and the posterior variance will be used as the
corresponding measure of uncertainty. For example, the posterior mean of the population count is:

$$
\begin{equation*}
E\left(X_{t} \mid \text { sample }\right)=\sum_{h \in s_{t}} X_{t h}+\sum_{h \in \bar{s}_{t}} E\left(X_{t h} \mid \text { sample }\right) \tag{16}
\end{equation*}
$$

where, s_{t} denotes the set of sampled housing units in tract t, and \bar{s}_{t} denotes the set of housing units in tract t that were not in sample.

Posterior means of vacancy counts and vacancy rates can be made similarly, although vacancy rates are not linear functions of the predictive outcomes.

In a production setting, given a sample, we would numerically estimate the posterior mean and posterior variance of the finite population of interest and be finished. However, we want to evaluate how this whole procedure behaves over repeated samples. Even though our development is completely Bayesian, our procedure should still have good repeated sampling properties for it to be of value to a wide variety of users.

Since we have 2000 census data at our disposal, the easiest method would be to draw a sample from the 2000 census on the Delmarva region at a rate similar to that for the ACS. The ACS has a relatively simple sample design consisting of a systematic sample of housing units within four size-based strata defined nationwide (see U.S. Census Bureau (2003)); the strata are defined at the block group level. Replicating the ACS strata sample within Delmarva would have required obtaining block-level design files which would have delayed this demonstration project. In our case we simplified the sample design by eliminating the ACS strata, instead drawing simple random sample without replacement (SRSWOR) of housing units in the census based on a 2.4% sampling rate. From this we can get a grasp on the accuracy of the estimates by comparing them to the true values given by the census data.

Our goal is to evaluate the hierarchical model proposed earlier against the hierarchical spatial CAR model and determine which may perform better.

4.2 Repeated Sampling Study

Our repeated sampling consists of 400 samples of Delmarva 2000 census data. The data were sampled at a rate of 2.4% as a SRSWOR across the entire region as mentioned earlier. We did not attempt to sample on a tract level basis. Our hierarchical model and our hierarchical spatial model were then applied to these samples. These models were executed through the WinBUGS (2003) software and the GeoBUGS (2004) extension.

Within this we sought out model comparisons of bias, mean square error, and credible interval coverage rates at Delmarva level and tract level. Many of these were obtained; for the sake of brevity, not all are included here.

The bias and MSE considered in our evaluation are given in the following description. Let θ represent the true value for our quantity of interest at the Delmarva level (e.g., the total household population of the Delmarva Peninsula). Let θ_{t} represent the true value for our quantity of interest at the tract level (e.g. the actual vacancy rate in tract, t). Let $\widehat{\theta}_{s}$ represent the Delmarva level estimate for the s-th repeated sample and let $\widehat{\theta}_{s, t}$ represents the tract level estimate for the s-th repeated sample from the t-th tract. Let M be the number of repeated samples; in our case $M=400$.

In formal terms we have the bias which takes the form of $B=\left(\frac{1}{M} \sum_{s=1}^{M} \widehat{\theta}_{s}\right)-\theta$ whether at the tract level or Delmarva level.

Mean Square Error is $M S E=\frac{1}{M} \sum_{s=1}^{M}\left(\widehat{\theta}_{s}-\theta\right)^{2}$ whether at the tract level or Delmarva level.
Mean Square Error aggregated across tracts is $M S E_{\text {agg }}=\frac{1}{M} \sum_{s=1}^{M} \sum_{t=1}^{T}\left(\widehat{\theta}_{s, t}-\theta_{t}\right)^{2}$. Since this is an aggre-

	Non-Spatial	Spatial	2.5% difference	97.5% difference	design-based
Bias	226.266	252.3122	-1125.878	973.904	0^{*}
MSE (Population)	$28,168,364$	$28,111,009$	$-11,669,549$	$11,501,894$	$28,384,011$
MSE (Tract Aggregation)	$11,249,222$	$11,271,673$	$-641,635.1$	$538,033.5$	$28,924,298$

Table 5: Repeated sampling bias and MSE for estimates of population

	Non-Spatial	Spatial
50%	51.50%	50.25%
80%	82.25%	81.50%
90%	91.25%	90.75%
95%	94.75%	94.75%

Table 6: Percent of time coverage intervals actually cover the true population
gation across tracts, this is only a Delmarva level assessment.
We are also interested in the rates of credible interval coverage, or $\frac{1}{M} \sum_{s=1}^{M} I\left(\theta_{s} \in\left(\widehat{\theta}_{s[\alpha / 2]}, \widehat{\theta}_{s[1-\alpha / 2]}\right)\right)$. Likewise we can consider this on an individual tract basis or at the Delmarva level.

Since we are operating with a non-linear model in the Bayesian paradigm, obtaining estimates is not so straight-forward. Due to time constraints we let our model be a single-chain from an MCMC of 1000 burn-in iterations followed by 1000 iterations of samples from the density. Longer runs of the MCMC chain would result in more precise estimates of posterior parameters.

4.2.1 Results of the Repeated Sampling Study

To start the analysis we looked at the performance of the bias and mean square error at the Delmarva level for the population estimate. At this point a design-based (i.e. non-model based) estimate for the population in each tract was introduced for the purpose of acting as a baseline with which to compare the hierarchical and spatial model estimates. By running GeoBugs for a long number of iterations for one sample for both spatial and non-spatial models, we observed that the numerical bias caused by running GeoBugs for only 400 iterations did not appear to be too influential as the value is smaller than one person (not shown). Bayes estimates tend to be biased estimates but this suggests that the performance in terms of bias is good. Looking at the MSE as it relates to the overall population, the spatial model appears to perform slightly better than the non-spatial model. Table 5 appears to show that the aggregate tract MSE for the spatial model is better than that for the non-spatial model. This table also provides 95% confidence bounds for the differences between the non-spatial and spatial estimates. Based on these bounds, there is no statistical difference in the bias or MSE between the spatial and non-spatial estimates of population size. Lastly, table 5 documents that, at the tract level, both the spatial and non-spatial models provide estimates with much smaller MSE than the design based estimates, demonstrating the power of "borrowing strength" using small area estimation methodology.

Next, table 6 estimates the percentage of time each designated coverage interval of total population actually covers the true value. Looking at the associated credible intervals for both models at the $50 \%, 80 \%, 90 \%$, and 95% levels we see that there does not appear to be any clear evidence of over-coverage or under-coverage.

[^2]| | Non-Spatial | Spatial | 2.5% difference | 97.5% difference |
| :---: | :---: | :---: | :---: | :---: |
| Vacancy Count Bias | 29.68679 | 26.21703 | -216.184 | 255.030 |
| Vacancy Count MSE (Pop.) | 1563084 | 1559765 | -603909.3 | 643161.4 |
| Vacancy Count MSE (Tract Agg.) | 938303.8 | 936672.0 | -71678.98 | 83920.31 |
| Vacancy Rate Bias | $2.163 * 10^{-7}$ | $1.911 * 10^{-7}$ | -0.0006303365 | 0.0007436014 |
| Vacancy Rate MSE (Pop.) | $1.329 * 10^{-5}$ | $1.326 * 10^{-5}$ | $-5.134162 \mathrm{e}-06$ | $5.467865 \mathrm{e}-06$ |
| Vacancy Rate MSE (Tract Agg.) | 0.1707873 | 0.1692201 | -0.006998501 | 0.010901630 |
| PPH Bias | $1.139 * 10^{-3}$ | $1.121 * 10^{-3}$ | -0.003438485 | 0.003088989 |
| PPH MSE (Pop.) | $2.706 * 10^{-4}$ | $2.700 * 10^{-4}$ | -0.0001365973 | 0.0001182237 |
| PPH MSE (Tract Agg.) | 2.003925 | 2.017699 | -0.1259202 | 0.0937945 |

Table 7: Repeated sampling bias and variance for estimates of vacancy and PPH

Turning our attention to the vacancy count, vacancy rate, and persons per household statistics, in table 7, it would appear that for bias, MSE at Delmarva level, and MSE aggregated by tract, the spatial model appears to perform better but in a way that is not significant.

Figure 5 shows the coverage rates, by tract, of the credible intervals for the population. We saw some interesting phenomena in the plots where the trend was for over-coverage on many of the tracts but there were some severe outliers on the under-coverage side of the plots. Our plots exhibited a stronger leftward skew than what we would otherwise see from natural variation.

Lastly, we look at the coefficient of variation, σ / μ by tract for the population estimate by tract on our two models, in figures $6(\mathrm{a})$ and $6(\mathrm{~b})$, and the design-based estimate in figure $6(\mathrm{c})$. The two models produce nearly the same result and they both performed better than the design-based estimate, again underlying the decrease in variation against the best traditional estimate available using this data.

5 Remarks

In the project there were a few issues and concerns to address and obstacles that we needed to overcome. Naturally, as with any project, more time would be have been useful to answer other questions, but it is also useful to outline the limitations of the project.

5.1 Difficulties

To complete this project we utilized SAS, WinBUGS, R, and GeoBUGS, which is an internal branch of WinBUGS. The usage of WinBUGS and GeoBUGS proved to the most problematic aspect of our project. Naturally, when using MCMC methods, time constraints may begin to impose themselves. In our case, as we worked with more and more tracts on more and more geographies we ran into serious computation issues which was natural considering the stark increase of the number of tracts. Similarly, when applying the spatial model to the larger geographies our desktop computer (a Dell Optiplex GX280 running Windows SP professional) used for computation could not allocate enough memory.

We also were not able to use the GeoBUGS option to use a variety of spatial adjacency information in our models. Some of the models we tried that satisfied the necessary variance constraint would not run for us in GeoBUGS and vice versa. This was in relation to the CAR spatial modeling for $C_{i j}$ and $M_{i i}$ not explicitly equal to some constant. In some cases the software would accept invalid structures and in other cases it would reject valid structures on the basis that the covariance matrix was not positive definite. This made investigating ways in which neighboring tracts may influence each other difficult. The investigation of modeling C and M was an initial item of interest when we started our investigation. Alternative avenues

Figure 5: Distribution of Tract-level Estimated Coverage Rates

Histogram of Tract $\mathbf{5 0 \%} \mathbf{C l}$ Coverage Rates: Non-Spatial

Histogram of Tract $\mathbf{8 0} \% \mathrm{Cl}$ Coverage Rates: Non-Spatial

Histogram of Tract $\mathbf{5 0 \%} \mathbf{C l}$ Coverage Rates: Spatial

Histogram of Tract $\mathbf{8 0 \%} \mathbf{C l}$ Coverage Rates: Spatial

Histogram of Tract $95 \% \mathrm{Cl}$ Coverage Rates: Non-Spatial
Histogram of Tract 95\% Cl Coverage Rates: Spatial

Figure 5: Distribution of Tract-level Estimated Coverage Rates (Cont.)

Figure 6: Distribution of Tract-level CVs

may need to be pursued if one is to investigate using the CAR model within this context.
Another issue which came up during our investigation was the use of the publicly available, generalized ARC/INFO Ungenerate (ASCII) Cartographic Boundary Files relating to the 2000 census data. GeoBUGS has a tool which automatically detects neighbors when imported into a proper format. Our issue is not with this format but that the boundaries themselves did not suit our needs (i.e., identifying tracts with shared perimeters, non-identification of neighbors). While the boundaries for tracts match each other within state we found instances where along state boundaries the points used to define the state line for those tracts would differ resulting in a non-identified neighbor. This issue also meant that we could not accurately (and consistently) define objects like shared tract perimeter which we desired to use in proposals for CAR model terms. We learned subsequently that these problems arose because the boundary files we used are a generalized extract from the U.S. Census Bureau's TIGER database and were subject to line simplification/smoothing, coordinate reduction, and small polygons were eliminated when the combination of geographic codes existed elsewhere. Thankfully, GeoBUGS has a mechanism to manually augment and alter the identification of neighbors allowing us to add and subtract neighbors as needed and to finish this project. If this project were done over multiple states we would have difficulties in adding and subtracting, both because the number of revisions could be large and also because the system is graphically based, requiring tract boundaries to be visually identifiable. Although requiring an extra processing step and more software, tract-level boundary files with matching neighbor boundary points are available and will be used in any future work. Instead of using the ASCII tract-level boundaries, with their inherent problems, non-generalized tract boundaries are available and can be freely downloaded through the National Historic Geographic Information System ${ }^{\dagger}$. These shapefiles can then be translated into ASCII files using commercial GIS software and then used as input to GeoBugs. For the complete overview of the Cartographic Boundary File generalization process see U.S. Census Bureau (December 31, 2008).

5.2 Data Quirks

Along the way we came across some interesting features in the data and the tract level geography. Within the Delmarva region one tract was nested within the space of another tract. This tract contained no housing units but did, on further investigation using an overlay of census tracts on a Google map from the Internet, contain a prison. We came to find out later that prisons often are assigned their own tracts but this is not something that is done on a consistent basis. There may be a rule governing such features but we are not aware of it. Since this prison did not contain housing units in either census collection (and more specifically in the 2000 collection), it does not contribute to the residential population and thus we can omit this tract

[^3]from the analysis.

Another quirk revealed itself when testing out the model on other geographies to see what would happen. We found a situation in which a tract contained no persons in the 1990 census but did so in the 2000 census. This would be a cause for modeling concern as this type of situation would have no available covariates for usage in the model. We believe remedies could be proposed to alleviate such phenomena, but we were not going to concern ourselves with this behavior as we were using the Delmarva region as our dataset.

5.3 Remarks

We have picked tract level as our small area of interest, and arbitrarily used tracts as the basic component of spatial correlation. Although this use of tracts will capture spatial variation due to larger or different geographic scales, the scale at which the outcomes of interest become homogeneous has not been investigated. An approach using the data to inform the appropriate geographic scale of the data, such as in Louie and Kolaczyk (2006), may be of use. Another way to approach the problem would be to operate on the block or block-group level. It may be that these objects will have stronger spatial signal since neighboring blocks or block groups are geographically closer than neighboring tracts. On the other hand by separating into smaller units the inferential power on any one unit will be smaller and thus may not necessarily lead to a more precise estimate for spatial correlation. Working with smaller units will also pose a challenge in computation, similar to the problems mentioned earlier, and may pose its own challenges when dealing with geographic shape. Also, we have evaluated estimates based on MSE. Another evaluation which may be important in some applications is how well the true spatial correlation is maintained. For this latter concern, a spatial model is likely to be of more importance.

5.4 Conclusions

With regards to the housing unit model, a model for housing unit occupant size based on non-parametric terms for small values and a parametric term for larger values appears to be the best option. We saw flaws in the usage of simple parametric models, specifically the Poisson distribution. There was plenty of evidence to suggest that the tracts behaved differently and should not be aggregated into a single summary parameter for all the tracts. This was most evident in modeling the housing unit vacancies as evidence by their associated estimated variance shown in tables 2 and 3. This was also evidenced by the consistency of conditional probabilities for one occupant, two occupants, and three occupants. The tail behavior, as evidenced by the appearance of consistently equal probability values, led to using a geometric distribution on those tails as a better model. However, the slow decrease observed in the estimated conditional tail probabilities, apparent in table 1, suggests that more modeling, or at least formal testing, may yield better results.

From the analysis, the case for spatial dependence on the Delmarva geography as illustrated through the CAR model is plausible but not a certainty. If spatial signal does exist then it appears to exist through the vacancy term. As the vacancy term also has more variability associated with it, it just might be that the covariates used may have not been able to remove spatial dependence - a conjecture which could be further investigated. In our experience with this project, the use of GeoBugs provided excellent support when using the simplest CAR model denoting spatial correlation based only on tract boundary contiguity. However, implementing other CAR models in GeoBugs presented problems. Hence, our investigation of spatial behavior is not exhaustive, and there may yet be a manner in which a healthy spatial signal is revealed. Further modeling may require writing specialized software or, at a minimum, further ascertaining the strengths and weaknesses of GeoBugs.

The repeated sampling study does not assure that using a hierarchical model with a spatial component is better than using only a hierarchical model. With more samples we may be able to establish that the spatial model does perform better in estimation than the non-spatial model but we were unable to discern any advantage. It is also important to recall that we used only one type of spatial model, a CAR model postulated independently for each household size component, and we used only the simplest spatial correla-
tion structure (tracts that share a county or not) with our CAR model. However, we suspect that if spatial correlation had been an extremely important component of household size in the Delmarva Peninsula, our basic model would have shown better results.

6 References

Bell, William R. (2008). Examining Sensitivity of Small Area Inferences to Uncertainty About Sampling Error Variances ASA Proceedings of the Section on Survey Research Methods,

Chand, Nanak and Charles H. Alexander. (1999). Indirect estimation based on administrative records and the American Community Survey ASA Proceedings of the Section on Survey Research Methods, 871-876

Chand, Nanak and Charles H. Alexander. (1996). Small area estimation with administrative records and continuous measurement ASA Proceedings of the Section on Survey Research Methods, 870-875

Chand, Nanak and Charles H. Alexander. (1995). Indirect estimation of rates and proportions for small areas with continuous measurement ASA Proceedings of the Section on Survey Research Methods, 549-554

Chand, Nanak and Donald Malec. (2001). Small Area Estimates from the American Community Survey Using a Housing Unit Model, proceedings of the 2001 Federal Committee on Statistical Methodology conference http://www.fcsm.gov/events/papers2001.html

Louie, Mary M. and Eric D. Kolaczyk. (2006). A multiscale method for disease mapping in spatial epidemiology, Statistics in Medicine, 25, 8, 1287-1306

Malec, Donald. (2005). Small area estimation from the American community survey using a hierarchical logistic model of persons and housing units Journal of Official Statistics, 21, 411-432

Ghosh, Malay, Kannan Natarajan, T. W. F Stroud and Bradley P. Carlin. (1998). Generalized linear models for small-area estimation Journal of the American Statistical Association, 93, 273-282

GeoBUGS User Manual. (2004). http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/geobugs12manual.pdf
Rao, J. N. K. (2003). Small Area Estimation, John Wiley.
Scott, Alastair and T. M. F. Smith. (1969). Estimation in Multi-Stage Surveys Journal of the American Statistical Association, 64, 327, 830-840
U.S. Census Bureau. (February 3, 2009). Census Tract Relationship Files
http://www.census.gov/geo/www/relate/rel_tract.html
U.S. Census Bureau. (December 31, 2008). Cartographic Boundary Files: Scale, Generalization, and Limitations of the Cartographic Boundary Files
http://www.census.gov/geo/www/cob/scale.html
U.S. Census Bureau. (2006). The American Community Survey Technical Paper 67: Design and Methodology, http://www.census.gov/acs/www/Downloads/tp67.pdf
U.S. Census Bureau. (2005). ARC/INFO Generate (ASCII) Metadata Cartographic Boundary Files, http://www.census.gov/geo/www/cob/ascii_info.html

APPENDIX

A Counts of Housing Unit Size by Tract (Census 2000)

state																			
county	Household count by size of household																		
tract	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	19	30
10001040100	68	294	630	346	358	120	48	30	12	6	3	1	2	0	0	0	0	0	0
10001040201	77	375	431	230	196	92	35	10	2	0	1	0	0	0	0	0	0	0	0
10001040202	105	422	723	328	271	118	35	9	4	3	0	0	0	0	0	0	0	0	0
10001040203	65	234	391	247	173	77	23	8	4	1	0	0	0	0	0	0	0	0	0
10001040400	107	125	169	75	57	31	8	4	0	1	0	0	0	0	0	0	0	0	0
10001040500	304	785	1213	597	425	181	62	21	7	4	0	0	0	0	0	0	0	0	0
10001040600	31	134	93	47	34	12	4	2	0	0	0	0	0	0	0	0	0	0	0
10001040700	82	365	539	330	254	107	41	11	1	1	1	0	0	0	1	0	0	0	0
10001040800	59	442	384	187	109	44	19	9	2	1	0	1	1	0	0	0	0	0	0
10001040900	27	577	279	98	61	20	4	0	0	0	0	0	0	0	0	0	0	0	0
10001041000	146	563	650	324	193	101	43	11	7	1	2	0	0	0	0	0	0	0	0
10001041100	213	15	257	338	336	79	26	3	0	1	0	0	0	0	0	0	0	0	0
10001041200	96	336	456	251	155	93	36	7	4	2	,	0	0	0	0	0	0	0	0
10001041300	81	352	313	132	97	36	14	6	2	0	0	0	0	0	0	0	0	0	0
10001041400	144	442	356	206	136	57	25	10	4	0	0	2	0	0	0	0	0	0	0
10001041500	70	265	524	297	181	99	40	10	2	0	0	0	0	0	0	0	0	0	0
10001041600	43	196	354	157	120	44	28	3	0	1	0	0	0	2	0	0	0	0	0
10001041701	94	364	536	273	196	84	36	9	4	1	1	0	0	0	0	0	0	0	0
10001041702	54	155	367	239	237	102	35	5	2	2	0	0	0	0	0	0	0	0	0
10001041801	129	609	934	562	442	181	59	31	10	4	4	2	4	0	0	0	0	0	0
10001041802	41	167	295	165	155	57	17	17	9	7	5	2	0	1	1	0	0	0	0
10001041900	83	306	612	310	308	123	36	13	12	3	3	2	4	0	0	0	0	0	0
10001042000	63	181	368	187	169	90	34	14	4	3	3	0	0	0	0	0	0	0	0
10001042100	62	253	468	241	173	63	22	4	4	6	0	2	1	0	0	0	1	0	0
10001042201	220	317	640	433	339	222	73	27	6	1	2	0	0	1	0	0	0	0	0
10001042202	91	410	700	427	399	155	51	19	6	2	1	0	0	0	0	0	0	0	0
10001042400	183	233	400	173	158	55	18	5	0	0	0	0	0	0	0	0	0	0	0
10001042500	93	435	347	192	149	65	20	10	2	0	0	1	1	0	0	0	0	0	0
10001042600	22	194	331	155	118	39	15	2	2	0	0	0	0	0	0	0	0	0	0
10001042700	41	114	151	73	70	24	11	4	0	2	0	0	1	0	0	0	0	0	0
10001042800	113	374	738	404	376	107	43	11	5	1	0	0	0	0	0	0	0	0	0
10001042900	65	214	448	246	202	92	31	13	4	1	0	0	0	0	0	0	0	0	0
10001043000	128	439	583	292	237	114	50	14	7	3	1	0	0	0	0	0	0	0	0
10001043100	40	154	328	165	134	71	15	8	6	3	0	1	0	0	0	0	0	0	0
10003016601	80	229	570	382	450	184	40	19	5	3	1	2	0	0	0	0	0	0	0
10003016602	36	87	398	272	388	167	36	11	3	3	0	0	1	0	0	0	0	0	0
10003016603	22	142	367	242	314	135	32	14	1	2	0	0	0	0	0	0	0	0	0
10003016604	153	402	562	361	323	133	35	12	5	5	3	1	0	0	0	0	0	0	0
10003016801	55	150	379	205	207	72	34	6	1	2	0	0	0	0	0	0	0	0	0
10003016802	43	104	296	159	183	66	29	3	4	2	0	0	0	0	0	0	0	0	0
10003016901	27	124	288	172	138	63	12	4	1	0	0	1	0	0	0	0	0	0	0
10003016902	27	86	196	87	77	36	17	1	1	1	0	0	0	0	0	0	0	0	0
10005050101	38	235	465	213	203	72	22	10	5	0	1	3	0	0	0	0	0	0	0
10005050102	261	673	1019	563	357	218	81	27	18	7	4	1	3	1	0	0	0	0	0
10005050103	351	202	430	181	100	36	19	5	1	1	0	0	0	0	0	0	0	0	0
10005050200	109	205	307	182	167	74	36	13	5	2	1	1	0	1	0	0	0	0	0

10005050301	250	522	700	378	296	134	71	23	3	6	0	0	1	0	0	0	0	0	0
10005050302	84	207	454	277	222	104	52	11	5	2	0	0	0	0	0	0	0	0	0
10005050401	62	216	469	259	196	82	16	10	5	0	1	0	0	0	0	0	0	0	0
10005050402	211	964	1055	499	358	170	65	23	9	4	3	0	0	0	0	0	0	0	0
10005050403	93	249	341	216	157	81	30	7	6	4	2	2	0	0	0	0	0	0	0
10005050404	316	553	1005	606	472	209	84	18	10	6	1	1	0	0	0	0	0	0	0
10005050501	46	195	387	219	177	62	20	7	3	1	0	0	1	0	0	0	0	0	0
10005050502	230	569	712	395	364	191	74	53	35	17	17	8	3	0	2	0	1	1	0
10005050601	57	231	478	277	197	86	25	4	1	1	0	0	1	0	0	0	0	0	0
10005050602	179	516	586	238	165	76	22	11	4	1	0	0	0	1	0	0	0	0	0
10005050701	283	244	443	165	140	73	27	4	1	0	1	0	0	0	0	0	0	0	0
10005050702	3436	1049	2138	491	300	146	48	19	5	4	1	0	2	0	0	0	0	0	0
10005050801	127	302	364	196	138	49	18	8	4	0	0	0	0	0	0	0	0	0	0
10005050802	200	267	500	208	178	92	21	11	5	1	0	0	1	0	0	0	0	0	0
10005050803	861	439	871	278	227	102	18	11	0	2	0	1	0	0	0	0	0	0	0
10005050900	1581	815	1059	239	189	65	12	2	3	0	0	0	0	0	0	0	0	0	0
10005051001	1024	578	1113	298	236	72	28	7	1	1	0	0	0	0	0	0	0	0	0
10005051002	2386	679	1248	254	192	63	13	7	1	2	0	0	0	0	0	0	0	0	0
10005051003	794	406	565	182	135	62	22	8	2	0	1	0	0	0	0	0	0	0	0
10005051100	4529	690	674	112	57	24	7	2	0	1	1	0	0	0	0	0	0	0	0
10005051200	7647	619	1161	167	105	50	8	1	0	0	0	0	0	0	0	0	0	0	0
10005051301	885	362	896	204	161	62	19	4	0	0	0	1	1	0	0	0	0	0	0
10005051302	413	252	378	177	120	49	18	8	2	0	0	1	0	0	0	0	0	0	0
10005051303	782	338	588	174	111	41	13	2	0	1	0	0	0	0	0	0	0	0	0
10005051304	1533	443	972	195	131	33	17	6	1	1	0	0	0	0	0	0	0	0	0
10005051400	96	213	374	176	149	81	31	19	7	5	2	2	0	0	0	0	0	0	0
10005051500	180	344	546	302	213	100	41	17	3	2	3	3	0	0	1	0	0	0	0
10005051701	65	197	489	231	215	83	27	13	1	2	0	0	1	0	0	0	0	0	0
10005051702	138	347	672	347	289	119	33	13	5	2	0	0	0	0	0	0	0	0	0
10005051801	123	390	590	306	226	98	31	6	4	1	0	0	0	0	0	0	0	0	0
10005051802	174	349	535	239	221	105	40	22	3	2	1	0	0	0	0	0	0	0	0
10005051900	125	375	500	293	194	97	42	6	6	1	0	1	2	0	0	0	0	0	0
24011955000	104	201	312	173	175	96	39	22	8	4	1	3	0	1	0	0	0	0	0
24011955100	146	383	596	367	303	127	57	10	6	2	2	1	0	0	0	0	0	0	0
24011955200	134	390	640	365	326	154	47	15	5	2	1	0	0	0	0	0	0	0	0
24011955300	173	580	779	389	291	112	34	9	4	2	2	0	0	0	0	0	0	0	0
24011955400	64	113	291	134	148	46	12	4	2	0	0	0	0	0	0	0	0	0	0
24011955500	143	257	554	287	230	88	27	7	2	2	0	0	0	0	0	0	0	0	0
24011955600	135	464	643	319	266	103	41	11	7	2	1	0	0	0	0	0	0	0	0
24015030100	733	375	616	278	205	77	27	9	2	0	0	2	0	0	0	0	0	0	0
24015030200	389	391	738	357	315	119	35	15	5	2	2	0	0	1	0	0	0	0	0
24019970100	134	279	423	192	158	52	19	8	2	0	0	0	0	0	0	0	0	0	0
24019970200	178	418	601	340	299	136	51	13	5	0	0	2	0	0	0	0	0	0	0
24019970300	166	374	678	333	222	79	20	8	1	0	2	1	0	0	0	0	0	0	0
24019970400	204	635	528	227	142	51	10	12	9	0	0	1	0	0	0	0	0	0	0
24019970500	227	597	436	273	176	79	26	11	3	0	1	0	1	0	0	0	0	0	0
24019970600	166	446	505	297	171	62	17	7	0	0	0	0	0	0	0	0	0	0	0
24019970700	255	401	732	264	161	58	13	4	0	0	1	0	0	0	0	0	0	0	0
24019970800	343	224	394	124	82	40	6	5	0	1	1	0	0	0	0	0	0	0	0
24019970900	273	214	280	135	89	33	3	0	2	0	0	0	0	0	0	0	0	0	0
24029950100	232	293	467	199	170	72	24	9	3	2	0	1	0	0	0	0	0	0	0
24029950200	514	380	733	282	279	115	31	10	5	2	1	0	0	0	0	0	0	0	0
24029950300	280	815	752	255	157	50	13	6	1	1	0	0	0	0	0	0	0	0	0
24029950400	306	275	555	215	168	62	18	7	2	0	0	0	0	0	0	0	0	0	0
24029950500	375	365	509	172	134	41	12	2	1	0	0	0	0	0	0	0	0	0	0
24035810100	136	215	425	217	146	55	16	8	1	1	0	0	0	0	0	0	0	0	0
24035810200	70	187	304	163	149	71	20	5	1	1	0	0	0	0	0	0	0	0	0
24035810300	108	310	564	211	214	91	20	4	4	0	0	0	0	0	0	0	0	0	0
24035810400	110	305	564	249	257	89	38	3	3	1	0	0	0	0	0	0	0	0	0

24035810500	55	236	355	207	188	75	13	7	1	4	0	0	0	0	0	0	0	0	0
24035810600	204	268	794	283	270	134	40	7	3	0	0	0	0	0	0	0	0	0	0
24035810700	186	296	465	198	146	67	24	2	6	0	0	0	0	0	0	1	0	0	0
24035810800	166	382	619	365	310	144	38	14	2	4	0	0	1	0	0	0	0	0	0
24035810900	204	459	1097	485	494	188	52	17	10	2	1	0	0	0	0	0	0	0	0
24035811000	97	343	608	281	259	100	29	5	2	1	0	0	1	0	0	0	0	0	0
24039980101	262	618	480	287	203	86	35	10	5	4	1	0	0	0	0	0	0	0	0
24039980102	217	355	512	243	176	62	26	7	3	1	0	0	0	0	0	0	0	0	0
24039980200	396	241	372	124	90	41	17	2	1	2	0	0	0	0	0	0	0	0	0
24039980300	245	308	394	194	146	59	12	4	4	2	3	0	2	0	0	0	0	0	0
24039980400^{\ddagger}	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
24039980500	360	485	711	298	214	90	24	10	4	5	2	1	1	0	0	0	0	0	0
24039980600	236	453	463	228	152	55	20	5	5	1	2	0	0	0	0	0	0	0	0
24041960100	96	246	533	281	285	110	29	11	1	0	0	1	0	0	0	0	0	0	0
24041960200	222	354	700	166	137	48	12	7	0	0	0	0	0	0	0	0	0	0	0
24041960300	85	486	417	199	152	62	18	11	3	2	0	0	0	0	0	0	0	0	0
24041960400	222	1054	781	315	192	95	21	8	3	0	1	0	0	0	0	0	0	0	0
24041960500	143	505	840	417	338	134	38	11	3	1	1	0	0	0	0	0	0	0	0
24041960600	239	177	358	103	82	30	10	1	0	0	0	0	0	0	0	0	0	0	0
24041960700	456	540	838	210	150	58	19	1	4	0	0	0	0	0	0	0	0	0	0
24041960800	335	227	385	110	96	28	12	1	2	0	0	0	0	0	0	0	0	0	0
24041960900	340	393	800	289	223	96	26	7	1	1	0	0	0	0	0	0	0	0	0
24045000100	119	572	597	350	237	129	56	23	12	5	1	2	1	0	0	0	0	0	0
24045000200	70	280	269	120	79	33	11	9	1	0	2	0	0	0	0	0	0	0	0
24045000300	46	172	143	114	71	38	20	8	4	1	0	0	0	0	0	0	0	0	0
24045000400	119	652	516	278	213	82	18	7	3	3	0	2	0	0	0	0	0	0	0
24045000500	72	291	336	192	142	67	24	10	6	3	1	0	0	0	0	0	0	0	0
24045010101	81	617	761	415	285	107	37	18	6	3	1	0	0	0	0	0	0	0	0
24045010102	62	385	491	187	160	47	10	2	2	0	0	0	0	0	0	0	0	0	0
24045010200	138	470	563	386	300	142	69	15	15	0	1	2	0	0	0	0	0	0	0
24045010300	65	274	697	409	465	188	41	15	2	3	1	0	0	0	0	0	0	0	0
24045010400	114	654	737	324	297	119	21	7	3	2	4	0	0	0	0	0	0	0	0
24045010500	230	1054	1141	591	387	128	34	10	0	2	1	0	0	0	0	0	0	0	0
24045010602	159	516	1121	616	535	199	47	9	1	1	2	0	0	0	0	0	0	0	0
24045010603	93	379	736	378	328	122	36	20	5	1	1	0	0	0	0	0	0	0	0
24045010604	132	408	644	409	293	93	33	9	5	1	1	0	0	0	0	0	0	0	0
24045010701	145	289	450	230	209	80	27	6	1	3	1	0	0	0	0	0	0	0	0
24045010702	206	527	826	501	401	150	64	17	10	5	2	0	0	0	0	0	0	0	1
24045010800	320	461	816	418	313	108	27	7	5	0	0	0	0	0	0	0	0	0	0
24047990100	21756	1477	1638	358	197	78	23	7	1	0	0	1	0	0	1	0	0	0	0
24047990200	203	347	631	315	266	97	24	5	3	0	0	0	0	0	0	0	0	0	0
24047990300	113	459	455	289	213	96	29	6	7	0	0	2	1	0	0	0	0	0	0
24047990400	122	160	295	134	112	36	11	7	0	0	0	1	0	0	0	0	0	0	0
24047990500	1549	487	1350	301	221	91	22	5	2	1	0	1		0	0	0	0	0	0
24047990600	943	422	1138	320	211	72	20	2	2	0	0	0	0	0	0	0	0	0	0
24047990700	1298	481	843	264	219	75	21	4	4	0	1	0	0	0	0	0	0	0	0
24047990800	125	222	442	226	180	60	17	9	4	1	0	0	0	0	0	0	0	0	0
24047990900	115	304	349	179	108	57	18	7	4	1	1	0	1	0	0	0	0	0	0
24047991000	105	244	416	210	178	78	25	2	5	0	0	1	0	0	0	0	0	0	0
24047991100	200	577	592	338	284	129	33	18	5	1	4	1	0	0	0	0	0	0	0
51001990100	1875	700	832	301	164	58	8	3	1	1	0	0	0	0	0	0	0	0	0
51001990200	485	847	1065	604	510	207	65	34	13	12	2	2	1	1	0	0	0	0	0
51001990300	233	277	430	185	154	44	30	11	5	5	2	0	0	0	0	0	0	0	0
51001990400	339	501	623	367	296	143	71	25	11	8	3	2	2	1	0	0	0	0	0
51001990500	181	347	366	211	137	47	18	10	3	2	2	0	0	1	0	0	0	0	0
51001990600	356	619	697	343	218	81	18	6	3	0	1	0	0	0	0	0	0	0	0
51001990700	364	498	736	362	274	94	36	11	8	3	0	0	0	1	0	0	0	0	0

[^4]	51	001990800	324	452	535	235	175	77	28	8	6	2	0	0	1	0	0	0	0	0	0
51131990100	359	476	636	292	197	72	24	14	1	1	0	1	0	0	0	0	0	0	0		
51131990200	393	474	656	261	202	80	37	10	5	6	1	2	0	0	0	0	0	0	0		
51131990300	444	615	594	277	205	108	45	15	8	4	2	0	0	0	0	0	0	0	0		

Table 8: Number of housing units by housing unit size and tract

B Covariates used

county tract	logist0	logist1	Covariates logist2	logist3	logistprop
10001040100	-1.273	-1.61907	-0.52961	-0.5736	0.269333
10001040201	-1.3029	-1.2712	-0.30418	-0.31393	0.633803
10001040202	-1.3029	-1.2712	-0.30418	-0.31393	0.633803
10001040203	-1.3029	-1.2712	-0.30418	-0.31393	0.633803
10001040400	-0.58766	-1.01543	-0.26688	-0.21706	0.71784
10001040500	-1.0423	-1.46505	-0.2243	-0.12024	0.54932
10001040600	-1.02029	-0.42973	-0.08224	-0.21131	0.904456
10001040700	-1.08219	-1.54464	-0.67188	-0.4873	0.693147
10001040800	-1.42742	-0.92716	-0.33386	-0.13119	0.332382
10001040900	-1.23245	-0.09421	0.300486	0.144581	0.548566
10001041000	-1.20798	-1.06352	-0.17605	-0.22253	0.572631
10001041100	-1.95148	-3.64087	-1.62924	-0.58901	0.972732
10001041200	-1.2417	-1.23752	-0.46557	-0.32886	0.411855
10001041300	-1.13423	-0.5066	0.066797	-0.10536	0.402345
10001041400	-1.1333	-0.79116	0.028581	-0.33881	0.359084
10001041500	-1.80163	-1.70397	-0.40352	-0.32182	0.695387
10001041600	-1.7262	-1.6484	-0.11872	-0.43457	0.555526
10001041701	-1.48053	-1.49428	-0.44594	-0.31626	0.415081
10001041702	-1.48053	-1.49428	-0.44594	-0.31626	0.415081
10001041801	-1.4489	-1.30915	-0.35914	-0.38038	0.121782
10001041802	-1.4489	-1.30915	-0.35914	-0.38038	0.121782
10001041900	-1.4624	-1.61187	-0.49485	-0.46788	0.314216
10001042000	-1.23736	-1.65823	-0.63173	-0.5221	0.202712
10001042100	-1.31251	-1.41923	-0.31356	-0.28986	0.30305
10001042201	-1.16303	-1.67019	-0.46472	-0.34935	0.510467
10001042202	-1.16303	-1.6702	-0.46473	-0.34936	0.510476
10001042400	-0.5724	-1.35473	-0.11675	0.00551	0.623786
10001042500	-1.11973	-0.64064	-0.23832	-0.36546	0.228259
10001042600	-1.42916	-1.49789	-0.02899	-0.17185	0.731466
10001042700	-1.11011	-1.0033	-0.40547	-0.20271	0.272507
10001042800	-1.26804	-1.40127	-0.51045	-0.23436	0.64755
10001042900	-1.20119	-1.56255	-0.59289	-0.22642	0.381251
10001043000	-1.19658	-1.15568	-0.28172	-0.21035	0.434342
10001043100	-1.13121	-1.62892	-0.58179	-0.16579	0.81093
10003016601	-1.30884	-1.46553	-0.64543	-0.39453	0.652117
10003016602	-1.21631	-2.03708	-0.73216	-0.47987	0.723878
10003016603	-1.21534	-2.04534	-0.7331	-0.48077	0.724623
10003016604	-1.34914	-1.29737	-0.60958	-0.35759	0.620693
10003016801	-1.21347	-1.69867	-0.4634	-0.47776	0.542067
10003016802	-1.21347	-1.69867	-0.4634	-0.47776	0.542067
10003016901	-1.32424	-1.66627	-0.41468	-0.43614	0.587183
10003016902	-1.32424	-1.66627	-0.41468	-0.43614	0.587183
10005050101	-0.79932	-1.38806	-0.25804	-0.32736	0.47324

10005050102	-0.79932	-1.38806	-0.25804	-0.32736	0.47324
10005050103	-0.79932	-1.38806	-0.25804	-0.32736	0.47324
10005050200	-0.98346	-1.35239	-0.7126	-0.44848	0.349184
10005050301	-1.00987	-1.31019	-0.32105	-0.32051	0.328752
10005050302	-1.00987	-1.31019	-0.32105	-0.32051	0.328752
10005050401	-1.12208	-1.34703	-0.30938	-0.26993	0.511749
10005050402	-1.12208	-1.3470	-0.30938	-0.26993	0.511749
10005050403	-1.12195	-1.34695	-0.30924	-0.2698	0.511624
10005050404	-1.12208	-1.3470	-0.309	-0.269	0.511749
10005050501	-1.01589	-1.213	-0.282	-0.232	0.57089
10005050502	-1.0158	-1.213	-0.282	-0.232	0.57089
10005050601	-0.8549	-1.106	-18	-0.12	52
10005050602	-0.854	-1.1063	-0.18	-0.128	52
10005050701	0.199329	-1.29536	0. 45484	0.015748	0.50179
10005050702	0.199562	-1.29234	0.45472	0.01469	0.50251
10005050801	-0.51931	-1.26919	-0.1969	-0.2867	0.53229
10005050802	-0.51931	-1.26919	-0.19699	-0.2867	0.532292
10005050803	-0.51931	-1.26919	-0.19699	-0.2867	0.532292
10005050900	-0.0572	-0.89128	0.262942	0.022557	0.6449
10005051001	0.121618	-1.02645	0.3790	-0.1691	. 67718
10005051002	0.121618	-1.026	0.379	-0.169	0.607718
1000505100	0.121618	-1.026	0.379	-0.1691	18
10005051100	593812	-0.343	0.892	12	19
10005051200	0.963078	-1.015	0.966441	229	98
10005051301	994	-1.30211	392	. 0300	38
10005051302	0.079594	-1.30211	0.283923	0.030021	0.795338
10005051303	08412	-1.30162	0.284847	0.03020	16
10005051304	0.079698	-1.3021	0.28394	0.03002	. 795
10005051400	-0.89787	-1.27841	-0.26311	-0.20972	0.119474
10005051500	-0.88757	-1.60421	-0.44056	-0.21927	0.289411
10005051701	-1.10171	-1.58329	-0.33693	-0.21191	0.750185
10005051702	-1.05428	-1.59655	-0.40364	-0.15169	0.796032
10005051801	-1.03678	-1.28591	-0.20215	-0.22553	0.418265
10005051802	-1.03678	-1.28591	-0.20215	-0.22553	0.418265
10005051900	-1.07918	-1.43423	-0.33501	-0.28662	0.325668
24011955000	-1.1821	-1.46674	-0.4317	-0.48752	0.310447
24011955100	-1.17412	-1.29377	-0.29881	-0.118	0.337017
24011955200	-1.15104	-1.42583	-0.44764	-0.325	0.461723
24011955300	-1.16505	-1.05842	-0.14537	-0.31312	0.586972
24011955400	-1.04402	-1.71816	-0.5042	-0.35114	36
24011955500	-0.98674	-1.43547	-0.33713	-0.26469	0.562527
24011955600	-1.16425	-1.10553	-0.21074	-0.27071	0.41
24015030100	-0.24172	-1.30218	0.013501	-0.25378	0.58847
24015030200	-0.57673	-1.53212	-0.21319	-0.38329	0.607257
24019970100	-0.84433	-1.14419	-0.26654	-0.28611	0.560713
24019970200	-0.95764	-1.37982	-0.52818	-0.34134	0.405465
24019970300	-0.91673	-1.44533	-0.12117	-0.03604	0.763405
24019970400	-0.9398	-0.58144	0.138402	-0.06252	0.763765
24019970500	-0.98756	-0.67056	-0.38792	-0.26706	0.470004
24019970600	-1.06482	-1.09538	-0.11263	0.046596	0.609009
24019970700	-0.73444	-1.28864	0.188596	0.024103	0.96953
24019970800	-0.30973	-1.22118	0.134781	-0.03433	1.12592
24019970900	-0.35539	-1.08163	-0.02055	0.101783	0.814508
24029950100	-0.65282	-1.31053	-0.33647	-0.41871	0.283306
24029950200	-0.5838	-1.36451	-0.24769	-0.35378	0.51521
24029950300	-0.88461	-0.61149	0.126294	-0.0940	0.61090
24029950400	-0.70426	-1.43527	0.009372	-0.29208	0.660782
24029950500	-0.58978	-1.01371	0.02076	-0.03037	0.859697
24035810100	-0.74819	-1.38236	-0.35317	-0.16593	0.3241

24035810200	-1.0196	-1.69105	-0.53178	-0.33489	0.451985
24035810300	-1.08052	-1.37671	-0.15833	-0.30228	0.825792
24035810400	-1.15585	-1.15467	-0.2265	-0.04565	0.458002
24035810500	-1.15507	-1.37932	-0.26204	-0.16248	0.449954
24035810600	-0.91524	-1.81573	0.001528	-0.27076	0.456617
24035810700	-0.67071	-1.4433	-0.20654	-0.24039	0.355455
24035810800	-0.74768	-1.59302	-0.36817	-0.33922	0.659474
24035810900	-0.989	-1.85982	-0.30675	-0.27549	0.885333
24035811000	-1.07636	-1.40264	-0.2646	-0.38692	0.806262
24039980101	-0.92176	-1.00719	-0.18808	-0.12584	0.402092
24039980102	-0.92176	-1.00719	-0.18808	-0.12584	0.402092
24039980200	-0.40193	-1.16904	-0.12579	-0.10131	0.634896
24039980300	-0.77383	-1.21227	-0.13954	-0.32513	0.309464
24039980500	-0.72721	-1.21367	0.03473	-0.01047	0.486811
24039980600	-0.8957	-0.76092	-0.27647	-0.11058	0.394282
24041960100	-1.10443	-1.7618	-0.39132	-0.35449	0.555161
24041960200	-0.68649	-1.4144	0.244278	-0.40344	0.855428
24041960300	-1.14578	-0.59694	0.064061	0.158089	0.573524
24041960400	-1.15405	-0.59717	0.153738	0.05782	0.786673
24041960500	-1.14856	-1.43813	-0.12334	-0.08088	0.752519
24041960600	-0.47108	-1.35001	0.406858	-0.07538	0.747505
24041960700	-0.62571	-1.04744	0.512099	0.089231	0.841389
24041960800	-0.44731	-1.10621	0.129887	-0.18544	0.814265
24041960900	-0.69818	-1.16093	0.133744	-0.11255	0.655168
24045000100	-1.25746	-0.94995	-0.35634	-0.2863	0.568472
24045000200	-0.91867	-0.56761	-0.06372	-0.18987	0.586284
24045000300	-1.17386	-0.89355	-0.48893	-0.31508	0.099372
24045000400	-1.26603	-0.64267	-0.04725	-0.07656	0.581891
24045000500	-1.31903	-1.11343	-0.10303	-0.1354	0.535882
24045010101	-1.35373	-1.48416	-0.11953	0.050644	0.675129
24045010102	-1.22416	-1.03936	0.0743	0.209051	1.070193
24045010200	-1.24853	-1.40738	-0.61996	-0.31707	0.13644
24045010300	-1.03641	-1.37988	-0.43258	-0.54598	0.831197
24045010400	-1.1261	-1.223	-0.05329	-0.23397	0.543867
24045010500	-1.20955	-0.8958	-0.02077	-0.06862	0.713955
24045010602	-1.16789	-1.67225	-0.47	-0.30291	0.981719
24045010603	-1.05463	-1.45621	-0.33033	-0.12212	0.629691
24045010604	-1.05463	-1.45621	-0.33033	-0.12212	0.629691
24045010701	-0.92256	-1.24009	-0.43233	-0.23879	0.42028
24045010702	-1.00886	-1.31824	-0.39427	-0.20435	0.486481
24045010800	-0.63283	-1.18941	-0.20802	-0.07059	0.68784
24047990100	0.92682	-0.57972	0.734467	0.29502	0.692864
24047990200	-0.74006	-1.43028	-0.22469	-0.01858	0.529402
24047990300	-0.88137	-0.99446	-0.33008	-0.27339	0.423907
24047990400	-0.65612	-1.3138	-0.09029	-0.28978	0.29822
24047990500	0.160148	-1.77843	0.357218	-0.02174	0.571786
24047990600	-0.00673	-1.62123	0.293547	-0.16508	0.884202
24047990700	-0.04085	-1.13273	0.190129	-0.11575	0.990268
24047990800	-0.90304	-1.44675	-0.3474	-0.3119	0.516973
24047990900	-1.1706	-1.096	-0.23078	0.070287	0.415221
24047991000	-0.88484	-1.41694	-0.30002	-0.35753	0.602175
24047991100	-1.05219	-0.92191	-0.21936	-0.32609	0.54024
51001990100	-0.06394	-0.7582	0.436481	0.296662	1.04835
51001990200	-0.74785	-1.08177	-0.29759	-0.26145	0.285405
51001990300	-0.74348	-0.98165	-0.01966	-0.33898	0.192372
51001990400	-0.96213	-1.14051	-0.34166	-0.22259	0.23935
51001990500	-0.90887	-0.93922	-0.16705	-0.14505	0.464114
51001990600	-0.84581	-0.87609	0.021673	-0.10338	0.669617
51001990700	-0.82088	-1.02945	-0.19924	-0.31869	0.439481

51001990800	-0.81218	-1.00744	-0.17655	-0.26387	0.324496
51131990100	-0.65931	-1.08766	-0.04912	-0.18232	0.257829
51131990200	-0.65003	-0.99857	-0.11463	-0.33079	0.239502
51131990300	-0.811	-0.81921	-0.16227	-0.39623	0.205322

C Tracts and Their Neighbors

state $\left\lvert\, \begin{aligned} & \text { county } \\ & \mid \\ & \text { \| tract }\end{aligned}\right.$	ID	\#	Neighbor ID's
100010401	1	7	15, 51, 57, 112, 113, 117, 127
10001040201	112	5	$1,113,114,127,128$
10001040202	113	5	$1,3,112,114,117$
10001040203	114	6	$2,3,112,113,127,128$
100010404	2	7	$3,8,9,18,114,120,128$
100010405	3	7	$2,4,7,8,113,114,117$
100010406	4	5	3, 5, 6, 7, 117
100010407	5	4	$4,6,12,117$
100010408	6	5	$4,5,7,11,12$
100010409	7	6	$3,4,6,8,11,12$
100010410	8	6	$2,3,7,9,10,11$
100010411	9	6	$2,8,10,18,119,120$
100010412	10	6	8, 9, 11, 14, 116, 119
100010413	11	7	$6,7,8,10,12,13,14$
100010414	12	8	$5,6,7,11,13,115,117,118$
100010415	13	4	11, 12, 14, 115
100010416	14	5	$10,11,13,115,116$
10001041701	115	7	$12,13,14,17,116,118,119$
10001041702	116	5	$10,14,17,115,119$
10001041801	117	8	$1,3,4,5,12,15,113,118$
10001041802	118	6	$12,15,16,17,115,117$
100010419	15	6	$1,16,33,57,117,118$
100010420	16	6	$15,17,22,33,34,118$
100010421	17	7	$16,22,115,116,118,119,120$
10001042201	119	6	$9,10,17,115,116,120$
10001042202	120	7	$2,9,17,18,21,22,119$
100010424	18	7	2, 9, 19, 20, 21, 120, 131
100010425	19	5	18, 20, 129, 130, 131
100010426	20	6	18, 19, 21, 23, 129, 130
100010427	21	5	18, 20, 22, 23, 120
100010428	22	8	$16,17,21,23,24,25,34,120$
100010429	23	8	20, 21, 22, 24, 25, 129, 132, 133
100010430	24	3	22, 23, 25
100010431	25	7	$22,23,24,34,36,132,133$
10003016601	121	6	$40,41,122,124,125,126$
10003016602	122	3	121, 123, 124
10003016603	123	3	122, 124, 126
10003016604	124	5	$121,122,123,125,126$
10003016801	125	7	$40,51,121,124,126,127,128$
10003016802	126	6	$121,123,124,125,127,128$
10003016901	127	6	1, 112, $114,125,126,128$
10003016902	128	6	$2,112,114,125,126,127$
10005050101	129	6	19, 20, 23, 26, 130, 133

10005050102	130	5	$19,20,26,129,131$
10005050103	131	6	$18,19,26,27,130,144$
100050502	26	8	$129,130,131,133,138,139,144,145$
10005050301	132	9	$23,25,36,37,39,133,134,135,137$
10005050302	133	7	$23,25,26,129,132,137,138$
10005050401	134	7	$39,42,132,135,136,156,165$
10005050402	135	4	$132,134,136,137$
10005050403	136	5	$134,135,137,154,156$
10005050404	137	8	$132,133,135,136,138,140,154,156$
10005050501	138	5	$26,133,137,139,140$
10005050502	139	5	$26,138,140,142,145$
10005050601	140	9	$31,137,138,139,141,142,143,154,155$
10005050602	141	3	$31,140,143$
10005050701	142	5	$139,140,143,145,147$
10005050702	143	9	$28,29,31,140,141,142,147,148,150$
10005050801	144	5	$26,27,131,145,146$
10005050802	145	7	$26,27,139,142,144,146,147$
10005050803	146	4	$27,144,145,147$
100050509	27	7	$28,131,144,145,146,147,149$
10005051001	147	7	$27,142,143,145,146,148,149$
10005051002	148	4	$28,143,147,149$
10005051003	149	4	$27,28,147,148$
100050511	28	6	$27,29,143,148,149,150$
100050512	29	6	$28,90,143,150,152,153$
10005051301	150	6	$28,29,31,143,151,152$
10005051302	151	5	$30,31,150,152,153$
10005051303	152	4	$29,150,151,153$
10005051304	153	6	$29,30,90,91,151,152$
100050514	30	5	$31,91,151,153,155$
100050515	31	7	$30,140,141,143,150,151,155$
10005051701	154	6	$136,137,140,155,156,157$
10005051702	155	9	$30,31,32,91,140,154,157,163,164$
10005051801	156	8	$32,42,134,136,137,154,157,165$
10005051802	157	4	$32,154,155,156$
100050519	32	5	$155,156,157,165,166$
240119550	33	5	$15,16,34,57,60$
240119551	34	8	$16,22,25,33,35,36,57,60$
240119552	35	5	$34,36,37,60,71$
240119553	36	5	$25,34,35,37,132$
240119554	37	6	$35,36,38,39,71,132$
240119555	38	6	$37,39,43,71,75,79$
240119556	39	6	$37,38,42,43,132,134$
240150301	40	5	$41,51,52,121,125$
240150302	41	2	40,121
240199701	42	7	$39,43,44,50,134,156,165$
240199702	43	5	$38,39,42,44,79$
240199703	44	5	$42,43,48,50,79$
240199704	45	4	$46,47,48,79$
240199705	46	3	$45,47,48$
240199706	47	3	$45,46,48$
240199707	48	7	$44,45,46,47,49,50,79$
240199708	49	2	48,50
240199709	50	7	$42,44,48,49,66,89,165$
240299501	51	6	$1,40,52,56,57,125$
240299502	52	5	$40,51,53,54,56$
240299503	53	4	$52,54,56,58$
240299504	54	5	$52,53,55,58,59$
240299505	55	1	54
240358101	56	5	$51,52,53,57,58$
240			

240358102	57	8	1, 15, $33,34,51,56,58,60$
240358103	58	6	53, 54, 56, 57, 59, 60
240358104	59	4	54, 58, 60, 61
240358105	60	8	33, 34, 35, 57, 58, 59, 61, 71
240358106	61	5	59, 60, 62, 71, 72
240358107	62	3	61, 63, 65
240358108	63	3	62, 64, 65
240358109	64	2	63, 65
240358110	65	3	62, 63, 64
24039980101	158	5	67, 87, 99, 159, 162
24039980102	159	6	$66,67,87,89,158,162$
240399802	66	4	50, 67, 106, 159
240399803	67	7	66, 68, 69, 99, 100, 158, 159
240399804	68	1	67
240399805	69	5	67, 70, 100, 102, 103
240399806	70	1	69
240419601	71	7	35, 37, 38, 60, 61, 72, 75
240419602	72	8	61, 71, 73, 74, 75, 76, 77, 79
240419603	73	3	72, 74, 75
240419604	74	3	72, 73, 75
240419605	75	6	38, 71, $72,73,74,79$
240419606	76	3	72, 77,79
240419607	77	3	72, 76,78
240419608	78	1	77
240419609	79	8	38, 43, 44, 45, 48, 72, 75, 76
240450001	80	6	81, 83, 84, 88, 160, 161
240450002	81	6	80, 82, 83, 84, 85, 160
240450003	82	4	81, $83,85,86$
240450004	83	7	80, 81, $82,84,86,87,88$
240450005	84	6	80, 81, 83, 87, 88, 161
24045010101	160	7	80, 81, 85, 161, 162, 163, 166
24045010102	161	6	80, 84, 88, 160, 162, 163
240450102	85	5	81, 82, 86, 160, 166
240450103	86	6	82, 83, 85, 87, 89, 166
240450104	87	8	83, 84, 86, 88, 89, 158, 159, 162
240450105	88	6	80, 83, 84, 87, 161, 162
24045010602	162	11	87, 88, 91, 97, 99, 158, 159, 160, 161, 163, 164
24045010603	163	6	155, 160, 161, 162, 164, 166
24045010604	164	4	91, 155, 162, 163
24045010701	165	7	$32,42,50,89,134,156,166$
24045010702	166	7	$32,85,86,89,160,163,165$
240450108	89	6	50, 86, 87, 159, 165, 166
240479901	90	5	29, 91, 95, 96, 153
240479902	91	12	$30,90,92,93,94,95,96,97,153,155,162,164$
240479903	92	2	91, 93
240479904	93	6	91, 92, 94, 95, 96, 97
240479905	94	3	91, 93, 95
240479906	95	5	90, 91, 93, 94, 96
240479907	96	8	90, 91, 93, 95, 97, 99, 101, 102
240479908	97	6	91, 93, 96, 98, 99, 162
240479909	98	2	97, 99
240479910	99	8	67, 96, 97, 98, 100, 102, 158, 162
240479911	100	4	67, 69, 99, 102
510019901	101	2	96, 102
510019902	102	7	69, 96, 99, 100, 101, 103, 104
510019903	103	4	69, 102, 104, 105
510019904	104	5	102, 103, 105, 107, 108
510019905	105	4	103, 104, 106, 107
510019906	106	3	66, 105, 107

510019907	107	5	$104,105,106,108,109$
510019908	108	3	$104,107,109$
511319901	109	4	$107,108,110,111$
511319902	110	2	109,111
511319903	111	2	109,110
		Table $10:$ Tract neighbors by ID	

[^0]: *The authors thank Lynn Weidman (SRD) for many helpful discussions and comments throughout the project and Julie Tsay (SRD) for providing assitance with managing the data. In addition, the authors would like to thank Donald Luery (DID), April Avnayim (GEO) and Patrick Cantwell (DSSD) for providing comments on drafts of the report. Lastly, the authors thank Stephanie Sheffield (SRD) for editorial assistance.

[^1]: *Calculated from public files documenting tract changes, (U.S. Census (2009)).

[^2]: *The bias under this model is known to be zero.

[^3]: ${ }^{\dagger}$ Minnesota Population Center, University of Minnesota, http://nhgis.org/

[^4]: ${ }^{\ddagger}$ tract 980400 in Somerset County, MD contained no residential population in 2000 and was dropped from the analysis

