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Abstract

Heavy tail probability distributions are important in many scientific disciplines such as hy-

drology, geology, and physics and therefore feature heavily in statistical practice. Rather than

specifying a family of heavy-tailed distributions for a given application, it is more common to

use a nonparametric approach, where the distributions are classified according to the tail behav-

ior. Through the use of the logarithm of Parzen’s density-quantile function, this work proposes

a consistent, flexible estimator of the tail exponent. The approach we develop is based on a

Fourier series estimator and allows for separate estimates of the left and right tail exponents.

The theoretical properties for the tail exponent estimator are determined, and we also provide

some results of independent interest that may be used to establish weak convergence of stochas-

tic processes. We assess the practical performance of the method by exploring its finite sample

properties in simulation studies. The overall performance is competitive with classical tail index

estimators, and, in contrast with these, our method obtains somewhat better results in the case

of lighter heavy-tailed distributions.

Keywords. Density-quantile; Extreme-value theory; Fourier series estimator; Quantile density;

Tail index.

AMS 2000 Subject Classifications Primary 62G32; Secondary 62G20.

1 Introduction

Heavy tail distributions naturally arise in many areas of science. Often it is impossible to choose

an appropriate distribution for a given application a priori. For this reason, it is common in the

literature to proceed nonparametrically via classifying the distribution by its tail behavior, and

many such nonparametric tail index estimators have been proposed.
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A classical estimator enjoying widespread use is due to Hill [16]. This method provides a robust

estimator based on the asymptotics of extreme values, although the results are misleading when ap-

plied to data from the stable family (McCulloch [20]). Alternatively, there is the Pickands estimator

(Pickands [26]), which is easy to compute and invariant to certain shift and scale transformations,

but also suffers from poor asymptotic efficiency. Several refinements have been suggested for both

estimators (Gomes and Martin [14], Drees [8]). In addition to the Hill and Pickands estimators

and their refinements, there is the method of Csörgo, Deheuvels, and Mason [4], where the au-

thors develop an estimate that is expressed as the convolution of a kernel with the logarithm of

the quantile function; this includes as particular cases the estimates proposed by Hill [16] and de

Haan [5]. Further, de Haan and Resnick [6] and Teugels [31] provide examples of simple estimators

based on order statistics. Alternatively, Hall and Welsh [15] propose an estimator that assumes

a general nonparametric model, in which it is assumed that the only available information comes

from the asymptotic properties of the tail distribution. For a survey of recent research in this area,

see Embrechts, Klüppelberg and Mikosch [10] and the references therein.

In contrast to these methods, Parzen [23] suggested an alternative approach that uses the

density-quantile function as a measure of “tail orderings.” Later, Schuster [29] refined Parzen’s

classification scheme and provided a connection with the limit in probability of extreme spacings,

and Rojo [28] developed an approach that relaxed the smoothness conditions required in Schuster

[29].

Our work utilizes the general approach of Parzen [23], using the logarithm of the density-

quantile function to separately estimate the left and right tail exponent. First, we estimate the

log density-quantile function using nonparametric kernel methods. Second, we regress the resulting

function on a Fourier expansion of the density-quantile, only assuming the asymptotic tail behavior

so that the nonparametric flavor is preserved. Note that the estimation of the tail exponent via

the log density-quantile in our approach bears a similarity to spectral estimation of the fractional

differencing parameter of a long memory process, and so our work is similar in spirit to that of

Hurvich and Brodsky [17].

The remainder of this paper is organized as follows. In Section Two we introduce Parzen’s

density-quantile function and develop the general framework for our method. Additionally, this

section presents a rigorous derivation for a mapping between α and ν, respectively the classical tail

index and the tail exponent proposed by Parzen. Section Three describes the statistical estimator

of the tail exponent, while Section Four contains theoretical results that establish its asymptotic

behavior; we establish consistency as well as asymptotic normality under some more restrictive

assumptions. Section Five provides related results on stochastic processes. The methodology we

develop is tested in Section Six; extensive simulations provide an indication of the mean square

error of our estimator for finite sample sizes under different underlying distributions. There we

demonstrate the effectiveness of our estimator’s ability to characterize light-heavy tail behavior
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while using default tuning parameters and compare the performance of our approach against the

Hill, Pickands and DEdH (Dekkers, Einmahl, and deHaan [7]) estimators. Section Seven contains

a discussion: although our method is generally competitive with the classical estimates, the perfor-

mance is superior in the case of lighter heavy-tailed distributions. This is an important contrast,

indicating that our approach would be more successful with slightly heavy-tailed data (such as en-

countered in econometrics and finance) rather than extremely heavy-tailed data (such as insurance

data). For convenience of exposition all proofs are left to the appendix.

2 Tail Exponents and Indices

Parzen [23] discusses an approach to classifying tail behavior of probability laws, which considers

the limiting behavior of the density-quantile function fQ(u) as u approaches 0 or 1. Using the

notation of Parzen [25], suppose F is a continuous cumulative distribution function (cdf) and let

Q denote the quantile function; then F (Q(u)) = u for all u ∈ [0, 1]. Then

f(Q(u))Q′(u) = 1, (1)

where f(Q(u)) = fQ(u) is the density-quantile function and q(u) = Q′(u) is the quantile density.

Therefore, (1) implies fQ(u) = 1/q(u). Furthermore, let J(u) denote the score function, which is

defined by

J(u) = −(fQ(u))′ = −f ′(Q(u))
fQ(u)

. (2)

Following Parzen [25], we assume that the representation near 0 and 1 is given by regularly varying

functions:

fQ(u) = uν0L0(u), u ∈ [0, 1/2) (3)

fQ(u) = (1− u)ν1L1(1− u), u ∈ (1/2, 1] (4)

where L0, L1 are slowly varying functions at zero. That is, for i = 0, 1, Li satisfies the condition

that for a fixed y > 0
Li(yu)
Li(u)

→ 1 as u → 0.

Note that in Parzen [25] the relations (3) and (4) only hold asymptotically as u → 0 and u → 1,

respectively. However, by redefining Li we can easily obtain the exact relations (3) and (4). In

this context we call ν0 and ν1 the left and right tail exponents respectively, and they are used as a

measure of tail behavior (if we don’t want to distinguish left from right and speak generically, we

just refer to ν). Note that these exponents can be obtained explicitly via

ν0 = lim
u→0+

log fQ(u)
log u

(5)

ν1 = lim
u→1−

log fQ(u)
log(1− u)

, (6)
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since it is easily shown that log L(u)/ log u → 0 as u → 0 if L is slowly varying at zero1. A

distribution is considered to be heavy-tailed if ν > 1, as established in the discussion below.

Examples. The uniform distribution on the unit interval has F (x) = x, and the density-

quantile is fQ(u) = 1 for u ∈ [0, 1]. Thus ν0 = ν1 = 0. The exponential distribution has

F (x) = 1 − e−λx, so that the density-quantile is fQ(u) = λ(1 − u) for a positive rate λ. So the

right tail exponent is ν1 = 1. Finally, the Cauchy distribution has F (x) = (arctan x)/π + 1/2,

and the density-quantile is fQ(u) = (1/π) sin2(πu). Using a Taylor series expansion, we find that

ν0 = ν1 = 2.

Now taking the logarithm of (3) and (4), the resulting equations suggest using a regression

estimator for the tail exponents. However, the form of L0 and L1 are generally not explicitly

known, so we will utilize the Fourier representation of the logarithm of L0 and L1 in the space

L2[0, 1] of square integrable functions defined on [0, 1]; the following lemma justifies our approach.

Lemma 1 If K is a slowly-varying function at infinity and L(x) = K(1/x) for x ∈ (0, 1), then

log L is square integrable.

Hence each Li can be written as

Li(u) = exp

{
θi,0 + 2

∞∑
k=1

θi,k cos(2πku)

}
,

and its order p truncation is

L
(p)
i (u) = exp

{
θi,0 + 2

p∑
k=1

θi,k cos(2πku)

}
. (7)

Note that expanding these functions in terms of a Hilbert space basis implies that the coefficients

will tend to decay as a function of the index k. Now L
(p)
i is also slowly-varying, and is asymptotic

to a constant as the argument tends to zero (whereas for Li, this need not be the case, since the

coefficients θi,k need not be summable, only square summable). Additionally, since the system S =

{1, 2 cos(2πu), 2 cos(2π2u), . . .} (the Fourier representation) is complete for the class of functions on

L2[0, 1], L
(p)
i converges to Li in mean square as p →∞ (Mallat [19]). That is, the system S forms

an orthogonal basis for L2[0, 1]. Note that defining log Li in terms of its Fourier representation is

nonparametric, and hence avoids the need to specify a functional form (i.e., a model) for Li.

We now provide a mapping between the “classical” tail index and “Parzen” tail exponent, so

that our approach can be compared with and embedded into the classical framework. For simplicity

of exposition, we focus on the right tail index. Consider a heavy-tailed random variable X of right

tail index α1 > 0, which is defined as follows. Letting F denote the cdf, we suppose that 1 − F

1The proof of this result is straight-forward for functions K that are slowly-varying at infinity, using the repre-

sentation Theorem A3.3 of Embrechts et al. [10, p.566]. With the relation L(x) = K(1/x), the above result is easily

obtained; see McElroy and Politis [21].
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is regularly varying at ∞ of index −α1, i.e., 1 − F (x) = x−α1K(x) as x → ∞, where K is a

slowly varying function at ∞; compare with Embrechts et al. [10, p.75]. Further, suppose that

the probability density function f is ultimately monotone in its right tail, i.e., it is monotone on

(z1,∞) for some z1. Then by Theorem A3.7 of Embrechts et al. [10, p.568], for some slowly varying

function L we have

f(x) ∼ α1x
−(α1+1)L(x) as x →∞.

(We use the notation an ∼ bn to denote that the limit of the ratio tends to unity.) Now, Parzen’s

right tail exponent is given by (6); we will directly calculate it in terms of α1. Let an = Q(1−1/n),

so that we can write an = n1/α1P (n) for some slowly-varying function P at ∞ (see Embrechts et

al. [10, p.78] for a similar statement). It then follows that

fQ(1− 1/n) = f(an) ∼ α1a
−(α1+1)
n L(an) = cα1n

−(1+1/α1)P (n)−(1+α1)L(an).

Again by Theorem A3.3 of Embrechts et al. [10, p.566], we have log P (n)/ log n → 0 and log L(an)/ log n →
0 as n →∞. Thus

ν1 = − lim
n→∞

log fQ(1− 1/n)
log n

= 1 + 1/α1.

The relation for the left tail index follows similarly. Thus, for i = 0, 1, we have

νi = 1 + 1/αi (8)

so that the formula holds for either left or right exponents. Another characterization of heavy-tailed

distributions is through the extreme value index γ; see Drees [9] for a discussion. It is well-known

that α = 1/γ for classes of Pareto-like distributions, and it can be shown that ν = 1 + γ for the

distributions following (3) and (4) that are considered in this paper. The mapping between α and

ν is illustrated in the following examples.

Example 1 A stable variable has characteristic exponent δ ∈ (0, 2], with δ = 2 corresponding to

the Gaussian distribution. When δ < 2, the stable variable is heavy-tailed with classical α = δ.

Note that δ = 1 corresponds to the Cauchy distribution. Thus, for the Cauchy the Parzen tail

exponent is 2, and more generally, for stable variables, we get all values between ∞ (the heaviest

case) and 1.5.

Example 2 Another class of heavy-tailed variables is given by the Pareto, with F (x) = 1 −
(1 + x)−α for α ∈ (0,∞) and x > 0. The corresponding Parzen tail exponents are ν1 = 1 + 1/α

and ν0 = 0. For the left tail, observe that Q(1/n) tends to the constant zero, and f(0) is constant

as well; finally log f(0)/ log n → 0. The right Parzen tail exponent attains any value between 1 and

∞.
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Distributions with exponentially decaying tails, such as the Gaussian or exponential, do not

fit into the heavy-tailed description for X, and thus this mapping does not apply. Heuristically,

they correspond to α = ∞, since their tails decay faster than any polynomial power of x, which

corresponds to a Parzen tail exponent of 1.

3 Tail Exponent Estimators

Let X1, . . . , Xn denote an iid sample. In the subsequent exposition we consider tail exponent

estimators where we assume that the slowly varying function is given by (7) with p fixed and

unknown. We suppose that the practitioner selects a value of p, say p̃, that is at least as large as

the true value, and establish consistency (Theorem 1) and asymptotic normality (Theorem 2). It

is possible to take the fully nonparametric perspective that p = ∞, letting p̃ increase as n →∞, in

which case consistency can be proved so long as the θk coefficients decay sufficiently quickly; the

details require some additional conditions and are presented separately in Theorem 3. In order to

estimate ν0 and ν1, we consider log fQ(u) for u ∈ (0, ul] and u ∈ [ur, 1) respectively, where ul ≤ 1/2

and ur ≥ 1/2 can be chosen by the practitioner. Then applying (7) to (3) and (4) yields

log fQ(u) = ν0 log(u) + θ0,0 + 2
p0∑

k=1

θ0,k cos(2πku), u ∈ (0, ul], (9)

log fQ(u) = ν1 log(1− u) + θ1,0 + 2
p1∑

k=1

θ1,k cos(2πk(1− u)), u ∈ [ur, 1). (10)

It is important to note that in (9) and (10), log fQ(u) is defined for u ∈ (0, ul] and u ∈ [ur, 1)

respectively 2. There are two separate equations, one for the left and one for the right, since there

are two possibly different slowly-varying functions, which each have their own Fourier expansion.

Here we also allow for the possibility of two different truncation orders p0 and p1. Now even though

L
(pi)
i is a good approximation to Li only in an aggregate L2 sense, this has little impact in practice

since our main objective is estimation of νi. This flexible form for the slowly-varying function is an

advantage, since the practitioner is not forced to use an explicit “model” (e.g., compare Remark

2.4 of McElroy and Politis [22]).

More strikingly, we exclude the percentiles u = 0 and 1 so that the logarithmic expressions

in (9) and (10) are well-defined. This means that the actual extremes (i.e., the maximum and

minimum of the distribution) are omitted from our estimating equations, and hence the sample

extremes will not occur in our estimates. This is not a problem for our estimator, since it relies not

on the rate of convergence of certain statistics involving extremes (this can be viewed as the basis
2The assumption that u ≤ ul and u ≥ ur is flexible, given that the user chooses these values, and is meant to

restrict the estimators of the left and right tail exponents to the lower and upper quantiles respectively. That is, we

do not use large (small) order statistics when estimating the left (right) tail exponent.
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for the Hill estimator), but on the functional relationship of the whole (left or right) tail of the

density-quantile function, as described in (3), (4) and (5), (6). A similar idea is at work in the long

memory parameter estimation of Hurvich and Brodsky [17], where periodogram ordinates at low

frequencies are considered while frequency zero is omitted. The kernel smoothed estimator q̂(u) of

the quantile density that we use (detailed below) excludes some of the extreme order statistics, but

in practice the tuning parameters can be set so that only the extremes are excluded.

Since fQ(u) is unknown, estimation proceeds by first estimating the log density-quantile, and

then using ordinary least squares regression via (9) and (10) to obtain estimates of the tail exponents

νi. Specifically, let q̂n(uj) denote an estimator of the quantile density q(u) obtained from the data,

where uj = (j−.5)/n and j = 0, 1, · · · , n. Using the fact that fQ(u) = 1/q(u), we have by definition

f̂Q(uj) = 1/q̂n(uj), and thus log f̂Q(uj) = − log q̂n(uj) can be substituted in (9) and (10). We

develop the exposition for the left tail exponent ν0, noting that right tail exponent estimation

follows analogously.

Let y = log f̂Q(u) be the given log density-quantile estimate written as a column vector,

where u = (u1, u2, . . . , ul)′ and Gk = cos(2πku). Note that we are now thinking of l as an in-

teger so that ul is of the form (l − .5)/n, which is mainly just a notational convenience; this

l is fixed and pre-specified (e.g., l = bn/2 + .5c). Thus y = (log f̂Q(u1), . . . , log f̂Q(ul))′ and

Gk = (cos(2πku1), . . . , cos(2πkul))′. Then for any fixed positive integer p̃0 chosen by the practi-

tioner, define the l × p̃0 + 2 dimensional matrix X = [G∗, G0, 2G1, . . . , 2Gp̃0 ], where G∗ = log(u).

Furthermore, define β̂p̃0 = (ν̂0, θ̂0,0, θ̂0,1, . . . , θ̂0,p̃0)
′ = (X ′X)−1X ′y, which can be viewed as the

ordinary least squares estimator of βp̃0 = (ν0, θ0,0, θ0,1, . . . , θ0,p̃0)
′, where θ0,k = 0 if k > p0. Letting

ej denote the p̃0 + 2 dimensional vector with 1 in the jth position and zeros elsewhere, we have

ν̂0 = e′1β̂p̃0 = e′1(X
′X)−1X ′y. (11)

This is an explicit formula for the estimate of the left tail index ν0, which depends on having y, the

vector of estimates of the log density-quantile – but how should one choose q̂(u), the estimate of

the quantile density function (qdf)? There have been many research efforts aimed at this problem;

see Cheng and Parzen [3], Xiang [32] and Falk [12] for a more detailed discussion.

Letting the order statistics of the sample be denoted X(1;n) < X(2;n) < · · · < X(n;n), a simple

estimator of q(u) is expressed in terms of the sample spacings

q̂n(uj) = n{X(j+1;n) −X(j;n)}, (12)

for uj = (j−0.5)/n and j = 1, 2, . . . , n−1; see Parzen [24]. Based on simulation results, using (12)

as a qdf estimator appears to provide an approximately unbiased estimate of νi, but the resulting

variability is too large to be competitive. A better class of statistics is provided by kernel quantile

density estimators, first introduced by Parzen [23]. Let Fn denote the empirical distribution function

(edf) of the sample, and its inverse will be Qn = F−1
n , called the empirical quantile function (eqf).
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One expression for the kernel quantile density estimator is given by

q̂n(u) =
1
h2

n

∫ 1

0
Qn(t) K ′

(
t− u

hn

)
dt (13)

for some kernel K with derivative K ′. Xiang [32] suggests the quantile density estimator q̂n(t) =
1

nh2
n

∑n
i=1 K ′

(
i/n−t

hn

)
X(i;n) as an alternative that is easier to calculate than (13). More generally

than (13), we will consider kernel qdf estimates of the form

q̂n(u) =
d

du

∫ 1

0
Qn(t)Kn(u, t)dµn(t), u ∈ (0, 1). (14)

Kn(u, t) is a kernel depending on n, e.g., Kn(u, t) = K(h−1
n (t − u))h−1

n . We will focus on kernel-

smoothed estimators q̂n(u) that satisfy assumptions K1 −K7 of Cheng [2]. For convenience we list

these assumptions here. Also let U = [a, b] denote an arbitrarily fixed subinterval of (0, 1), while

the measure µn and the kernel Kn satisfy appropriate variational properties discussed below.

K1. For eachn, 0 < µn([0, 1]) < ∞ (but may depend on n), andµn({0, 1}) = 0.

K2. For eachn and each (u, t), Kn(u, t) ≥ 0, and for eachu ∈ U,

∫ 1

0
Kn(u, t) dµn(t) = 1.

K3. For eachn,

∫ 1

0
tKn(u, t) dµn(t) = u, u ∈ U.

K4. There is a sequence δn ↓ 0 such that sup
u∈U

∣∣∣∣∫ u+δn

u−δn

Kn(u, t) dµn(t)− 1
∣∣∣∣ ↓ 0 as n ↑ ∞.

Conditions K5 − K7 concern the derivative K ′
n(u, t) = ∂Kn(u, t)/∂u. Let Sn be the (unique)

closed subset of (0, 1) such that µn{(0, 1)\Sn} = 0 and µn{(0, 1)\S′
n} > 0 for any S′

n ⊂ Sn.

For the sequence δn in K4, let In(u) = [u − δn, u + δn], Ic
n(u) = (0, 1)\In(u), for u ∈ U . Define

Λ(u; Kn) =
∫
In(u) |K

′
n(u, t)| dµn(t), u ∈ U ; and for a well-defined function g on (0, 1), let R(g; Kn) =

supu∈U

∫
Ic
n(u) |g(t)K ′

n(u, t)| dµn(t).

K5. For eachn sup
u∈U

∫ 1

0
|K ′

n(u, t)| dµn(t) < ∞ (but may depend on n).

K6. (a) For eachn and eachu ∈ U, Kn(u, t) ≡ 0, t ∈ Ic
n(u); or (b) Sn ⊆ [ε, 1− ε] ⊂ (0, 1), with

U ⊂ [ε, 1− ε] for some 0 < ε < 1/2.

K7. For the δn sequence in K4, δ2
n sup

u∈U
Λ(u; Kn) → 0 andR(1; Kn) → 0 as n ↑ 0.

One estimator that satisfies these conditions is the “boundary-modified Bernstein polynomial.”

Let ε be such that U ⊂ [ε, 1− ε] ⊂ (0, 1), Lε = 1− 2ε and tj = ε + (j/k)Lε, j = 0, 1, . . . , k, where

k is user-defined. Then the kth degree boundary-modified Bernstein polynomial qdf estimator on

U can be expressed as

q̂B
n (u) =

1
Lk

ε

k−1∑
j=0

Qn(tj+1)−Qn(tj)
1/k

(
k − 1

j

)
(u− ε)j(1− ε− u)k−1−j . (15)
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Letting k = kn ↑ ∞ as n ↑ ∞, Cheng [2] shows assumptions K1 − K7 are satisfied. Finally, with

y = log f̂Q(u) = − log q̂B
n (u) we can form an estimate of ν0 via (11).

Remark 1 Using the boundary-modified Bernstein polynomial requires the choice of user-selected

parameters. The values k = n and ε = .001 performed well in simulation, and satisfy the necessary

assumptions (see Section 6 for further discussion).

4 Asymptotic Results

When estimating the qdf in the context of tail exponent estimation, the issue of how to choose the

percentiles u arises. For notational convenience in the asymptotic results below, we will suppose

them to be of the form uj = j/n, with j ranging between 1 and l for the left tail index, but

j = r, r + 1, · · · , n − 1 for the right tail index, where l and r are user-selected parameters such

that ul ≤ 1/2 and ur ≥ 1/2 for all n. Although in practice we take our percentiles of the form

uj = (j − .5)/n, there is no difference to the asymptotics. Results are stated in terms of a closed

percentile set U = [a, b], where a and b are chosen according to whether we are estimating the left

or right tail exponent.

For the following consistency result, we suppose that the quantile density function q(u) is

estimated with a kernel-smoothed estimator q̂n(u) (14), as in Cheng [2]. The kernel that such an

estimator relies upon must satisfy some basic assumptions, such as K1−K7 of Cheng [2], provided

in Section 3. One example of such an estimator is given by (15). Additionally, some regularity

conditions on the quantile density are also necessary: assumptions Q1, Q2, and Q3 of Cheng [2].

For convenience these latter assumptions are discussed below.

Q1 (SMOOTHNESS). The qdf is twice differentiable on (0, 1).

Q2 (CONTROLLED TAIL). There exists a γ > 0 such that sup
u∈(0,1)

u(1− u)|J(u)|/fQ(u) ≤ γ.

Q3 (TAIL MONOTONICITY). Either q(0) < ∞ or q(u) is nonincreasing in some interval (0, u∗),

and either q(1) < ∞ or q(u) is nondecreasing in some interval (u∗, 1).

These conditions are a bit stronger than the basic assumptions discussed in Section 2. Taking the

lower percentiles, we have q(u) = u−ν0/L0(u) for u < 1/2, so that Q1 is satisfied if L0 is twice

differentiable in (0, 1/2). Q2 is automatically satisfied using (2), since the limits (5) and (6) exist.

Q3 may or may not be satisfied in general, depending on the form of L0; certainly, the assumption

of Q1 and Q3 places no burdensome restriction on the slowly varying function L0.

Since log fQ(u) = − log q(u) and log f̂Q(u) = − log q̂(u), we can write regression equations

9



using (9) and (10) for the left and right tail exponents ν0 and ν1:

log f̂Q(uj) = ν0 log(uj) + θ0,0 + 2
p0∑

k=1

θ0,k cos(2πkuj) + ε(uj)

log f̂Q(1− uj) = ν1 log(uj) + θ1,0 + 2
p1∑

k=1

θ1,k cos(2πkuj) + ε(1− uj),

where ε(u) = − log{q̂(u)/q(u)} is the “residual” process. Then we have the following consistency

theorem.

Theorem 1 (Consistency) Suppose that the density-quantile function q(u) satisfies Q1, Q2, Q3,

and we construct a kernel-smoothed estimator q̂(u) with kernel satisfying K1 through K7 of Cheng

[2]. Moreover, suppose that we consider each regression with the percentiles restricted to some closed

subset U = [a, b]. Then the estimates ν̂0 and ν̂1 are consistent.

Not only are the estimates we obtain consistent, but as the following theorem shows, our

estimates are also asymptotically normal under some additional assumptions. For this result, we

suppose that q(u) is estimated by a kernel estimator given by convolution as in (13), as opposed

to the more general (14). Furthermore, to establish the result we need the following additional

notation: let G∗(u) = log(u) and Gk(u) = cos(2πku), and let the vector (w∗, w0, · · · , wp̃i) denote

the first row of the limiting inverse matrix of (X ′X)/n. Then we define for i = 0, 1

G(u) = w∗G∗(u) + w0G0(u) + 2w1G1(u) + · · ·+ 2wp̃iGp̃i(u). (16)

We require an additional assumption on the kernel K:

K8. sup
u∈U

∣∣∣∣h−1
n K

(
s− u

hn

)
− h−1

n K

(
t− u

hn

)∣∣∣∣ ≤ Cn|t− s|β and |K ′′(x)| ≤ C/|x|

for some constant C > 0, and |x| sufficiently large. The Cn’s are positive constants with supn≥1 Cn <

∞, and the rate β can be any positive number.

Theorem 2 (Asymptotic Normality) Suppose the same assumptions as in Theorem 1 hold, and in

addition suppose that the kernel is symmetric and differentiable on [−1, 1], and satisfies assumption

K8. Let G(u) be given by (16) and denote its derivative by g(u). Let hn be chosen such that

nh2
n →∞ and nh4

n → 0, but hn → 0 as n →∞. Then
√

n(ν̂i − νi)
L=⇒ N (0, V )

where the variance V is given by (22).

Remark 2 The result of Theorem 2 is corroborated by simulation results in Section 6. It is difficult

to use this result for the construction of confidence intervals, since the limiting variance is compli-

cated and depends on the unknown function q(u). Since the data is independent and heavy-tailed,

it may be possible to use subsampling (Politis, Romano, and Wolf [27]) or the jack-knife (Shao and

Tu [30]) to estimate the variance.
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We now provide a result on consistency for large p0 and p1. However, in this case we must

reformulate our model equations (9) and (10) such that our regressors are orthogonal. Consider

the Fourier expansion of log Li(a + (b− a)u) for u ∈ [0, 1], which by change of variable amounts to

log Li(u) = θi,0 + 2
pi∑

k=1

θi,k cos
(

2πk
u− a

b− a

)
u ∈ [a, b].

We then let the regressor functions be G0(u) = 1 and Gj(u) = 2 cos
(
2πk u−a

b−a

)
for j ≥ 1, which

are orthonormal over u ∈ U = [a, b] with respect to the inner product < ·, · >L2(U) given by

< f, g >L2(U)= .5(b− a)−1 ∫ b
a f(u)g(u) du. Moreover {Gk} is complete for L2(U), so that log =∑

k≥0 αkGk with

αk =< log, Gk >L2(U)=


b log b−a log a

2(b−a) − 1/2 k = 0

− 1
2πk

∫ 2πk
0

sin u
2πka+(b−a)u du k ≥ 1.

These coefficients decay at rate k−1. Then the design matrix becomes X = [G∗, G0, G1, · · · , Gp̃0 ],

following the notation of Section 3. The percentiles are restricted to U , but now the columns are

asymptotically orthonormal (and linearly independent). This is because

< f, g >n:= n−1

bnbc∑
j=dnae

f(j/n)g(j/n) = O(n−1) + 2(b− a) < f, g >L2(U)

by Riemann integration (if f and g are bounded). Then under some additional conditions, the

following consistency result holds as p̃i →∞.

Theorem 3 Assume the conditions of Theorem 1, but with the different regressors described above.

Assume that log Li(u) is continuously differentiable, and that p̃i is chosen as a function of n such

that p̃i log p̃i/n → 0 as n →∞. Then ν̂i
P−→ νi.

5 Results on Stochastic Processes

In order to prove Theorem 2, we need to establish a convergence of stochastic processes. This is

done by first establishing some basic results on weak convergence, and then adapting these to the

density-quantile estimate. Let C[0, 1] denote the space of continuous functions from [0, 1] into the

real numbers; this is made into a metric space via the metric (4.1) of Karatzas and Shreve [18]. We

commence with a result analogous to Theorem 4.9 of Karatzas and Shreve [18, p.62]. First, let us

define the concept of the modulus of continuity on [0, 1] for any T ∈ (0, 1):

mT (ω, δ) = max
|s−t|≤δ, 0≤s,t≤T

|ω(s)− ω(t)|.
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Proposition 1 (Karatzas and Shreve, [18]) A set A ⊆ C[0, 1] has compact closure if and only if

the following two conditions hold:

sup
ω∈A

|ω(0)| < ∞ (17)

lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0 for every T ∈ (0, 1). (18)

In condition (17), the time point 0 can be replaced by the time point 1.

Next we consider an adaptation of Theorem 4.10 of Karatzas and Shreve [18, p.63]. By B(C[0, 1])

we denote the σ-field generated by open sets in C[0, 1]. Recall that a sequence of probability

measures {Pn}∞n=1 is tight, by definition, if for every ε > 0 there exists a compact set K in C[0, 1]

such that Pn(K) ≥ 1− ε for all n. The following result gives two sufficient conditions for tightness

that are easier to work with.

Proposition 2 A sequence {Pn}∞n=1 of probability measures on (C[0, 1],B(C[0, 1])) is tight if

lim
λ↑∞

sup
n≥1

Pn[ω : |ω(0)| > λ] = 0, (19)

lim
δ↓0

sup
n≥1

Pn[ω : mT (ω, δ) > ε] = 0 ∀T ∈ (0, 1), ε > 0. (20)

In condition (19), the time point 0 can be replaced by the time point 1.

The preceding Propositions 1 and 2 are fairly standard, and may be used to establish the weak

convergence of stochastic processes. In what follows, we consider the kernel quantile estimator

related to (13)

Q̂n(u) =
∫ 1

0
Qn(x)h−1

n K

(
u− t

hn

)
dt,

which is introduced in Falk [11]. In a like manner, a deterministic approximation to the true Qn(u)

is given by

Q̃n(u) =
∫ 1

0
Q(t)h−1

n K

(
u− t

hn

)
dt.

Now Theorem 1.3 of Falk [11] states that for any u1, u2, · · · , ud ∈ U = [a, b] under certain conditions,

√
n
{(

Q̂n(u1)− Q̃n(u1)
)

, · · · ,
(
Q̂n(ud)− Q̃n(ud)

)}
L=⇒ {Wu1 , · · · ,Wud

}

as n →∞, where the Wuj ’s are jointly Gaussian with mean zero and covariance q(ui)q(uj)ui(1−uj)

for ui ≤ uj . From this result we may guess that
√

n(Q̂n(u)−Q̃n(u)) as a stochastic process converges

to the process q(u)W (u), where W (u) is a Brownian Bridge, since the respective finite-dimensional

distributions converge. The following theorem gives conditions under which this convergence is

true. We require an additional technical concept: let (Ω,F , P) be a probability space on which the

random variables X1, X2, · · · are defined, and let Pn be the measure induced by
√

n(Q̂n(u)−Q̃n(u))

on the space (C(U),B(C(U))).
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Theorem 4 Suppose that Q has bounded derivative on U , and suppose that K has bounded support

on U , integrates to one, and satisfies condition K8. Then

√
n(Q̂n(u)− Q̃n(u)) L=⇒ q(u)W (u),

i.e., the induced measures Pn corresponding to
√

n(Q̂n(u)− Q̃n(u)) on the space (C(U),B(C(U)))

converge weakly to a measure P , the distribution of q(u)W (u).

Our next result develops some asymptotic theory for the regression estimate given by

1
n

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n). (21)

Later we will need the following deterministic approximation to q(u): q̃n(u) =
∫
U Q(x)h−2

n K ′
(

u−x
hn

)
dx.

The function G(u) is a fairly arbitrary regressor function. We formulate a general theory for the

asymptotics of expressions (21), which may then be applied to obtain the asymptotic of the tail

index estimators. Our main theorem is stated below:

Theorem 5 Suppose that the quantile density function q(u) satisfies Q1, Q2, Q3, and we construct

a kernel-smoothed q̂n(u) with kernel satisfying K1 through K7 of Cheng [2], as well as K8 above.

Let G(u) be a regressor function with derivative g(u) = G′(u), with g and G uniformly bounded on

U . Let hn be chosen such that nh2
n →∞ and nh4

n → 0 but hn → 0 as n →∞. Then

n−1/2

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n) L=⇒ G(b)W (b)−G(a)W (a)−

∫ b

a
W (u)

(
g(u)−G(u)

q′(u)
q(u)

)
du,

where W (u) is a Brownian Bridge. The limiting variance is

V =
∫ b

a
G2(u) du +

∫ b

a

∫ b

a
G(u)G(v)

(
1 + [(u ∧ v)− uv]

q′(u)
q(u)

q′(v)
q(v)

)
du dv. (22)

6 Empirical Study

The theory we propose applies to distributions having both symmetric and asymmetric tails; pop-

ular tail index estimators, such as the Hill, Pickands, and DEdH estimators, must be carefully

adapted to the asymmetric case (Hill [16], Pickands [26] and Dekkers, Einmahl and de Haan [7]).

So one benefit of our method is the ease of estimating a left or right tail exponent (index) when the

distribution is asymmetric. In this section we evaluate the utility and finite sample performance of

our estimators through an extensive simulation study. This illustrates the asymptotic theory and

provides an empirical comparison with several established methods under various distributional as-

sumptions. In particular, we compare our estimator with the Hill, Pickands, and DEdH estimators

under several different bandwidths b, using the Burr, Student t and α-stable distributions. We
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are able to demonstrate that, under a default specification of tuning parameters, our estimator is

competitive with or superior to the other estimators investigated when estimating the tail exponent

(index) for somewhat lighter heavy-tailed distributions.

The simulation study we undertake uses (15) as an estimate of q(u). Specifically, we choose

the number of grid points (i.e., the uj) equal to the sample size and choose k = n, ε = .001, and

p̃0 = p̃1 = 1, . . . , 4. Other values of k and ε were investigated, yielding comparable results. We

present the results with k = n and ε = .001 since this constitutes our recommended default tuning

parameters with p̃0 = p̃1 = 1. As noted previously, this choice of parameters does not necessarily

constitute an optimal choice of tuning parameters. However, this choice performs well in practice

and is thus provided here as a recommended default.

In order to simulate data from a distribution of a specified tail index we utilize the Burr (with

κ = τ = 1), Student t, and α-stable distributions. The preceding distributions all have symmetric

tails and we calculate the tail exponent, ν, using our formulation from (8). (Note that by Corollary

2.2.17 of Embrechts, Klüppelberg, and Mikosch [10], there is no slowly-varying function in the

representation of a stable variable’s tail probabilities, so our truncated representation for L0 and

L1 is valid and Theorem 2 applies.) This procedure was carried out for several values of the tail

exponent ν, using 1000 repetitions and a sample size of 1000. The tail exponents ν were chosen

between 1.05 and 3 (.5 ≤ α ≤ 20) for the Burr and t distributions, and between 1.556 and 3

(.5 ≤ α ≤ 1.8) for the α-stable distribution. (Since the α-stable distribution is only defined for

α ≤ 2, we take the maximum index to be α = 1.8, or ν = 1.556.) We present results for both the

left and right tail exponent.

Table 1 shows the results of the empirical study for the Burr (κ = τ = 1) distribution. Specifi-

cally, we compare the values of the bias, variance and mean square error (MSE) for all the estimators

under consideration. The most notable attribute of our estimator is that for ν ≤ 1.2 (α ≥ 5) our

estimator is universally superior to the Hill, Pickands, and DEdH in terms of lower MSE. Further,

for ν ≤ 1.556 (α ≥ 1.8) our estimator was competitive with those investigated under default tuning

parameter specifications (i.e., p̃0 = p̃1 = 1).

Similarly Table 2 displays the results of the empirical investigation under the t distribution.

Although our results under this distribution do not universally out-perform that of the Hill, Pickand

and DEdH, our estimator is superior to Hill (b = 100, 200), Pickands (b = 50, 100) and DEdH

(b = 50, 100, 200) for ν ≤ 1.2 (α ≥ 5) and competitive for ν ≤ 1.333 (α ≥ 3). Again, this is

noteworthy as these results are presented under a default specification of the tuning parameters

for our estimator. Additionally, in practice we would not know the family of distributions under

investigation; however through exploratory data analysis we may have indication as to the heaviness

of the tail. Therefore in cases where the distribution is deemed to have a “light-heavy” tail our

estimator (under default tuning parameters) provides a favorable alternative to popular tail index

estimators in the literature.
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The last distribution we investigated was the α-stable family (Table 3). Since the α-stable family

is not defined for ν < 1.5 (α > 2), we would not expect our estimator’s performance (in terms of

MSE) to exceed that of its competitors. Although in this case our estimator is not preferable, it

is important to note that in practice one would most likely be able to discern a priori (through

exploratory data analysis) that one was estimating a heavier tail than is recommended under our

approach.

An additional aspect of our estimator that was investigated empirically was the agreement of the

distribution of the estimator with normality. One particular assessment we employed was visual

inspection of the histogram of the distribution of our estimators with the standard normal pdf

superimposed (Figure 1). Although we only display one example histogram (for Burr (κ = τ = 1),

ν = 1.1) this figure was representative of the other simulations (and are thus not displayed). One

thing to note (as depicted by this figure), is that although our estimator was consistently in close

agreement with the normal distribution there were several instances where the other estimators

appeared to violate normality.

In summary, it seems that tail exponent (index) estimation in the density-quantile framework

performs better when estimating lighter heavy-tailed distributions. The superior estimation is due

to the fact that the low tail thickness corresponds to values of ν close to unity, whereas α is tending

to infinity. Specifically, it will be easier to estimate values close to one then around infinity, and so

it is intuitive that the variance will tend to be lower. Thus our estimator improves for larger values

of α, which is in contrast to the other estimators under investigation.

Finally, it should be noted that although the performance of our tail exponent estimator appears

asymmetric with respect to the left and right tail exponent, this is a result of making default choices

for the tuning parameters a priori. Specifically, the use of (15) as a starting point for our estimator

yields a boundary bias which is hard to minimize for both tails simultaneously, but the performance

of our estimator can be improved upon if one is willing to deviate from the default recommendations

we have provided.

7 Discussion

In this paper we developed a new method of tail exponent (index) estimation. The approach we

propose evolves naturally out of the density-quantile framework for classifying probability laws via

tail behavior. Moreover, we argue that our method is rather flexible, allowing for separate left

and right tail exponent (index) estimation when little or nothing is known about the distribution

a priori; we impose the requirement that the data are iid and have tail behavior governed by (3)

and (4). By making some additional particular assumptions on the data, we show that our tail

exponent estimator is both consistent and asymptotically normal. Since less work has been done on

the Parzen tail exponent, we provide a bridge to the classical tail index theory through our results
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in Section Two. Furthermore, in the development of the asymptotic theory we provide results

of independent interest that can be used to establish weak convergence of stochastic processes.

Although the method we propose is fairly general, it still requires some user defined choices. For

example, the qdf estimator and its associated “tuning” parameters all need to be chosen by the

practitioner. Even though we have made recommendations for suitable default choices, we do not

provide optimal selection criteria here.

To illustrate the finite sample performance of our estimator we provide the results of an extensive

empirical study. This study involves simulating from a Burr (with κ = τ = 1), Student t, and α-

stable distribution, making use of the equivalence formula (8), and includes the bias, variance and

mean square error for several different values of ν. Further, we compare our estimator to the Hill,

Pickands and DEdH estimators for several different bandwidth specifications. The results indicate

decent performance for the estimator we develop. Additionally, our estimator improves (i.e., has

smaller mean square error) for values of ν closer to unity (i.e., larger values of α), and thus is

superior for getting at lighter heavy-tailed distributions. Histograms of the distribution of the

normalized estimator illustrate asymptotic normality.

In summary, this is a method that should be useful when little is known about the heavy-tailed

distributional family, but it is suspected that the tails are on the lighter side (such as occur, for

example, in econometrics and finance). Parzen’s [24] approach allows one to easily describe light-

tailed as well as heavy-tailed behavior, whereas classical approaches tend to be focused on only the

latter.

Appendix

Proof of Lemma 1. By Theorem A3.3 of Embrechts, Klüppelberg, and Mikosch [10], we have

log L(x) = log c(1/x) +
∫ 1/x

z

δ(u)
u

du

with c(1/x) → c0 ∈ (0,∞) as x → 0, δ(u) → 0 as u →∞, and z some positive number. Then

∫ 1

0

(∫ 1/x

z

δ(u)
u

du

)2

dx =
∫ ∞

1
y−2

(∫ y

z

δ(u)
u

du

)2

dy,

and
∫ y
z δ(u)/u du = o(log y) by L’Hopital’s rule, so that the integrand above is o(y−2 log2 y) as

y →∞. This establishes square integrability. 2

Proof of Theorem 1. We focus on the ν0 case, since the ν1 case is similar. It follows from basic

linear regression that

ν̂0 − ν0 = e′1(X
′X)−1

X ′ε
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with ε the vector of ε(uj) such that the percentiles all lie in the set U . This amounts to considering

uj with dnae ≤ j ≤ bnbc. Let γ = X(X ′X)−1e1, so that

|ν̂0 − ν0| =

∣∣∣∣∣∣
bnbc∑

j=dnae

γj ε(uj)

∣∣∣∣∣∣ ≤
 bnbc∑

j=dnae

γ2
j

1/2 bnbc∑
j=dnae

ε2(uj)

1/2

by the Cauchy-Schwartz inequality. Now
∑bnbc

j=dnae γ2
j = e′1(X

′X)−1e1, where the matrix X ′X has

the following form:

X ′X =


∑bnbc

j=dnae log2(j/n)
∑bnbc

j=dnae log(j/n) 2
∑bnbc

j=dnae log(j/n) cos(2πj/n) · · ·∑bnbc
j=dnae log(j/n) bnbc − dnae 2

∑bnbc
j=dnae cos(2πj/n) · · ·

...
...

...
. . .


By the definition of Riemann integration, X ′X/n → M(p̃0) as n →∞, where M(p̃0) is given by

M(p̃0) =


∫ b
a log2(u) du

∫ b
a log(u) du 2

∫ b
a log(u) cos(2πu) du · · ·∫ b

a log(u) du b− a 2
∫ b
a cos(2πu) du · · ·

...
...

...
. . .

 .

This matrix is symmetric and invertible, being a Grammian matrix, and thus it follows that

|ν̂0 − ν0| ≤
√

[M−1(p̃0)]11

n−1

bnbc∑
j=dnae

ε2(uj)

1/2

.

The stochastic error is

ε(j/n) = − log
(

1 +
q̂(j/n)− q(j/n)

q(j/n)

)
,

to which we can apply a Taylor Series expansion. Since j is chosen such that j/n is bounded away

from 0 and 1, q(j/n) is bounded away from zero. Following the notation in Cheng [2], let Mg =

supu∈U |g(u)| for any given function g defined on (0, 1). Further, let q̃n(u) =
∫ 1
0 Q(t)K ′

n(u, t)dµn(t);

this is a sort of deterministic approximation to q(u) using kernel-smoothing, and is used as an

intermediary term in our analysis. Then dn = supu∈U |q̃n(u) − q(u)| is the deterministic error of

the estimate of q̂n(u) in estimating the qdf q. Additionally, let

B(q; Kn) = n−1/2

[
MqΛ∗

n

√
2δn log δ−1

n + Mq′ + C0Mqn
−1/2Aγ(n)Λ∗

n

]
,

with Λ∗
n = supu∈U Λ(u; Kn), C0 a universal constant, q′ equal to the derivative of q, and n−δAγ(n) =

o(1) for any δ > 0 (γ is defined in Q2). Then by Theorem 2.1 of Cheng [2]

sup
u∈U

|q̂(u)− q(u)| = OP (B(q;Kn) + dn),

and it follows that by the use of Taylor Series that supdnae≤j≤bnbc |ε(j/n)| = OP (B(q;Kn) + dn)

as well, so that
√

n−1
∑bnbc

j=dnae ε2(uj) = OP (B(q;Kn) + dn). This establishes the consistency of ν̂0

(given that the kernel is selected such that B(q;Kn) + dn → 0). 2
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Proof of Proposition 2. Assume (19) and (20). Fix η > 0, and consider any positive integer L,

which defines T via T = 1− 1/(L + 1). Additionally, choose λ > 0 such that

sup
n≥1

Pn[ω : |ω(0)| > λ] ≤ η2−L,

which is guaranteed by property (19). Next, for each positive integer k, choose δk > 0 such that

sup
n≥1

Pn[ω : mT (ω, δk) > 1/k] ≤ η2−(L+k),

which is guaranteed by property (20). Define the sets

AL = {ω : |ω(0)| ≤ λ, mT (ω, δk) ≤ 1/k, k = 1, 2, · · · }

for L = 1, 2, · · · . Also let A =
⋂∞

L=1 AL. Now if ω ∈ A, then supω∈A |ω(0)| ≤ λ and condition (17) is

satisfied. Now since mT (ω, δ) ≤ mT
′
(ω, δ) if T ≤ T

′
, it follows that m1−1/(L+1)(ω, δk) ≤ 1/k implies

mT (ω, δk) ≤ 1/k for every T ≤ 1−1/(L+1). So if ω ∈ A, then mT (ω, δk) ≤ 1/k for k = 1, 2, · · · and

for all T ∈ (0, 1). Thus, for every T ∈ (0, 1), supω∈A mT (ω, δk) ≤ 1/k for k = 1, 2, · · · , which implies

condition (18). Hence by Proposition 1, the set A has compact closure. But by the continuity of

mT (·, δ) – see Karatzas and Shreve [10, p.62] – each AL is closed, and hence so is A.

In order to show tightness of {Pn}∞n=1, we must demonstrate that Pn(A) ≥ 1− η for all n ≥ 1.

Now Pn(AL) ≥ 1− η2−L+1 is easily shown. Finally,

Pn(A) ≥ 1−
∞∑

L=1

Pn(Ac
L) ≥ 1− η

where Ac
L denotes the complement of AL. This proves the proposition. 2

Proof of Theorem 4. First, we note that Propositions 1 and 2 can be extended from C[0, 1]

to C(U) trivially. The idea of the proof is to adapt the ideas from Theorem 4.15 of Karatzas

and Shreve [18] – merely adapt from C[0,∞) to C(U) using the same arguments – and verify the

conditions of Proposition 2 for the particular process at hand. Now recalling that U = [a, b], the

first condition is (19), which becomes

sup
n≥1

P
[√

n
∣∣∣Q̂n(a)− Q̃n(a)

∣∣∣ > λ
]
→ 0 (A.1)

as λ → ∞, using the definition of the induced measure Pn. Now Theorem 1.3 of Falk [11] holds,

due to the conditions in our theorem, so

lim
n→∞

P
[√

n|Q̂n(a)− Q̃n(a)| > λ
]

= P[|Wa| > λ].

Now pick any ε > 0, and find M large enough such that P[|Wa| > λ] < ε for all |λ| > M (this is

accomplished, because Wa is Gaussian with finite variance). Then find N such that∣∣∣P[
√

n|Q̂n(a)− Q̃n(a)| > λ]− P[|Wa| > λ]
∣∣∣ < ε
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for all n ≥ N and |λ| > M . Then for |λ| > M ,

sup
n≥1

P[
√

n|Q̂n(a)− Q̃n(a)| > λ]

= max
1≤n<N

P[
√

n|Q̂n(a)− Q̃n(a)| > λ] + sup
n≥N

P[
√

n|Q̂n(a)− Q̃n(a)| > λ].

The second term is bounded by 2ε, and by taking |λ| still larger, the first term can be bounded by

ε. This demonstrates (A.1). Next, we consider the condition that for any ε > 0 we have

sup
n≥1

P
[

max
|s−t|≤δ

∣∣∣√n(Q̂n(s)− Q̃n(s))−
√

n(Q̂n(t)− Q̃n(t))
∣∣∣ > ε

]
(A.2)

tends to zero as δ → 0; this formulation is equivalent to (20) using the definition of induced measure.

Now assuming K8, take any ε > 0 and δ > 0, it follows that

sup
n≥1

P
[

max
|s−t|≤δ

∣∣∣√n(Q̂n(s)− Q̃n(s))−
√

n(Q̂n(t)− Q̃n(t))
∣∣∣ > ε

]
= sup

n≥1
P
[

max
|s−t|≤δ

√
n

∣∣∣∣∫
U
(F−1

n (u)− F−1(u))
(

h−1
n K

(
u− s

hn

)
− h−1

n K

(
u− t

hn

))
du

∣∣∣∣ > ε

]
≤ sup

n≥1
P
[

max
|s−t|≤δ

√
n

∫
U
|F−1

n (u)− F−1(u)|Cn|t− s|β du > ε

]
= sup

n≥1
P
[√

n

∫
U
|F−1

n (u)− F−1(u)| du > εδ−β/C

]
.

Now along the lines of the proof of (A.1), we can make δ smaller if needed, in order to replace the

supremum by a limit superior. Hence we have the bound of

lim sup
n→∞

P
[√

n

∫
U
|F−1

n (u)− F−1(u)| du > εδ−β/C

]
= P

[∫
U
|q(u)W (u)| du > εδ−β/C

]
,

which uses the known weak convergence result
√

n(F−1
n (u)− F−1(u)) L=⇒ q(u)W (u) (Gihman and

Skorohod, [13, p. 437]. We have applied the continuous functional of absolute integration to this

weak convergence result. Now we can let δ → 0, and obtain

lim
δ→0

P
[∫

U
|q(u)W (u)| du > εδ−β/C

]
= 0.

This establishes (A.2). Hence the induced measures Pn are tight, and the weak convergence is

proved. 2

Proof of Theorem 5. The proof proceeds in three major steps. First, we apply a Taylor Series

expansion to the logarithm. Second, we analyze the linearization of (21) and compute a Riemann

sum approximation. Third, we apply continuous functionals to the resulting expression, utilizing

Theorem 4 to obtain the stated convergence. For the first step, we expand in Taylor series as

follows:

log
(

q̂n(k/n)
q(k/n)

)
G(k/n) =

(
q̂n(k/n)− q(k/n)

q(k/n)

)
G(k/n) + Rk,n
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where Rk,n is the quadratic remainder, which depends on k and n. Now by Theorem 2.1 of Cheng

[2], which applies by our stated assumptions, there exists 0 < δ < 2/5 such that

sup
u∈U

|q̂n(u)− q(u)| = OP (n−δ).

Since G and q̃n are bounded away from infinity and zero respectively on U , the error satisfies

supk/n∈U Rk,n = OP (n−2δ). Hence, multiplying by
√

n, the error still tends to zero, so that

n−1/2

bnbc∑
k=dnae

log
(

q̂n(k/n)
q(k/n)

)
G(k/n) = OP (n1/2−2δ) + n−1/2

bnbc∑
k=dnae

(
q̂n(k/n)− q(k/n)

q(k/n)

)
G(k/n)

as n →∞. For the second step, it will be more convenient to work with

n−1/2

bnbc∑
k=dnae

(q̂n(k/n)− q̃n(k/n))
G(k/n)
q(k/n)

;

the difference is given by

n−1/2

bnbc∑
k=dnae

(q̃n(k/n)− q(k/n))
G(k/n)
q(k/n)

.

Now
√

n(q̃n(u) − q(u)) will tend to zero uniformly for u ∈ U since nh4
n → 0. This is because, as

in Cheng [2], the deterministic error dn is O(h2
n) under Q1 when K is symmetric on [−1, 1]. Hence

we require
√

nh2
n =

√
nh4

n → 0. Next, we have

n−1

bnbc∑
k=dnae

(q̂n(k/n)− q̃n(k/n))
G(k/n)
q(k/n)

=
∫

U

(
F−1

n (x)− F−1(x)
)
n−1

bnbc∑
k=dnae

h−2
n K ′

(
k/n− x

hn

)
G(k/n)
q(k/n)

dx,

with the inner sum being recognized as a deterministic Riemann sum. For each fixed x, we have

∫
U

h−2
n K ′

(
u− x

hn

)
G(u)
q(u)

du− n−1

bnbc∑
k=dnae

h−2
n K

′
(

k/n− x

hn

)
G(k/n)
q(k/n)

= h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

(
K ′
(

u− x

hn

)
G(u)
q(u)

−K ′
(

k/n− x

hn

)
G(k/n)
q(k/n)

)
du

+
∫ dnae/n

a
h−2

n K ′
(

u− x

hn

)
G(u)
q(u)

du−
∫ (bnbc+1)/n

b
h−2

n K ′
(

u− x

hn

)
G(u)
q(u)

du.
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Using the boundedness of K
′

and G and 1/q, the latter two terms are O(n−1h−2
n ). For the first

term, we have an absolute bound of

h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

∣∣∣∣K ′
(

u− x

hn

)
−K

′
(

k/n− x

hn

)∣∣∣∣ ∣∣∣∣G(u)
q(u)

∣∣∣∣ du

+ h−2
n

bnbc∑
k=dnae

∫ (k+1)/n

k/n

∣∣∣∣K ′
(

k/n− x

hn

)∣∣∣∣ ∣∣∣∣G(k/n)
q(k/n)

− G(u)
q(u)

∣∣∣∣ du.

Now since g is uniformly bounded on U , we can use the Mean Value Theorem to bound the second

term by O(n−1h−2
n ). For the first term, we can use K8 on the following:∣∣∣∣K ′

(
u− x

hn

)
−K ′

(
k/n− x

hn

)∣∣∣∣ = |K ′′(z∗)|
∣∣∣∣u− k/n

hn

∣∣∣∣ ,
where z∗ is between (u− x)/hn and (k/n− x)/hn. Since u ∈ [(k − 1)/n, k/n], we obtain a bound

of hn · O(n−1h−1
n ). Hence the overall bound for the Riemann sum approximation is O(n−1h−2

n ),

uniformly in x. Therefore,

√
n

∫
U

(
F−1

n (x)− F−1(x)
)
n−1

bnbc∑
k=dnae

h−2
n K

′
(

k/n− x

hn

)
G(k/n)
q(k/n)

dx

−
√

n

∫
U

(
F−1

n (x)− F−1(x)
) ∫

U
h−2

n K ′
(

u− x

hn

)
G(u)
q(u)

du dx

≤
√

n

∫
U

∣∣F−1
n (x)− F−1(x)

∣∣ dx · O(n−1h−2
n )

and the random quantity converges weakly (again by Gihman and Skorohod, [13, p.437]), hence

the total error is OP (n−1h−2
n ), which tends to zero. This concludes the second step of the proof.

Next, we re-express the inner integral, using integration by parts:∫ b

a
h−2

n K ′
(

u− x

hn

)
G(u)
q(u)

du

= h−1
n K ′

(
b− x

hn

)
G(b)
q(b)

− h−1
n K ′

(
a− x

hn

)
G(a)
q(a)

−
∫ b

a
h−1

n K

(
u− x

hn

)(
g(u)
q(u)

− G(u)q′(u)
q2(u)

)
du.

Integrating against
√

n(F−1
n (x)− F−1(x)) over x ∈ U yields

√
n
(
Q̂n(b)− Q̃n(b)

) G(b)
q(b)

−
√

n
(
Q̂n(a)− Q̃n(a)

) G(a)
q(a)

−
√

n

∫
U

(
Q̂n(u)− Q̃n(u)

)[g(u)
q(u)

− G(u)q′(u)
q2(u)

]
du.

At this point, we utilize Theorem 4 and apply integration against b(u) over U to the convergence

result, where

b(u) = ∆b(u)
G(u)
q(u)

−∆a(u)
G(u)
q(u)

−
[
g(u)
q(u)

− G(u)q′(u)
q2(u)

]
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and ∆x(u) denotes the Dirac delta function at x. (Observe that evaluation at a point is a con-

tinuous functional, which amounts to integration against the Dirac delta function at that point.)

Writing out b(u)q(u)W (u), we obtain the stated result. This limiting stochastic integral can also

be rewritten as ∫ b

a

G(u)
q(u)

d[q(u)W (u)]. (A.3)

Using the fact that W (u) = B(u)−uB(1) for Brownian Motion B(u), the integrating measure can

also be written as

q′(u)B(u)du + q(u)dB(u)−B(1)(uq′(u) + q(u))du.

Now computing the variance of (A.3) yields (22). 2

Proof of Theorem 2. Following on from the proof of Theorem 1, we have

√
n(ν̂0 − ν0) = oP (1) +

e
′
1M

−1(p̃0)

n−1/2

bnbc∑
k=dnae

ε(k/n)G∗(k/n), · · · , n−1/22
bnbc∑

k=dnae

ε(k/n)Gp̃0(k/n)

′,
since X ′X/n = o(1) + M(p̃0) (in the sense that each entry converges). By (16), the expression on

the right is simply

n−1/2

bnbc∑
k=dnae

ε(k/n)G(k/n).

Now since g and G are uniformly bounded on U , our assumptions validate the hypotheses of

Theorem 5, and hence applying that result completes the proof. 2

Proof of Theorem 3. We focus on the ν0 case, ν1 being similar. Let B(u) = log L0(u) −
log L

(p̃0)
0 (u) be the deterministic bias, and B the vector of B(uj) values. Then it follows that

ν̂0 − ν0 = e′1(X
′X)−1

X ′ (ε + B) .

As in the proof of Theorem 1, we have the matrix Mn(p̃0) := n−1X ′X, which can be partitioned

into

Mn(p̃0) =

[
γn ω′

n(p̃0)

ωn(p̃0) Dn(p̃0)

]
where the jth component of ωn(p̃0) is < log, Gj−1 >n for 1 ≤ j ≤ p̃0, and Dn(p̃0) has jkth

entry < Gj−1, Gk−1 >n. Also γn =< log, log >n. Let the Schur complement be Sn(p̃0) = γn −
ω′

n(p̃0)D−1
n (p̃0)ωn(p̃0), so that

e′1M
−1
n (p̃0)X ′ = S−1

n (p̃0)
(
G∗ − ω′

n(p̃0)D−1
n (p̃0)G(p̃0)

)
,
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using Axelsson [1, p.93] to compute the inverse matrix. Here G(p̃0) is the matrix consisting of the

bottom p̃0 + 1 rows of X ′. Now < log, Gj >n=
∑

k≥0 αk < Gk, Gj >n, from which it follows that

ωn(p̃0) = Dn(p̃0)α(p̃0) + D̃n(p̃0)α−p̃0(∞),

where α(p̃0) = (α0, · · · , αp̃0)
′, α−p̃0(∞) = (αp̃0+1, · · · )′, and D̃n(p̃0) is a matrix of dimension p̃0 + 1

by infinity, with jkth element equal to < Gj−1, Gk+p̃0 >n. Letting vn(p̃0) = D̃n(p̃0)α−p̃0(∞), we see

that its jth component is O(n−1 log p̃0) using the Riemann approximation and the orthogonality

of {Gk}, and the fact that |αk| = O(k−1). Then we obtain

G∗ − ω′
n(p̃0)D−1

n (p̃0)G(p̃0) =
∑
k>p̃0

αkGk − v′n(p̃0)D−1
n (p̃0)G(p̃0).

Assuming that p̃0 = o(n), we approximate Dn(p̃0) by 2(b−a) times the identity matrix (idn), plus a

matrix En(p̃0) with every entry O(n−1). Since D−1
n (p̃0) = .5(b− a)−1 idn+

∑
l≥1 (−.5En(p̃0)/(b− a))l,

we obtain v′n(p̃0)D−1
n (p̃0)G(p̃0) = O(p̃0 log p̃0/n). Next turning to Sn(p̃0), we have γn = O(n−1) +

2(b− a)
∑

j≥0 α2
j . Also

ω′
n(p̃0)D−1

n (p̃0)ωn(p̃0) = ω′
n(p̃0)α(p̃0) + ω′

n(p̃0)D−1
n (p̃0)vn(p̃0),

and the second term on the right hand side is O(p̃0 log p̃0/n). The first term is O(n−1) plus

2(b− a)
∑p̃0

j=0 α2
j , so that

Sn(p̃0) = O(p̃0 log p̃0/n) + 2(b− a)
∑
j>p̃0

α2
j .

In summary, we have

e′1M
−1
n (p̃0)X ′ =

O(p̃0 log p̃0/n) +
∑

k>p̃0
αkGk

O(p̃0 log p̃0/n) + 2(b− a)
∑

j>p̃0
α2

j

,

which is averaged over uj against ε and B. For the stochastic term, we have

<
∑
k>p̃0

Gkαk, ε >n≤
√

< ε, ε >n

√
<
∑
k>p̃0

Gkαk,
∑
k>p̃0

Gkαk >n

by the Cauchy-Schwarz inequality. The first term is OP (B(q;Kn)+ dn) as in the proof of Theorem

1, and the second term is O(n−1) plus a term tending to zero as p̃0 → ∞. For the deterministic

bias term, we have

<
∑
k>p̃0

Gkαk, B >n= O(n−1) + 2(b− a)
∑
k>p̃0

αkθk,0.

This means that the asymptotic bias is
∑

k>p̃0
αkθk,0/

∑
k>p̃0

α2
k, so long as all the error terms

vanish; but this is true since p̃0 is chosen such that p̃0 log p̃0/n → 0 as n → ∞. Now the Cauchy-

Schwarz inequality shows that the numerator of the bias is a finite sum for any p̃0, and thus both

numerator and denominator tend to zero as p̃0 tends to infinity. Applying L’Hopital’s rule yields

the asymptote of θp̃0,0/αp̃0 . Finally, since αk = O(1/k) and log L0(u) is continuously differentiable,

it follows that θk,0 = o(1/k) and the bias tends to zero. This completes the proof of consistency.

2
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Bias - Burr Distribution κ = τ = 1

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 1 2 3 4 b = 50 100 200 50 100 50 100 200

3 (.5) -.372 -.428 -.502 -.522 -.186 -.200 -.215 -.198 .030 -.009 -.105 -.016 .006 .047 .008 -.063

2.25 (.8) -.165 -.188 -.224 -.229 -.087 -.089 -.0956 -.081 -.012 -.070 -.218 -.003 .000 .027 -.023 -.110

2 (1) -.122 -.136 -.157 -.160 -.042 -.033 -.020 -.002 -.031 -.103 -.272 -.001 -.004 .040 -.022 -.116

1.833 (1.2) -.098 -.108 -.124 -.128 -.046 -.040 -.036 -.021 -.059 -.137 -.314 -.001 -.004 .012 -.043 -.128

1.667 (1.5) -.068 -.076 -.085 -.082 -.012 -.004 .006 .028 -.081 -.173 -.359 -.011 .011 .022 -.037 -.121

1.556 (1.8) -.054 -.059 -.068 -.068 -.016 -.008 .007 .025 -.113 -.206 -.397 -.011 .009 .018 -.045 -.126

1.5 (2) -.050 -.053 -.056 -.052 -.003 -.008 .022 .041 -.123 -.219 -.417 .002 -.005 .015 -.044 -.121

1.333 (3) -.023 -.022 -.018 -.013 .002 .007 .018 .033 -.176 -.275 -.478 .009 .003 .001 -.051 -.113

1.25 (4) -.019 -.021 -.016 -.010 .013 .021 .036 .053 -.204 -.306 -.510 .004 .010 .005 -.044 -.104

1.2 (5) -.018 -.020 -.015 -.011 .005 .017 .035 .051 -.228 -.329 -.534 .005 .004 .004 -.050 -.108

1.182 (5.5) -.019 -.020 -.017 -.012 .012 .021 .039 .053 -.232 -.334 -.542 .011 -.001 .002 -.046 -.099

1.167 (6) -.011 -.011 -.007 -.004 .013 .024 .041 .060 -.238 -.343 -.548 -.009 .008 .007 -.042 -.101

1.1 (10) -.015 -.015 -.015 -.011 .016 .025 .039 .050 -.269 -.371 -.581 .015 -.005 .001 -.046 -.091

1.067 (15) -.008 -.003 .003 .008 .011 .022 .039 .053 -.285 -.389 -.596 .002 .002 .007 -.041 -.092

1.05 (20) -.007 -.002 .004 .012 .024 .037 .053 .067 -.291 -.396 -.607 .007 -.011 .013 -.034 -.083

Variance - Burr Distribution κ = τ = 1

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 1 2 3 4 b = 50 100 200 50 100 50 100 200

3 (.5) .308 .470 .714 .874 .132 .198 .306 .376 .079 .034 .020 .146 .072 .096 .049 .025

2.25 (.8) .093 .146 .232 .292 .058 .087 .135 .173 .031 .016 .009 .109 .005 .053 .027 .015

2 (1) .058 .090 .143 .183 .047 .070 .106 .132 .022 .012 .006 .094 .045 .046 .024 .013

1.833 (1.2) .047 .072 .116 .147 .035 .050 .077 .097 .015 .008 .005 .086 .042 .034 .018 .011

1.667 (1.5) .036 .055 .086 .108 .028 .044 .068 .085 .010 .006 .004 .088 .042 .033 .018 .010

1.556 (1.8) .027 .042 .065 .084 .023 .035 .054 .067 .008 .005 .004 .078 .038 .029 .015 .009

1.5 (2) .023 .036 .056 .072 .022 .037 .049 .060 .007 .005 .003 .075 .036 .030 .015 .010

1.333 (3) .019 .029 .046 .058 .016 .024 .040 .053 .004 .003 .003 .072 .036 .025 .013 .008

1.25 (4) .017 .025 .039 .049 .014 .022 .035 .045 .004 .002 .002 .065 .034 .028 .014 .008

1.2 (5) .015 .023 .036 .047 .013 .022 .034 .045 .003 .002 .002 .065 .034 .028 .013 .008

1.182 (5.5) .014 .023 .037 .047 .013 .019 .032 .042 .003 .002 .002 .067 .031 .025 .013 .008

1.167 (6) .013 .022 .034 .044 .011 .018 .030 .039 .003 .002 .002 .072 .033 .024 .013 .007

1.1 (10) .012 .019 .029 .040 .010 .017 .028 .039 .002 .002 .002 .067 .036 .029 .013 .008

1.067 (15) .010 .017 .027 .035 .011 .017 .026 .035 .002 .002 .002 .070 .033 .027 .013 .009

1.05 (20) .012 .018 .028 .037 .010 .017 .028 .036 .002 .002 .002 .066 .035 .028 .013 .009

MSE - Burr Distribution κ = τ = 1

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 1 2 3 4 b = 50 100 200 50 100 50 100 200

3 (.5) .446 .654 .965 1.146 .167 .237 .352 .415 .080 .038 .031 .146 .072 .098 .049 .029

2.25 (.8) .120 .182 .282 .345 .066 .095 .144 .179 .031 .020 .057 .109 .005 .054 .027 .027

2 (1) .073 .108 .167 .208 .049 .071 .107 .132 .023 .022 .081 .094 .045 .048 .024 .027

1.833 (1.2) .057 .084 .131 .163 .037 .052 .078 .098 .019 .027 .104 .086 .042 .034 .020 .027

1.667 (1.5) .041 .060 .093 .115 .028 .044 .068 .086 .017 .036 .133 .088 .042 .034 .019 .024

1.556 (1.8) .030 .045 .070 .088 .023 .035 .054 .068 .021 .048 .161 .078 .038 .029 .017 .025

1.5 (2) .025 .039 .059 .075 .022 .032 .049 .062 .022 .052 .177 .075 .036 .030 .017 .024

1.333 (3) .019 .030 .046 .058 .016 .024 .040 .054 .035 .078 .231 .072 .036 .026 .016 .021

1.25 (4) .017 .025 .040 .049 .014 .023 .036 .049 .045 .096 .262 .065 .034 .028 .016 .019

1.2 (5) .015 .024 .037 .048 .013 .022 .035 .048 .055 .111 .287 .065 .034 .028 .016 .020

1.182 (5.5) .014 .023 .037 .047 .013 .020 .034 .045 .057 .114 .297 .067 .031 .025 .015 .018

1.167 (6) .013 .022 .034 .044 .012 .019 .031 .043 .059 .120 .303 .072 .033 .024 .014 .018

1.1 (10) .012 .019 .030 .040 .011 .017 .030 .042 .074 .139 .340 .067 .036 .029 .015 .016

1.067 (15) .011 .017 .027 .035 .011 .017 .027 .038 .083 .153 .358 .070 .033 .027 .015 .017

1.05 (20) .012 .018 .028 .037 .011 .018 .030 .040 .086 .158 .371 .066 .035 .028 .015 .015

Table 1: Tail exponent (index) estimation using LDQ (Log Density-Quantile) for ν0 and ν1, as
well as the Hill, Pickands, and DEdH estimators. The simulations were drawn from the Burr
distribution with κ = τ = 1. The LDQ estimator used here is given by (15) with k = n, ε = .001.
The simulations consisted of 1000 repetitions of sample size 1000. Note that the bold font entries
denote ν0 and ν1 for p = 1 (the default specification) along with the minimum estimate among the
Hill, Pickands, and DEdH estimators.



Bias - t-Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (df) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) -.411 -.335 -.471 -.447 -.268 -.140 -.234 -.172 .044 .023 -.006 .000 .124 .065 .033 .008

2.25 (.8) -.232 -.148 -.230 -.210 -.155 -.038 -.094 -.043 .022 .003 -.059 .047 .248 .059 .026 -.011

2 (1) -.178 -.107 -.174 -.156 -.111 -.008 -.053 -.006 .014 -.011 -.091 .070 .312 .056 .021 -.015

1.833 (1.2) -.141 -.080 -.137 -.120 -.079 .016 -.025 .014 .005 -.027 -.128 .104 .328 .057 .021 -.013

1.667 (1.5) -.089 -.032 -.085 -.065 -.046 .033 .000 .037 -.010 -.053 -.167 .124 .377 .055 .020 -.007

1.556 (1.8) -.056 -.011 -.057 -.042 -.009 .054 .017 .052 -.018 -.068 -.196 .164 .397 .060 .031 .013

1.5 (2) -.038 .001 -.050 -.036 .006 .071 .039 .072 -.028 -.081 -.215 .181 .406 .063 .035 .020

1.333 (3) .015 .048 .009 .023 .054 .105 .078 .107 -.066 -.132 -.280 .201 .430 .073 .056 .060

1.25 (4) .058 .089 .051 .064 .087 .130 .010 .126 -.091 -.161 -.317 .233 .436 .086 .074 .092

1.2 (5) .065 .093 .057 .069 .104 .147 .119 .144 -.110 -.184 -.344 .243 .427 .095 .090 .111

1.182 (5.5) .075 .102 .070 .077 .114 .154 .128 .149 -.115 -.190 -.351 .251 .433 .102 .099 .124

1.167 (6) .081 .105 .066 .077 .113 .151 .120 .145 -.125 -.198 -.361 .256 .431 .096 .089 .124

1.1 (10) .115 .139 .111 .119 .139 .173 .149 .172 -.155 -.231 -.396 .266 .432 .125 .118 .149

1.067 (15) .126 .148 .121 .130 .151 .187 .164 .183 -.170 -.248 -.418 .284 .416 .132 .132 .168

1.05 (20) .126 .148 .117 .126 .158 .191 .174 .195 -.179 -.259 -.427 .262 .429 .146 .145 .173

Variance - t-Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (df) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) .254 .391 .611 .758 .135 .197 .306 .389 .076 .038 .019 .167 .079 .097 .047 .024

2.25 (.8) .079 .123 .193 .242 .055 .081 .124 .156 .031 .016 .008 .104 .048 .050 .026 .014

2 (1) .058 .093 .146 .182 .039 .058 .090 .113 .020 .010 .006 .085 .044 .041 .021 .011

1.833 (1.2) .044 .068 .107 .139 .035 .052 .080 .102 .014 .007 .004 .077 .036 .039 .019 .011

1.667 (1.5) .030 .047 .075 .096 .025 .038 .006 .077 .009 .005 .003 .082 .037 .030 .016 .009

1.556 (1.8) .026 .042 .068 .111 .025 .037 .057 .076 .007 .004 .002 .082 .035 .031 .016 .010

1.5 (2) .024 .037 .059 .078 .021 .032 .049 .065 .005 .003 .002 .068 .033 .028 .015 .009

1.333 (3) .018 .029 .045 .059 .016 .026 .039 .050 .003 .002 .002 .064 .031 .028 .015 .009

1.25 (4) .014 .022 .036 .046 .013 .020 .033 .042 .002 .001 .001 .066 .034 .026 .014 .009

1.2 (5) .013 .021 .033 .042 .012 .019 .030 .039 .002 .001 .001 .064 .029 .026 .014 .009

1.182 (5.5) .012 .018 .031 .041 .012 .018 .030 .041 .002 .001 .001 .066 .030 .025 .014 .010

1.167 (6) .013 .020 .033 .044 .011 .017 .029 .038 .001 .001 .001 .062 .028 .026 .013 .009

1.1 (10) .010 .018 .029 .038 .009 .016 .026 .034 .001 .001 .001 .062 .028 .027 .014 .009

1.067 (15) .010 .017 .027 .035 .010 .016 .025 .033 .001 .001 .001 .064 .031 .027 .015 .010

1.05 (20) .009 .015 .026 .034 .009 .014 .024 .032 .001 .001 .001 .064 .030 .028 .015 .011

MSE - t-Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (df) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) .422 .503 .833 .958 .206 .217 .361 .419 .078 .039 .019 .167 .094 .101 .049 .024

2.25 (.8) .133 .145 .246 .286 .079 .082 .132 .157 .032 .016 .011 .107 .110 .053 .026 .014

2 (1) .090 .105 .176 .207 .052 .058 .093 .113 .020 .011 .014 .090 .142 .045 .021 .012

1.833 (1.2) .064 .075 .126 .154 .041 .053 .080 .103 .014 .008 .020 .088 .144 .042 .019 .011

1.667 (1.5) .038 .049 .083 .101 .027 .039 .006 .079 .009 .007 .031 .097 .179 .033 .016 .009

1.556 (1.8) .029 .042 .071 .088 .025 .040 .058 .078 .007 .008 .041 .109 .192 .034 .017 .010

1.5 (2) .026 .037 .062 .079 .021 .037 .051 .071 .006 .009 .049 .100 .198 .032 .016 .009

1.333 (3) .019 .031 .045 .059 .019 .037 .046 .062 .007 .019 .080 .104 .216 .033 .019 .013

1.25 (4) .018 .030 .038 .050 .021 .037 .043 .058 .010 .027 .102 .121 .224 .034 .020 .017

1.2 (5) .017 .030 .036 .047 .022 .041 .044 .059 .014 .035 .120 .124 .211 .035 .022 .022

1.182 (5.5) .018 .028 .036 .047 .025 .042 .046 .063 .015 .037 .125 .129 .217 .035 .024 .025

1.167 (6) .019 .031 .037 .050 .024 .040 .043 .059 .017 .040 .132 .129 .214 .035 .021 .025

1.1 (10) .024 .037 .041 .052 .028 .046 .048 .064 .025 .054 .158 .132 .214 .043 .028 .031

1.067 (15) .026 .038 .041 .052 .032 .051 .052 .067 .030 .062 .176 .144 .204 .044 .032 .039

1.05 (20) .025 .037 .039 .049 .034 .051 .055 .070 .032 .068 .183 .133 .214 .050 .036 .041

Table 2: Tail exponent (index) estimation using LDQ (Log Density-Quantile) for ν0 and ν1, as well
as the Hill, Pickands, and DEdH estimators. The simulations were drawn from the t-distribution.
The LDQ estimator used here is given by (15) with k = n, ε = .001. The simulations consisted of
1000 repetitions of sample size 1000. Note that the bold font entries denote ν0 and ν1 for p = 1
(the default specification) along with the minimum estimate among the Hill, Pickands, and DEdH
estimators.
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Bias - α-stable Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) -.376 -.451 -.519 -.535 -.217 -.245 -.257 -.233 -.024 -.100 -.259 -.117 -.229 .006 -.065 -.187

2.25 (.8) -.219 -.160 -.236 -.213 -.151 -.065 -.119 -.074 -.008 -.050 -.150 -.004 .098 .027 -.015 -.075

2 (1) -.192 -.124 -.198 -.183 -.120 -.014 -.054 -.009 .012 -.016 -.096 .058 .297 .059 .020 -.020

1.833 (1.2) -.128 -.072 -.126 -.103 -.081 .002 -.039 .000 .038 .025 -.050 .158 .505 .065 .045 .033

1.667 (1.5) -.033 -.036 -.119 -.113 .020 .038 -.037 -.016 .094 .095 -.001 .410 .744 .082 .086 .129

1.556 (1.8) .204 .153 .041 .015 .266 .235 .129 .113 .204 .168 .032 .652 .888 .151 .217 .330

Variance - α-stable Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) .265 .411 .633 .778 .131 .200 .314 .398 .075 .040 .022 .170 .079 .098 .049 .027

2.25 (.8) .083 .131 .202 .258 .055 .082 .125 .156 .032 .017 .009 .113 .047 .051 .026 .014

2 (1) .057 .089 .138 .174 .040 .060 .095 .124 .019 .009 .005 .092 .045 .041 .019 .011

1.833 (1.2) .044 .068 .107 .135 .036 .052 .080 .100 .013 .007 .004 .082 .038 .034 .017 .010

1.667 (1.5) .035 .053 .085 .108 .027 .041 .063 .082 .008 .004 .002 .073 .032 .028 .015 .012

1.556 (1.8) .031 .048 .075 .095 .025 .039 .063 .078 .004 .002 .001 .060 .030 .031 .025 .020

MSE - α-stable Distribution

LDQ – ν0 LDQ – ν1 Hill Pickands DEdH

ν (α) p = 1 2 3 4 p = 1 2 3 4 b = 50 100 200 b = 50 100 b = 50 100 200

3 (.5) .407 .615 .902 1.064 .179 .260 .380 .452 .075 .050 .089 .184 .132 .098 .053 .062

2.25 (.8) .131 .156 .257 .304 .078 .086 .139 .162 .032 .019 .031 .113 .057 .051 .026 .020

2 (1) .094 .104 .177 .210 .054 .060 .098 .125 .019 .010 .014 .095 .134 .044 .020 .011

1.833 (1.2) .061 .073 .122 .146 .043 .052 .082 .100 .015 .007 .006 .107 .293 .038 .019 .011

1.667 (1.5) .036 .054 .099 .121 .027 .043 .064 .082 .016 .013 .002 .241 .585 .034 .023 .029

1.556 (1.8) .072 .071 .076 .096 .096 .094 .079 .091 .045 .030 .002 .485 .819 .054 .072 .129

Table 3: Tail exponent (index) estimation using LDQ (Log Density-Quantile) for ν0 and ν1, as
well as the Hill, Pickands, and DEdH estimators. The simulations were drawn from the α-stable
distribution. The LDQ estimator used here is given by (15) with k = n, ε = .001. The simulations
consisted of 1000 repetitions of sample size 1000. Note that the bold font entries denote ν0 and ν1
for p = 1 (the default specification) along with the minimum estimate among the Hill, Pickands,
and DEdH estimators.
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Figure 1: This figure contains a histogram for the normalized (“studentized”) distribution of the
left and right tail exponent (index) estimators (ν0 and ν1) along with the DEdH estimator (b = 100)
for the Burr(κ = τ = 1) distribution with ν = 1.1 (α = 10) from a simulation with 1000 repetitions
and of sample size 1000. The standard normal pdf is superimposed for reference.


