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Abstract

It is well-known that small area estimation needs explicit, or at least implicit use of mod-
els. These model-based estimates can differ widely from the direct estimates, especially
for areas with very low sample sizes. While model-based small area estimates are very
useful, one potential difficulty with such estimates is that when aggregated, the overall
estimate for a larger geographical area may be quite different from the corresponding
direct estimate, the latter being usually believed to be quite reliable. This is because the
original survey was designed to achieve specified inferential accuracy at this higher level
of aggregation. The problem can be more severe in the event of model failure as often
there is no real check for validity of the assumed model. Moreover, an overall agreement
with the direct estimates at an aggregate level may sometimes be necessary for policy
reasons to convince the legislators of the utility of small area estimates.

One way to avoid this problem is the so-called “benchmarking approach” which amounts
to modifying these model-based estimates so that one gets the same aggregate estimate
for the larger geographical area. Currently, the most popular approach is the so-called
“raking” or ratio adjustment method which involves multiplying all the small area es-
timates by a constant data-dependent factor so that the weighted total agrees with the
direct estimate. There are alternate proposals, mostly from frequentist considerations,
which meet also the aforementioned benchmarking criterion.

We propose in this paper a general class of constrained Bayes estimators which achieve
as well the necessary benchmarking. Interestingly enough, many of the frequentist esti-
mators, including the raked estimators, follow as special cases of our general result. In
the process, some deficiencies of the raked estimators will be pointed out. Explicit Bayes
estimators are derived that benchmark the weighted mean or both the weighted mean
and variability. We illustrate our methodology by developing poverty rates in school-
aged children at the state level, and then benchmarking these estimates to match at the
national level.

Keywords: Area-level, penalty parameter, two-stage, weighted mean, weighted variabil-
ity.



1 Introduction

Empirical Bayesian (EB) and hierarchical Bayesian (HB) methods are now widely used
for simultaneous inference. The biggest advantage of these methods is their ability to en-
hance the precision of individual estimators by “borrowing strength” from other similar
estimators. These methods have been used very successfully in a wide array of disciplines
including sociology, epidemiology, business, economics, political science and insurance.

One of the biggest applications of EB and HB methods is in small area estimation. The
topic has become a prime area of research globally in many government statistical agen-
cies. As an example, in the United States Bureau of the Census, the Small Area Income
and Poverty Estimates (SAIPE) and Small Area Health Insurance Estimates (SAHIE)
research groups are actively engaged in various small area projects. A typical small area
estimation problem involves simultaneous estimation of quantities of interest for several
small geographical areas (for example, counties) or several small domains cross-classified
by age, sex, race and other demographic/geographic characteristics. The need for bor-
rowing strength arises in these problems because the original survey was designed to
achieve a specific accuracy at a higher level of aggregation than that of small areas or
domains. Due to limited resources, the same data needs to be used at lower levels of
geography, but individual direct estimates are usually accompanied by large standard
errors and coefficients of variation.

It is well-known that small area estimation needs explicit, or at least implicit, use of mod-
els. These model-based estimates can differ widely from the direct estimates, especially
for areas with very low sample sizes. One potential difficulty with model-based estimates
is that when aggregated, the overall estimate for a larger geographical area may be quite
different from the corresponding direct estimate, the latter being often believed to be
quite reliable. This is because the original survey was designed to achieve specified in-
ferential accuracy at this higher level of aggregation. As an example, the SAIPE county
estimates of the United States Bureau of the Census, based on the American Community
Survey (ACS) data, are controlled so that the overall weighted estimates agree with the
corresponding state estimates which though model-based, are quite close to the direct
estimates. The problem can be more severe in the event of model failure as often there
is no real check for validity of the assumed model. Pfeffermann and Tiller (2006), in
the context of time series models for small area estimation, noted that benchmarked
estimates reflect a sudden change in the direct estimates due to some external shock not
accounted for in the model much faster than the model-based estimates. Moreover, an
overall agreement with the direct estimates at some higher level may sometimes be nec-
essary for policy reasons to convince the legislators of the utility of small area estimates
(Fay and Herriot, 1979).

One way to avoid this problem is the so-called “benchmarking approach” which amounts



to modifying these model-based estimates so that one gets the same aggregate estimate
for the larger geographical area. A simple illustration is to modify the model-based state
level estimates so that one matches the national estimates. Currently the most popular
approach is the so-called “raking” or ratio adjustment method which involves multiplying
all the small area estimates by a constant factor so that the weighted total agrees with
the direct estimate. The raking approach is ad-hoc, although, later in this paper, we
have given it a constrained Bayes interpretation.

The objective of this paper is to develop a general class of Bayes estimators which achieves
the necessary benchmarking. For definiteness, we will concentrate only on area-level
models. As we will see later, many of the currently proposed benchmarked estimators
including the raked ones belong to the proposed class of Bayes estimators. In particular,
some of the estimators proposed in Pfeffermann and Barnard (1991), Isaki, Tsay and
Fuller (2000), Wang and Fuller (2002) and You, Rao and Dick (2004) are members of
this class.

The proposed Bayesian approach has been motivated from a decision-theoretic frame-
work, and is similar in spirit to one in Louis (1984) and Ghosh (1992) who considered
constrained Bayes and empirical Bayes estimators with a slightly different objective. It
was pointed out in these papers that the empirical histogram of the posterior means
is underdispersed compared to the posterior histogram of the corresponding population
parameters. Thus, adjustment of Bayes estimators is needed in order to meet the twin
objectives of accuracy and closeness of the histogram of the estimates with the posterior
estimate of the parameter histogram. In contrast, the present method achieves matching
with some aggregate measure such as a national total. In addition, if necessary, we can
also match the empirical variability of the estimates with the posterior variability of the
parameters of interest or even some preassigned number.

The organization of the remaining sections is as follows. In Section 2, we develop the
constrained Bayes estimators requiring only the matching of a weighted average of small
area means with some prespecified estimators. These prespecified estimators can be a
weighted average of the direct small area estimators, a situation which will be referred
to as internal benchmarking. On the other hand, if the prespecified estimator is obtained
from some other source, for example, a different survey, census or other administrative
records, then it becomes an instance of external benchmarking. We will also point out
how the proposed benchmarked estimators arise as the limit of a general class of Bayes
estimators where one needs only partial benchmarking. The general result is illustrated
with several constrained benchmarked estimators of area-level means based on the usual
random effects or the Fay-Herriot (1979) (also Pfeffermann and Nathan, 1981) model.

In Section 3, we develop benchmarked Bayes estimators which meet the dual objective of
overall matching with the prespecified benchmarks as well as the variability agreement



as mentioned in the previous paragraph. Multiparameter extensions of these results will
also be given in this section. Section 4 contains an application of the proposed method
in a real small area problem. Section 5 contains a summary of the results developed in
this paper along with a few suggestions for future research.

Before concluding this section, we discuss some of the existing benchmarking literature
(mostly frequentist) for small area estimation. We begin with a simple stratified sampling
model with m strata having population sizes Ny, --- , N,,,. You and Rao (2002) required
estimates él of the stratum means 6; such that Z:’il Niéi equals the direct survey regres-
sion estimator of the overall total. You and Rao (2002, 2003) considered unit-level small
area models with known survey weights attached to the different units. More recently,
Fuller (2007) has considered a procedure which allows sampling of small areas from a
larger pool of small areas and requires a weighted sum of small area predictors equal to
a design consistent estimator of the population total.

Pfeffermann and Tiller (2006) considered benchmarking in small area estimation based
on time series data. They took a frequentist approach and used the Kalman filter for
time series to obtain first the model-based estimators of the small area means. Then
they obtained the benchmarked estimators satisfying certain agreement of these esti-
mators with some direct estimators at a higher level of aggregation. They did not use
any cross-sectional model to borrow strength from other areas. This is an example of
internal benchmarking. Earlier examples of internal benchmarking include those of Pf-
effermann and Barnard (1991), Isaki, Tsay and Fuller (2000) and Wang and Fuller (2002).

You et al. (2004) considered benchmarking of HB estimates through ratio adjustment for
area-level models. Nandram et al. (2007) suggested a different benchmarked HB estima-
tion of small area means based on unit level models. In this exact benchmarking, they
proceeded with the conditional distribution of the unobserved units within a small area
given the benchmark constraint on the total of all the units in that area. A disadvantage
to such an approach is that results can differ depending on which unit is dropped.

2 Benchmarked Bayes Estimators

Let élz e uém denote the direct estimators of the m small area means 61,...,0,. We

write @ = (01, ,0,)T and 8 = (04, --- ,0,,)T. Initially, we seek the benchmarked Bayes
~BM1 ~ . .

estimator @ = (9PM! ... OBMIT of @ such that Y ;" w;0PM! = ¢, where either ¢ is

prespecified from some other source or t = Z:’il w;#;. The w; are given weights attached
to the direct estimators 6;’s, and without any loss of generality, > ", w; = 1. These

weights may depend on 0 (which is most often not the case), but do not depend on 6.
For example, one may take w; = NN;/ Z;nzl Nj;, where the N; are the population sizes for
the m small areas.



A Bayesian approach to this end is to minimize the posterior expectation of the weighted

squared error loss Y 1", &; E[(0;—e;)? |9] with respect to the e;’s satisfying €, = > -, wie; =
t. These ¢; may be the same as the w;, but that need not always be the case. Also, like

w;, ¢; may depend on 9, but not on 8. Wang and Fuller (2002) considered the same loss,

but minimized instead the MSE (which amounts to conditioning on 6), and came up with

a solution different from ours. Moreover, they restricted themselves to linear estimators.

One of the advantages of the proposed Bayesian approach is that adjustment is possible

for any general Bayes estimator, linear or non-linear.

The ¢; can be regarded as weights for a multiple-objective decision process. That is, each
specific weight is relevant only to the decision-maker for the corresponding small area,
who may not be concerned with the weights related to decision-makers in other small
areas. Combining losses in such situations in a linear fashion is discussed for example in
Berger (1985, p. 279).

We now prove a theorem which provides a solution to our problem. A few notations are

needed before stating the theorem. Let éf denote the posterior mean of 6;,, i = 1,--- ,m
under a certain prior. The vector of posterior means is denoted by 9B = (élB g ,éﬁ)T
and the weighted average éf =5 wiéf. Also, let » = (11, ,rm)T, where r; = w; /¢,
i=1,---,m,and s = > " w?/¢;. Then we have the following theorem.

~BM A
Theorem 1. The minimizer @ ' of Y7 ¢iE[(e; — 6;)?|0] subject to &, = ¢ is given by

0" =" 1 st — 65y (1)

Proof. First rewrite 3.7, ¢:E[(e;—6,)%|0] = S, ¢V (6:]0) + 32, di(e; —6P)?. Now the
problem reduces to minimization of >_1", ¢;(e; — 67)? subject to €, = ¢. A Lagrangian
multiplier approach provides the solution. But then one needs to show in addition that

the solution provides a minimizer and not a maximizer. Alternately, we can use the
identity

S diles — 02 =3 difei — 08 — 57t — 62y} 4 sH (1t — 052 (2)
=1 =1

The solution is now immediate from (2).

Remark 1. The above constrained Bayes benchmarked estimators can be viewed also as
limiting Bayes estimators under the loss

L(0,e) =Y ¢i(0; — e:)* + At — €u,)”,
=1

5



where € = (e, -+ ,e,)7, and A(> 0) is the penalty parameter. Like the ¢;, the penalty
parameter A\ can differ for different policy makers. The Bayes estimator of @ under the
above loss (after some algebra) is given by

0, = 0" + (s+ A"\t — 6P)r. (3)

Clearly, when A\ — oo, i.e., when one invokes the extreme penalty for not having the
exact equality €, = ¢, one gets the estimator given in (1). Otherwise, A serves as a

trade-off between ¢ and 62 since

7B SA 1 =5
0, = t 07 .
W sA+1 +s)\—|—1w

Remark 2. The balanced loss of Zellner (1986, 1988, 1994) is not quite the same as the
one in Remark 1, and is given by

m m

LO.e) = 6i(0; —e)? + A (0; — ).

i=1 i=1

~B o o
This leads to the Bayes estimator 8 + A\ + ¢)~ (0 — OB), where I is the identity
matrix and ¢ = Diag(¢y,- - , ¢n) which is a compromise between the Bayes estimator

~ B A~
0 and the direct estimator @ of 8, and converges to the direct estimator as A\ — oo and
to the Bayes estimator when \ — 0.

Remark 3. It is easy to see why the raked Bayes estimators, considered for example in
You and Rao (2004), belong to the general class of estimators proposed in Theorem 1.

If one chooses (possibly quite artificially) ¢; = w; /6B i =1,--- m, then r = — 6" and

10

s = QB Consequently, the constrained Bayes estimator proposed in Theorem 1 simplifies

to (t/@B)O which is the raked Bayes estimator. In particular, one can take ¢t = 6,,. We
may also note that this choice of the ¢;’s is different from the one in Wang and Fuller
(2002) who considered ¢; = w; /é Also, both choices point out the deficiency of the
raked estimators. This is because the ¢; are usually supposed to be positive and either
choice can lead to a negative ¢; when QB <0or6; <O0.

Remark 4. Other applications exist. Consider for example the usual random effects
model as considered in Fay and Herriot (1979) or Pfeffermann and Nathan (1981). Un-

ind ind

der this model, 6;]6; "~ N(6;, D;) and 6; ~ N(zT8,02), the D;(> 0) being known. For
the HB approach, one then uses the the prior 7(3,02) = 1 although other priors are
also possible as long as the posteriors are proper. The HB estimators F (0|9) cannot be
obtained analytically, but it is possible to find them numerically either through Markov
chain Monte Carlo (MCMC) or through numerical integration. Denoting the HB esti-
mators by 2, one can obtain the benchmarked Bayes estimators 05M1(i = 1,--- . m) by

6



applying Theorem 1.

Remark 5. Wang and Fuller (2002) considered a slightly varied form of the above random
effects model, the only change, in our notations, being that the marginal variance of
the 0; are now 2?02, where the z; are known. They did not assume normality, but
restricted their attention to the class of linear estimators of 8, and benchmarked the
best linear unbiased predictor (BLUP) of 8 when o2 is known. For this example, the
benchmarked estimators given in (6) of Wang and Fuller are also derivable from Theorem
1. First for known o2, consider the uniform prior for 3. Write B; = D;/(D; + z202),
B = Diag(By,--- , By), ¥ = Diag(D; + 2302, --- , D,y +22,02), X' = (x1,--- , ), and
B = (XT21X)1 X270, assuming X to be a full column rank matrix. Then the

Bayes estimator of 0 is

0" = (I,,— B)o + BX3, (4)
which is the same as the BLUP of 8 as well. Now identify the 7;/s in this paper with
the a; of Wang and Fuller (2002) to get (26) in their paper.

Remark 6. As an example, the Pfeffermann-Barnard (1991) estimator belongs to this

general class of estimators where one chooses ¢; = w;/ Cov(éjB .68 ), where the covari-
ance is calculated over the joint distribution of @ and @ treating 3 as an unknown but
fixed parameter. Then r contains the elements of Cov(6Z,6%) as its components, while

s = V(6B3). A similar result with different notations appears in Wang and Fuller (2002).

Instead of the constrained Bayes estimators as given in (1), it is possible to obtain con-
strained empirical Bayes (EB) estimators as well when one estimates the prior parameters
from the marginal distribution of 0 (after integrating out @). The resulting EB estimators
are given by

0" = 0" st — 058, (5)
where 8”7 = (0FB ... OEB)T is an EB estimator of  and éfB = S wdFB,

Remark 7. Back to the random effects model as considered in Pfeffermann and Barnard
(1991), Isaki, Tsay and Fuller (2000) and Wang and Fuller (2002), for unknown o2, one

gets estimators of @ and o2 simultaneously from the marginals 6; ind (I8, D; + 2202)
(Fay and Herriot, 1979; Prasad and Rao, 1990; Datta and Lahiri, 2000; Datta, Rao and
Smith, 2005). Denoting the estimator of o2 by 62, one estimates ¥ by ¥ = Diag(D; +

2262+ Dy, + 22.62), B by 8= (XTf]_lX)_lXTf]_lé and B by B = Df]_l, where
d = Diag(Dy,- -+, D,,). Denoting the resulting EB estimator of 6 by 9EB, one gets

0"" = (I,,— B)o + BX3. (6)

The benchmarked EB estimator is now obtained from (5).



Remark 8. Similar to Wang and Fuller (2002), the benchmarked EB estimators include
those proposed in Isaki, Tsay and Fuller (2000), where one takes ¢; as the reciprocal of
the ith diagonal element of > for all i = 1,---,m. Another option is to take ¢; as the
reciprocal of an estimator of V(éjB ), the variance being computed once again under the
joint distribution of 0 and 0, treating 3 as an unknown but fixed parameter.

Remark 9. As mentioned earlier, the choice of ¢; is left to the particular decision-maker
depending on the severity of misspecification of true parameters. For the special random
effects model, Wang and Fuller have argued in favor of the reciprocal of the ith diagonal
element of 3 as the choice from an interesting frequentist consideration.

Before concluding this section, we prove a generalization of Theorem 1 where one con-
siders multiple instead of one single constraint. As an example, for the SAIPE county
level analysis, one may need to control the county estimates in each state so that their
weighted total agrees with the corresponding state estimates. Also, one can consider a
more general quadratic loss given by

L(B,e) = (e —60)'Q(e —0),

where €2 is a positive definite matrix. The following theorem provides a Bayesian solution
for the minimization of E[L(8,e)|0] subject to the constraint W'e = ¢, where t is a
g-component vector, and W is a m X ¢ matrix of rank ¢(< m).

Theorem 2. The constrained Bayesian solution in the above set-up is given by
~MBM

0 — 9" +QTWWIQIW) "Lt - éf), where éf —w7e".
Proof. First write R B B . B B
El(e — O)Tﬂ(e —0)|0)=FE[(6—6 )TQ(O -0 )0+ (e—0 )Tﬂ(e — 6 ). Hence, the

~ B A~
problem again reduces to minimization of (e — 6 )7Q(e — 6 ) with respect to e subject

to Wle = t. The result follows from the identity

e—0")e—-0") = [(e— 0" — Q' WWTQ'W) 't —0")T

x Qe—0" —QWWTQ W)t —8")]
+ (- 65 (WTQ W)L (t — 65).

3 Further Benchmarking Results

There are situations, however, where in addition to benchmarking the first moment, one
demands also benchmarking the variability of the Bayes estimators as well. We will ad-
dress this issue in the special case when ¢; = cw; for some ¢(> 0), i = 1,--- ,;m. In this

case, 0PM! given in (1) simplifies to 67 + (t — 2) for all i = 1,--- ,m. This itself is not
a very desirable estimator since then 3.7 w;(0BM! — )2 = S w, (08 — 0B)2. It can

8



be shown as in Ghosh (1992) that S>7 w; (82 — 62)> < 7 w; E[(6; — 6,,)%0]. In other
words, the weighted ensemble variability of the estimators éfM l'is an underestimate of
the posterior expectation of the corresponding weighted ensemble variability of the pop-
ulation parameters. To address this issue, or from other considerations, we will consider
estimators ész, i =1,...,m which satisfy two constraints, namely, (i) >, wiész =t
and (ii) 27, wi(APM? — )2 = H, where H is a preassigned number taken from some

other source, for example from census data, or it could be 327" w; E[(6; — 6,,)%|0] more
in the spirit of Louis (1984) and Ghosh (1992). Subject to these two constraints, one
minimizes Y ;" w; E[(0;—e;)?|0]. The following theorem provides the resulting estimator.

Theorem 3. Subject to (i) and (ii), the benchmarked Bayes estimators of §; (i = 1,--- ,m)
are given by

0P =t + acs(0F — 07), (7)
where a2y = H/ Y™, wi(éf—ég)z. Note that acp > 1 when H = 327 w; E[(6;—0.,,)?|6]

~

Proof. As in Theorem 1, the problem reduces to minimization of Y " w;(e; — 07)2. We
will write

Zwi(ei — 4By = Zwi[(ei — &) — (6B — 6B 1 (&, — 652, 8)

Now define two discrete random variables Z; and Z5 such that
P(Zl :6i—éw,Zg :éZB—ég) = W;,

1=1,---,m. Hence,
S wil(e: — ,) — (67 — 05)2 = V(21) + V(Zs) — 2Cov(Zy, Zo)
=1

which is minimized when the correlation between Z; and Z, equals 1, i.e.
e — w = a(0% — 05) +b, (9)

i = 1,---,m with a > 0. Multiplying both sides of (9) by w; and summing over
i =1,---,m, one gets b = 0. Next squaring both sides of (9), then multiplying both
sides by w; and summing over i = 1,--- ,m, one gets H = a®> 1", wi(éf — éf)z due to
condition (ii). Finally, by condition (i), the result follows from (9).

Remark 10. As in the case of Theorem 1, it is possible to work with arbitrary ¢; rather
than ¢; = w; for all « = 1,--- ,m. But then one does not get a closed form minimizer,
although it can be shown that such a minimizer exists. We can also provide an algorithm
for finding this minimizer numerically.



The multiparameter extension of the above result proceeds as follows. Suppose now
91, e ,ém are the g-component direct estimators of the small area means 64, -- ,8,,.
We generalize the constraints (i) and (ii) as (iM) e, = > i, w;e; = t for some specified
t and (iiM) > w;(e; — €y)(e; — €,)" = H, where H is a positive definite (possi-
bly data dependent matrix), and is often taken as > iw w;E[(6; — 6.,,)(0; — 6.,)70].
The second condition is equivalent to ¢’ {d /" w;(e; — €,)(e; — €)' }e = ¢'He for
every ¢ = (c1,-++,¢,)7 # 0 which simplifies to >.;" w;{c’(e; — €,)}*> = ¢'He. An

B =
B
, — 0,) for ev-

- ~ BM?2 - .
argument similar as before now leads to ¢80, = = ¢'0,, + acpc’ (0

~B = m N
ery ¢ # 0, where @, is the posterior mean of 6;, 82 = St w0, and alp =
m ~B -~ . . .
c"He/ Y wi{c" (0, —02)}2. The coordinatewise benchmarked Bayes estimators are

now obtained by putting ¢ = (1,0,--- ,0)¥, --- ,(0,0,--- ,1)T in succession.

The proposed approach can be extended also to a two-stage benchmarking somewhat
similar to what is considered by Pfeffermann and Tiller (2006). To cite an example,
consider the SAIPE scenario where we want to estimate the number of poor school
children in different counties within a state, as well as those numbers within the different
school districts in all these counties. Let 6; denote the Current Population Survey (CPS)
estimate of 6;, the true number of poor school children for the ith county and éf the
corresponding Bayes estimate, namely the posterior mean. Subject to the constraints

~

ew = S wie; = S wibl; = 0, and .7 w;(e; — ,,)% = H, the benchmarked Bayes
estimate for 6; in the ith county is 872 as given in (7). Next, suppose that &; is the CPS
estimator of &;;, the true number of poor school children for the jth school district in the

1th county and n;; is the weight attached to the direct CPS estimator of &;;,7 = 1,...,n;.
~BENCH

We seek estimators e;; of &;; such that (i) é;, = Z;LZI nij€ij = & , the benchmarked

estimator of &, = > ", n;;&;, and (i) Y272, mij(ey; — €n)* = H; for some preassigned

H}, where again H} can be taken as 2?21 ni; E[(&5 — g},,)ﬂéi], €. being the vector with

elements &;;. A benchmarked estimator similar to (7) can now be found for the &; as

well.

4 An Example

The Small Area Income and Poverty Estimates (SAIPE) program at the U.S. Bureau of
the Census produces model-based estimates of the number of poor school-aged children
(5-17 years old) at the state, county and school district levels. The school district esti-
mates are used by the Department of Education to allocate funds under the No Child Left
Behind Act of 2001. In the SAIPE program, the model-based state estimates were bench-
marked to the national design-based estimate of the number of poor school aged children
from the Annual Social and Economic Supplement (ASEC) of the CPS up through 2004,
while ACS estimates are used from 2005 onwards. Additionally, the model-based county
estimates are benchmarked to the model-based state estimates in a hierarchical fashion

10



using ratio adjustments. In this section we will consider the implications of different
benchmarking methods, using the results from Theorems 1 and 3, on the state level es-
timates.

In the SAIPE program, the state model for poverty rates in school-aged children
follows the basic Fay-Herriot framework (see e.g. Bell, 1999):

0, = xI'B+u (11)

where 6; is the true state level poverty rate, 0; is the direct survey estimate (from CPS
ASEC), e; is the sampling error term with assumed known variance D;, x; are the pre-
dictors, 3 is the vector of regression coefficients and wu; is the model error with constant
variance 2. The explanatory variables in the model are: IRS income tax based pseudo-
estimate of the child poverty rate, IRS non-filer rate and the residual term from the
regression of the 1990 Census estimated child poverty rate. The parameters (3, 0;,02)
are estimated using numerical integration for Bayesian inference (Bell, 1999).

The state estimates were benchmarked to the CPS direct estimate of the national school-
aged child poverty rate until 2004. The weights, w;, to calibrate the state’s poverty rates
to the national poverty rate, are proportional to the population estimates of the number
of school-aged children in each state. Three different sets of risk function weights, ¢;, will
be used to benchmark the estimated state poverty rates based on Theorem 1. The first
set of weights will be the weights used in the benchmarking, i.e. ¢; = w;. The second
set of weights creates the ratio adjusted benchmarked estimators, ¢; = w;/ éf (Remark
3). The third set of weights uses the results from Pfeffermann and Barnard (1991) where
b = w; /Cov(@f , 95) (Remark 6). Let the set of benchmarked estimates be denoted as
A1)

0

using the results from Theorem 2 and denote the estimator as 0

.0 " and 0 respectively. Finally, we will benchmark the state poverty estimates

To compute 3, w;E[(6; — 0,,)|6], two methods are given. The first method uses the first
two posterior moments of 6.

H = Z wiE[(0; — 0,)°|6]
. [9T(W —ww’)|0
— trace [(W — ww?)(Var(0|0) + E(0|0)E(0]6)7) |, (12)
where W = diag(ws, ..., wy) and w = (wi, ..., wy)". The second method is to com-
pute the posterior mean of Y, w;(6; —6,,)* from the MCMC output of the Gibbs sampler.

While both give equivalent values to benchmark the variability, the second method may

11



Table 1: Benchmarking Statistics for ASEC CPS

year t éf,f acn
1995 | 18.7 17.9 1.09
1997 | 184 17.8 1.07
1998 | 17.5 16.8 1.14
1999 | 1569 149 1.14
2000 | 14.6 154 1.11
2001 | 14.8 153 1.10

be more practical as the number of small areas becomes large because it does not require
manipulating an m X m matrix.

For benchmarking, as given by Theorems 1 and 3, the key summary quantities are
t = Ziwiéi, éf,f = leléf and acp. As noted earlier in Theorem 3, with the choice
of H as given in (12), acp > 1. Six years of historical data from the CPS and the
SAIPE program are analyzed and benchmarked using the four criteria mentioned above.
Table 1 gives the key quantities for these six years. The hierarchical Bayes estimates
for the years 1995-1999 underestimate the benchmarked poverty rate and overestimate
the poverty rate in 2000 and 2001. Even if the estimate éf,f is close to the benchmarked
value t, there is still a strong desire to have exact agreement between the quantities when
producing official statistics.

Figure 1 shows the differences of the various benchmarked estimates from the hierarchical
Bayes estimate, éf , made for the year 1999 when the overall poverty level had to be raised
to agree with the national direct estimate. Figure 2 shows the differences for year 2000
when the overall poverty level had to be lowered to obtain agreement. The differences of

the benchmarked estimators 9(1), 9(” and 9(2) from the HB estimator all fall on straight

lines that pass through the same point (55 ,t). In fact, these benchmarked estimators
can be written in the form: ) ) _
OPM =t + (6P —05)

where @ = 1 for 9(1), a = t/ég for 9(” and a = acp for 9(2). The slopes of the

lines in Figures 1 and 2 for differences in the benchmarked estimates from 6; are o — 1.
Since acp > 1, the slope for the difference éf’) — éf will always be non-negative. The
slopes for égl) and élm depend on whether the benchmarked total ¢ is larger or smaller
than the model-based estimate 2. The Pfeffermann-Barnard benchmarked estimator
does not follow this form. However, it does show a trend in a similar direction as the
benchmarked estimator élm based on ratio adjustment.
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Figure 1: Change due to Benchmarking: 1999
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Figure 2: Change due to Benchmarking: 2000
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5 Summary and Conclusion

The paper develops some Bayesian benchmarked estimators for area-level models. Bench-
marking is achieved either with respect to some weighted mean or with respect to both
weighted mean and weighted variability. The proposed benchmarked Bayes estimators
include as special cases many benchmarked estimators proposed earlier.

We have mentioned only how to calculate empirical Bayes estimators for area-level mod-
els. The next step will be to evaluate and estimate their mean squared errors and also
develop empirical Bayes confidence intervals.
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