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Abstract  The Census Bureau is carrying out research with the intent of improving the housing 
unit-based method for estimating population totals.  One approach is to use the Decennial Census 
as the baseline for measures and update them annually using American Community Survey 
(ACS) data to estimate their change since the census year.  This study looks at the possibility of 
using an Empirical Bayes approach to produce county estimates of change with smaller 
variances than direct ACS estimates.  Results from national and state models are compared.  
Data from the 1990 and 2000 long form samples are used to represent ACS and data from the 
1990 and 2000 short form are used as independent variables in the models.  In the actual 
application, sources for the latter would be the Master Address file and Administrative Records. 
 
 
1. Introduction 
 
Task 3b of the Housing Unit Based Estimates Research Project Draft Research Agenda 
(HUBERT) of the Population Division (POP) asks the overall question, “Should statistically 
significant PPH and vacancy rate changes from the ACS be used” to estimate change over time 
in persons per household (PPH) and vacancy rate (VR)?  In the corresponding Team 
Requirements Document, the team goals/objectives are:  

1. Determine legitimacy of using estimates normally considered to be insignificant. 
2. Determine if optimal frequentist significance level exists. 
3. Determine structure(s) of Bayesian prior for use in estimating change.  Produce 

estimates.  Is this approach desirable? 
4. Develop empirical Bayesian framework for estimating change.  Produce estimates.  

Is this approach desirable? 
5. If Bayesian or empirical Bayesian approaches are deemed desirable, compare to 

frequentist estimates. 
 
SRD staff met with Charles Coleman of POP in May 2007 to learn more about this task and what 
type of research they could perform to help him meet the team goals.  After discussing the 
problem, SRD staff suggested that they look at the empirical Bayes (EB) method for determining 
estimates of the two change variables from ACS data.  This method does not require the use of 
prior distributions as does the full Bayes method.  It only requires the availability of variables 
correlated with the characteristic being estimated.  These variables are regressed on that 
characteristic and for each observation a regression estimate of the characteristic is calculated in 
addition to the direct estimate.  The EB estimator is then a weighted average of the direct 
estimate and the linear regression estimate of the characteristic.  The weights on the two 
estimates depend on the sampling variance of the direct estimate and how well the model fits the 
data.  It was suggested that a full Bayesian approach not be carried out until we know the success 



of the EB approach, which will convey the benefits of using a statistical model.   This approach 
does not require determining whether there has been a statistically significant change in the  
estimate of PPH or VR before using a current year estimate that differs from the previous year’s, 
but determines the optimal estimator within a class of estimators. 
 
The housing unit-based method estimates the number of housing units (HUs), percent of 
occupied housing units (%OCC), and persons per occupied housing unit (PPH), and uses their 
product (HUs*%OCC*PPH) to estimate the number of persons living in HUs.  (%OCC will be 
used in the remainder of this report rather than its complement VR.)  The American Community 
Survey (ACS) is a very large new household survey that provides updated information annually 
on %OCC, PPH, and related measures, as well as on a large number of demographic, economic, 
and social characteristics.  All of these characteristics were formerly available only once a 
decade following the decennial census.  The approach of the project we report on is to use the 
ACS as the source of direct estimates of change in %OCC and PPH between the current year and 
the previous census year, then apply Empirical Bayes (EB) methods to find estimates of change 
in %OCC and PPH that have smaller variances than these direct estimates.  These change 
estimates are then combined with the previous census values to get the current year estimates.  In 
addition, we want to look at how close the EB estimates are to the full Bayes estimates.   
 
The sample size and continuous nature of the ACS make it an obvious source to use as the basis 
for producing current year estimates with relatively small sampling variability.  The variables 
correlated with %OCC and PPH that are required for the EB approach would in practice be 
derived from administrative records and the Census Bureau’s Master Address File (MAF).  This 
paper reports on the initial results of this research project using decennial census data and 
introduces some of the practical and statistical issues that must be addressed before this approach 
can be applied. 
 
We give a short presentation of the general approach and some estimation issues in the following 
section, summarize the EB method in section 3, describe the data used in section 4, give selected 
regression models in section 5, summarize results of the EB estimation in section 6, and present a 
brief conclusion in section 7.  All tables and figures are given in Appendix 1. 
 
2. General Approach 
 
Consider the situation where the Census Bureau is producing housing unit-based estimates of 
county populations using %OCC and PPH in the years following the 2010 Census (C2010).  This 
project looks at a method of estimating the changes in these variables between the 2010 ACS and 
a future year ACS.  For each of the variables, the change estimate would be combined with the 
Census 2010 value to obtain an estimate of the current year value.  Why don’t we just use the 
current year value of ACS as our estimate?  There are the following differences between the data 
collection methodologies used in the census and the ACS that result in their not estimating 
exactly the same %OCC and PPH parameters.   
  
(1) The reference date for each ACS interview is the day on which it is begun, which can be any 
day throughout the year.  The census determines its reference date in a similar manner, but it is 
always close to April 1.    
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(2)  Because the ACS represents an average of characteristics that can change over time, the 
persons included as residents of a HU are generally only those who are staying there for longer 
than two months.  We refer to this as the current residence rule.  This differs from the census 
which includes all persons who are considered to  stay at the HU ‘most of the time.’ (All sample 
persons currently staying at a non-HU residence, referred to as group quarters (GQ), are 
interviewed as in the census.) 
 (3)  An ACS interview of the persons in a HU can take place during a three-month period.  A 
HU that is initially vacant during this time can become occupied and an interview completed 
later, so the HU is measured as occupied although it is only occupied during part of the period.  
A HU can also be initially occupied and become vacant later, but if the interview was completed 
during the initial period then it also is measured as occupied although it was not occupied during 
the entire period.  There are additional scenarios, but overall they result in the number of 
occupied houses being over-counted compared to the census. 
 
As a result of these differences in data collection methods, changes between estimates from ACS 
in two different years will need to be scaled to correctly represent changes based on the Census 
2010 residence rule.  
 
There is an additional issue with using ACS county estimates that needs to be addressed.  Single  
year estimates and their variances are currently only produced for counties (and other 
geographical entities) with a population larger than 65,000, due to larger variances for smaller 
populations.  But it would be easy to produce them for all smaller counties because the necessary 
weighting has been done.  And the larger sampling variances for %OCC and PPH in these 
smaller counties is not a concern for the EB approach, as they are just used in determination of 
the relative contributions of the direct and modeled estimates to the EB estimate.       
 
3. Empirical Bayes Method 
 
The EB method requires a direct estimate of the characteristic of interest and variables correlated 
with that characteristic to be available.  The direct estimate of the characteristic is regressed on 
these correlated variables and for each observation a regression estimate of the characteristic is 
calculated in addition to the direct estimate.  The EB estimator is then a weighted average of the 
direct estimate and the linear regression estimate of the characteristic.  The weights on the two 
estimates depend on the sampling variance of the direct estimates and how well the model fits 
the data.   
 
For purposes of illustration we will use change in %OCC as the variable being estimated. 
Let 
 iθ  = (current year %OCC under current residence rule for county i) –  
    (2010 %OCC under current residence rule for county i ),    (1)  
              i=1,2,…,k,             
and   

 
Yi = iθ  + ηi            (2) 
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be a direct estimate of iθ  from a survey, where the ηi’s are independent sampling errors with 
E(ηi| iθ ) = 0 and V(ηi| iθ ) = Vi , so the Yi’s are design unbiased for iθ  (their expected values over 
all possible samples are equal to the quantities they are attempting to estimate). 
 
Now suppose that we have a set of r model variables available for each county i, represented by 
the vector zi´ = (zi1, zi2, … zir) such that  
 
 iθ   = zi´β + εi ,                      (3) 
 
is a model that represents %OCC change, where β is a vector of unknown coefficients,  
E(εi ) = 0, and V(εi ) = Ai with the εi’s independent.   
 
Then, substituting (3) into (2), we can write a model for our direct estimate as  

 
Yi = iθ  + ηi = zi´β + εi + ηi .        (4) 

 
This is called a mixed model for Yi  because it includes the fixed parameters β and the random 
term εi with V(εi ) = Ai .  (This use of a single variable εi is the simplest form for the random part 
of a mixed model.  The random part could be a vector, a regression, or another function of 
random variables.)  If all the Vi +Ai are known, then we can compute a regression estimate b of 
the coefficient vector β via generalized least squares as 
 
 b = (Z´DZ)-1Z´DY , 
 
with Z the k x r matrix with rows zi´, D-1 = Diagonal (V1+A1 , …, Vk+Ak) , and 
Y = (Y1 , …,Yk). 
 
If we make the assumption that both εi and ηi have normal distributions, then we have 
 
 Yi | iθ  ~ N(θi , Vi )  and  iθ  | β , ηi ~ N(zi´β , Ai) .     (5) 
 
(We can make other distributional assumptions but normality makes the problem simpler, so we 
will work with it for now.) 
 
We then look at estimators of the iθ , which are weighted averages of the Yi and the zi´b . 
  
 iθ̂   =  Ci Yi  + (1 - Ci ) zi´b .        (6) 
 
Then the current year %OCC is estimated as g(C2010 %OCC, iθ̂ ), where g(·) is a function that 
adjusts for definitional and operational differences between the ACS and the decennial census.  
(If there were no such differences, then g(·) = (C2010 %OCC) + iθ̂ .)  The best linear unbiased 
predictor (BLUP) in (6) when the Ai ’s and Vi ’s are known requires Ci = Ai / (Vi+Ai).  Since the 
Ai’s and Vi’s are not known, we substitute estimates iÂ  and iV̂  for them to get iĈ  and the 
empirical BLUP (EBLUP).  Under our assumption of normality of the variance components, the 
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EBLUP estimators are the same as the EB estimators, where the posterior distributions of the iθ̂  
are normal with 
 
 mean iĈ Yi  + (1 - iĈ )zi´b , and variance iĈ Vi .       (7)  
 

iĈ Vi  is actually an underestimate of the variance because it does not take account of the 
variability in iÂ  and iV̂ .  It may be desirable to find a better estimator of the true posterior 
variance than iĈ Vi  and there are approaches in the literature for doing so (e.g., Rao, 2003).  (See 
Morris, 1983 for additional details about the basic EB set-up.) 
 
4. Data Used in the Study 
 
Our task was to carry out an exploration of the feasibility of using the EB procedure with data 
similar to what would be available in actual implementation.  The 2010 ACS data are represented 
by the C90 longform, and the 2010 shortform data are represented by the C90 shortform (100% 
data).  Future year ACS data are represented by the C2K longform, while the MAF and 
administrative record variables for the future year are represented by the C2K shortform.   
 
Model Variables 
 
In the actual application of this methodology, the sources of the EB model variables should have 
very small sampling variances.  If we tried to use variables from the ACS, they would have 
sampling variances of a magnitude, especially for the less populous geographies, that would need 
to be incorporated into the estimation procedure.  We would prefer to select variables from the 
shortform of C2010, the MAF, and administrative records.  Table 1 in the Appendix gives some 
suggested main effects variables and their sources, as well as the sources used in this study: the 
C90 shortform for the C2010 short form and the C2K shortform for the future year MAF and 
administrative records.   
  
Estimation Variables 
 
It is not appropriate to use the census longform estimates of %OCC and PPH as the estimation 
variables when shortform estimates are used as the model variables.  This is because the final 
stage of longform weighting controls combinations of several characteristics to be equal to their 
shortform values, which results in (some of) the zij in the mixed model having higher correlation 
with the estimation variables than in the actual application.  To avoid this, we create estimates of 
%OCC and PPH by using only the HU sampling rates and a single ‘nonresponse’ adjustment as 
follows.  Both the Census 1990 and 2000 samples are selected from multiple strata.  On the long 
form files there are sample occupied HUs that have data but no final weights.  This is because 
they were determined not to meet the definition of a HU.  We treat them as nonresponding units 
and apply a nonresponse ratio adjustment by stratum for each county.   
 
The variance for the number of occupied HUs in a county for each census year is estimated using 
the appropriate formula for a stratified sample.  It is divided by the square of the number of HUs 
to get variance(%OCC).  (Our assumption is that for each county the total number of HUs in the 
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sampling frame is equal or very close to the sum over strata of the number of units in sample 
times the inverse of the stratum sampling rate.  This sum is used for the number of HUs when 
calculating %OCC and variance estimates.)  The variance formula for Census 1990 is given by    
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where 
h denotes stratum, 
N90  is the number of HUs in the county,  
Nh,90  is the number of HUs in stratum h, 
nh,90  is the number of sample HUs in stratum h, 
ph,90  

is the fraction of sample HUs in stratum h that are occupied, and 

f h,90
 
is the proportion of HUs sampled in stratum h 

 
In full notation there would be additional subscripts for county and state but for simplicity we 
consider a given county and state.  For Census 2000 the subscripts 90 are replaced by 00.  The 
estimated variance of the difference in %OCC and PPH between Census 1990 and Census 2000 
is the sum of their individual variance estimates. 
 
The variance of the estimated number of persons in a county is also estimated based on the 
appropriate stratified sampling formula, with adjustment for the nonresponding occupied units 
and other assumptions required.  Derivation of the following approximate variance formula is 
given in Appendix 2.     
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where 
nho,90 is the number of occupied sample HUs in stratum h, 
ρho,90   is the response rate for occupied HUs in stratum h, 

xhor,90  is the mean number of persons in occupied respondent HUs in stratum h, and 

s2
hor,90  is the estimated variance of the number of persons per occupied HU in stratum h based on      

     the responding HUs (see Appendix 2). 
 
An estimated variance for PPH is obtained using the standard formula for the approximate 
variance of the ratio of two random variables, 
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and substituting )CCÔ%(V̂ 90  from (8) and )onsŝper(V̂ 90  from (9). 
 
The estimated variance of a difference between estimates from separate census years is the sum 
of the individual year variances, due to the independence of their samples. 
 
5. Regression Models 
 
The initial step in development of mixed models was to identify variables correlated with change 
in %OCC and PPH via forward selection stepwise linear regression.  Table 2 lists the full set of 
variables used.  Table 3 shows the number of variables selected and the model R2 by estimation 
variable for most states and the nation.  (DC, DE, HI, and RI are excluded from the state models 
because they have five or fewer counties and no degrees of freedom for estimating the random 
county effect in the mixed model.  In future work we would pursue how to handle these states, 
perhaps by grouping them together or combining them individually with neighboring states.)  In 
most cases only a few variables are included in the regression model and R2 is of a reasonable 
size.  These results suggest that modeling change in %OCC and PPH with independent variables 
similar to those used in this task should provide some improvement in estimates via the EB 
procedure. 
 
6. Empirical Bayes Modeling Results 
 
We attempted to fit mixed models with a single random county term for %OCC and PPH for the 
nation and most states, using the model variables selected in the stepwise regressions.  The 
county sampling variances Vi of the estimation variables were treated as fixed at their estimated 
values.  The variances Ai for the random county effects in a given model were assumed to have 
the same value A.  We used both the SAS procedure MIXED and a custom-written R program 
using an E-M algorithm (Creecy, 2008) to find maximum likelihood estimates of the parameters 
in the mixed models.  For the national models SAS gave the message that there was not enough 
memory to estimate them.  Even consultation with SAS staff did not lead to a solution for this 
problem.  We were able to fit these models using R.  For %OCC, both programs obtained 
solutions for all states.  For PPH, complete convergence was not obtained for 17 states.  For 
some of these states, MIXED was not able to start the solution procedure and for others Â = 0 
but the final Hessian was not positive definite.  For these states, plus states 22 and 25, R was not 
able to obtain convergence but Â  was close to zero when it stopped.  As a double check on these 
results, we searched the likelihood surface for a few of the 17 states using a Fortran program and 
Â was equal to zero, so we use Â = 0 as the estimate for these 17 states.  (Because of the 
variability in the distributions of the  estimates Â , in a given state the true value that is being 
estimated may not be close to zero.  Seven of these states have more than 50 counties, so the 
variability is probably fairly small and the true values are likely to be near 0.  The remaining 10 
states have fewer than 40 counties and their true values are more likely to not be near 0.)  None 
of the states for which both programs converged to an estimate without any warning messages 
found Â = 0.      
Table 4 gives the estimated variance Â  of the single random county variance term for each 
mixed model.  Tables 5 and 6 show percent reductions in variance for the EB estimates 
compared to the direct sample estimates, using the estimated coefficient iĈ = Â  / ( iV̂ + Â ).  The 
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reductions are calculated for the counties with the minimum, median, and maximum estimated 
sampling variances in each state, to give an idea of the range of reductions.  These same values 
are plotted in Figures 1 and 2 to more easily see the relationships.  As mentioned previously, 
state models were not estimated for the four states with the fewest counties and their results from 
the national model are shown at the bottom of the table. 
    
%OCC variance reduction summary.  There is very little reduction for the minimum variance 
counties using either model, except for one state.  This is not surprising since these variances are 
so small.  For the median variance counties most of the national model reductions are less than 
20% and about half the states have additional improvemement of at least 10% for the state 
model.  The national model gives reductions of at least 30% for most states and the state models 
usually show substantial additional reduction – more than 40% for some states. 
 
PPH variance reduction summary.  The variance reductions are in general much larger for PPH 
than for %OCC.  Twenty-two states show more than 10% reduction for the minimum variance 
counties with the national model, and many show an additional 10% or more reduction with the 
state model.  For two states this additional improvement is more than 70%, so the national model 
is not appropriate for them.  Most states show at least 40% reduction for their median variance 
counties with noticable additional reductions for the state models.  There are large reductions 
from the national model in most states, so the state models do not usually offer substantial 
additional reduction.  
 
Note two things about these comparisons.  First, care should be used when interpreting the 
amount of improvement of a state model over the national model.  Estimates for the state models 
are based on many fewer degrees of freedom than are those for the national model, so the 
variances of the variance component estimates are larger.  But 30 of the 47 states have more than 
50 counties and these variances are are probably suitably small to allow valid comparison of the 
two values.  Secondly, there are a few states for which the national model gives more variance 
reduction than the state model.  Based on the observed estimates, for these states the national 
model provides more information than do their state models.  We might expect that this would 
happen in states with smaller numbers of counties, where the national model would supply more 
data points for the modeling and more degrees of freedom for estimation.  Upon examination of 
the number of counties we see that this is not the case and the state with the most counties, 
Texas, is in this group.  
 
Figures 3 and 4 show, as an example from a single state, how the estimates of change in %OCC 
and PPH differ across the sample, the state regression model, the EB procedure, and the full 
Bayes procedure in Mississippi.  The counties are ordered from smallest to largest sampling 
variance of the direct estimate.  For each county the EB estimate lies between the sample and 
model estimate since it is a linear combination of them.  The most important thing to note is that 
the Full Bayes and EB estimates are almost always very close together, so that in these cases the 
EB estimator obtains most of the benefits of the full Bayes estimator without the additional 
assumptions it requires about prior distributions.  However, there are some counties where the 
full Bayes estimator does not lie between the sample and model estimates, so the EB estimate is 
not close to it.   
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7. Conclusion 
 
The purpose of this paper is to present research into the feasibility of using the EB approach to 
reduce the variablity of direct estimates of change in %OCC and PPH across years.  Overall we 
see that the EB approach can give noticable reductions in variance from the direct sample 
estimates, especially as sampling errors get larger, even with the simple models used.  For most 
states, using state-specific information in the models gives additional improvement over using 
just national information.  The size of the variance reductions shown in Tables 5 and 6 (Figures 1 
and 2) and the closeness of EB estimates to the full Bayes estimates in Figures 3 and 4 suggest 
that further research into the application of the EB methodology to estimating %OCC and PPH 
from the ACS with auxiliary data from the MAF and administrative records would be 
worthwhile.   
 
Before this methodology can be applied to the situation introduced at the beginning of this paper, 
there are multiple avenues of investigation that would need to be pursued.  Several issues 
concerning the relationship of estimates between the decennnial census and the ACS were 
introduced but not pursued, as well as the issue of how to handle states with few counties.  In 
addition, we have not attempted to look at more complex mixed models to find additional 
reductions in variances of EB estimates. 
 
Of course, the EB approach can be applied with any sample estimator, not just the ones used 
here.  So it may be possible to use it with estimators investigated in other HUBERT projects after 
determining an appropriate set of correlated auxiliary variables.    
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Appendix 1 – Tables and Figures 
 
 
 

Table 1. Main Effects Variables for Empirical Bayes Regression Models 
Variable Source Name 

from 2010   
%single units C2010 longform si9 
%multi unit 10+ C2010 longform mu9 
% urban units  C2010 longform ur9 
% Hispanic C2010 longform his9 
% non-Hispanic white  C2010 longform nhw9 
from change between current year 
and 2010 

  

change in % single units current MAF – C2010 longform sic 
change in % multi unit 10+ current MAF – C2010 longform muc 
change in %urban units current MAF – C2010 longform urc 
change in % Hispanic current ARs – C2010 longform hisc 
change in % non-Hispanic whites current ARs – C2010 longform nhwc 

 
 
 

Table 2. Regression Model Variables 
Main 
Effects 

C90 
Interactions 

C90 by Change Interactions Change 
Interactions 

si9 ur9*si9 si9*sic ur9*hisc urc*sic 
mu9 ur9*mu9 si9*hisc ur9*nhwc urc*muc 
ur9 ur9*his9 si9*nhwc his9*hisc urc*hisc 
his9 ur9*nhw9 si9*urc his9*urc urc*nhwc 
nhw9 si9*his9 mu9*muc his9*sic sic*hisc 
sic si9*nhw9 mu9*hisc his9*muc sic*nhwc 
muc mu9*his9 mu9*nhwc nhw9*nhwc sic*hisc 
urc mu9*nhw9 mu9*urc nhw9*urc sic*nhwc 
hisc  ur9*urc nhw9*sic  
nhwc  ur9*sic nhw9*muc  
  ur9*muc   

 



 

Table 3. Number of Variables Selected and R2 for 
               1st order Interaction Regression Models 
    %OCC PPH 

State 
Number of 
Counties 

Number of 
Variables 

R2 Number of 
Variables 

R2 

Nation 3137 16 0.306 13 0.380 
AL 67 4 0.265 5 0.726 
AK 24 1 0.348 6 0.762 
AZ 15 4 0.934 6 0.994 
AR 75 5 0.335 3 0.574 
CA 58 5 0.531 5 0.796 
CO 63 3 0.439 4 0.508 
CN 8 1 0.492 2 0.786 
FL 66 2 0.127 6 0.741 
GA 159 3 0.245 4 0.441 
ID 44 3 0.710 3 0.536 
IL 102 8 0.501 2 0.166 
IN 92 7 0.753 2 0.109 
IA 99 3 0.172 1 0.069 
KS 105 5 0.374 4 0.248 
KY 120 3 0.152 4 0.377 
LA 64 10 0.694 4 0.276 
ME 16 5 0.928 7 0.962 
MD 24 1 0.311 9 0.896 
MA 14 3 0.842 3 0.964 
MI 83 3 0.743 4 0.210 
MN 87 3 0.579 2 0.331 
MS 82 5 0.350 4 0.430 
MO 115 10 0.519 2 0.103 
MT 56 5 0.347 3 0.180 
NE 93 2 0.123 3 0.293 
NV 17 1 0.380 3 0.576 
NH 10 1 0.591 6 0.999 
NJ 21 3 0.762 3 0.741 
NM 33 4 0.716 1 0.475 
NY 62 12 0.804 7 0.745 
NC 100 4 0.206 6 0.498 
ND 53 1 0.382 6 0.415 
OH 88 2 0.131 4 0.260 
OK 77 6 0.409 3 0.324 
OR 36 6 0.744 2 0.598 
PA 67 5 0.681 4 0.478 
SC 46 2 0.499 5 0.698 
SD 66 3 0.290 6 0.376 
TN 95 3 0.160 5 0.396 
TX 254 4 0.130 4 0.232 
UT 29 5 0.729 3 0.441 
VT 14 4 0.831 5 0.943 
VA 135 8 0.441 4 0.254 
WA 39 5 0.720 6 0.776 
WV 55 6 0.514 4 0.330 
WI 72 5 0.756 1 0.116 
WY 23 2 0.566 1 0.117 



 

Table 4. Mixed model variance component estimates 
State %OCC PPH 
Nation 0.000992 0.001495

AL 0.000857 0.000341
AK 0.010336 0.000000
AZ 0.000243 0.000000
AR 0.000296 0.000219
CA 0.000309 0.000853
CO 0.002190 0.000963
CN 0.000042 0.000000
FL 0.001629 0.000602
GA 0.000763 0.000659
ID 0.000310 0.000803
IL 0.000123 0.000343
IN 0.000199 0.000236
IA 0.000160 0.000705
KS 0.000423 0.000000
KY 0.000374 0.000618
LA 0.000174 0.000003
ME 0.000029 0.000000
MD 0.000354 0.000000
MA 0.000139 0.000006
MI 0.000618 0.000532
MN 0.000881 0.000958
MS 0.000561 0.000952
MO 0.000169 0.000919
MT 0.000501 0.000000
NE 0.000792 0.000000
NV 0.001043 0.000000
NH 0.000222 0.000000
NJ 0.000076 0.000357
NM 0.000505 0.000000
NY 0.000169 0.000287
NC 0.000446 0.000692
ND 0.000645 0.000000
OH 0.000119 0.000326
OK 0.000346 0.000038
OR 0.000201 0.000246
PA 0.000665 0.000456
SC 0.000332 0.000188
SD 0.001126 0.000000
TN 0.000388 0.000000
TX 0.001359 0.000992
UT 0.000286 0.005332
VT 0.000087 0.000000
VA 0.000249 0.002753
WA 0.000271 0.000000
WV 0.000303 0.000000
WI 0.000408 0.000992
WY 0.000784 0.002561

 
 
 
 
 
 

 



 

 
 

Table 5. County variance reductions for %OCC with minimum, median, and maximum sampling variances   
County Sampling Variances National Model 

% Variance Reductions 
State Model 

% Variance Reductions State 
Number 
of 
Counties Minimum Median Maximum Minimum Median Maximum Minimum Median Maximum 

AL 67 0.000004 0.000069 0.000327 0.36 6.49 24.79 0.41 7.44 27.62 
AK 24 0.000012 0.000200 0.000681 1.15 16.76 40.71 0.11 1.90 6.18 
AZ 15 0.000002 0.000047 0.000343 0.16 4.53 25.69 0.65 16.23 58.56 
AR 75 0.000007 0.000120 0.000447 0.70 10.82 31.07 2.31 28.92 60.18 
CA 58 0.000000 0.000016 0.000903 0.02 1.58 47.65 0.07 4.91 74.51 
CO 63 0.000003 0.000209 0.001073 0.34 17.43 51.96 0.15 8.72 32.88 
CN 8 0.000002 0.000011 0.000019 0.18 1.09 1.88 4.11 20.72 31.15 
FL 66 0.000003 0.000060 0.000592 0.30 5.69 37.38 0.18 3.55 26.65 
GA 159 0.000004 0.000150 0.000839 0.43 13.14 45.82 0.56 16.44 52.38 
ID 44 0.000006 0.000158 0.000986 0.60 13.77 49.85 1.89 33.79 76.07 
IL 102 0.000000 0.000059 0.000709 0.04 5.63 41.68 0.32 32.42 85.18 
IN 92 0.000003 0.000053 0.000414 0.30 5.06 29.45 1.49 21.00 67.53 
IA 99 0.000004 0.000082 0.000351 0.39 7.65 26.14 2.39 33.87 68.64 
KS 105 0.000004 0.000225 0.000680 0.39 18.46 40.67 0.92 34.66 61.63 
KY 120 0.000002 0.000133 0.000642 0.24 11.80 39.29 0.63 26.18 63.19 
LA 64 0.000005 0.000087 0.000561 0.51 8.09 36.13 2.86 33.36 76.28 
ME 16 0.000012 0.000032 0.000075 1.17 3.11 7.03 28.83 52.33 72.12 
MD 24 0.000002 0.000030 0.000169 0.16 2.94 14.56 0.45 7.84 32.33 
MA 14 0.000001 0.000007 0.000321 0.09 0.66 24.45 0.61 4.53 69.78 
MI 83 0.000001 0.000038 0.000205 0.09 3.67 17.13 0.14 5.76 24.89 
MN 87 0.000001 0.000037 0.000581 0.11 3.64 36.94 0.12 4.07 39.74 
MS 82 0.000013 0.000109 0.000419 1.26 9.86 29.70 2.21 16.22 42.77 
MO 115 0.000002 0.000120 0.000473 0.16 10.79 32.29 0.93 41.48 73.65 
MT 56 0.000013 0.000298 0.001585 1.34 23.08 61.51 2.62 37.26 75.97 
NE 93 0.000004 0.000177 0.001776 0.37 15.12 64.16 0.46 18.24 69.15 
NV 17 0.000003 0.000207 0.000905 0.35 17.28 47.71 0.33 16.58 46.47 
NH 10 0.000005 0.000026 0.000076 0.49 2.59 7.12 2.15 10.62 25.50 
NJ 21 0.000002 0.000005 0.000034 0.16 0.49 3.31 2.09 6.02 31.00 
NM 33 0.000004 0.000132 0.001133 0.45 11.78 53.32 0.88 20.77 69.17 
NY 62 0.000001 0.000022 0.000128 0.07 2.12 11.43 0.44 11.28 43.05 
NC 100 0.000004 0.000055 0.000977 0.38 5.22 49.62 0.84 10.92 68.67 
ND 53 0.000013 0.000269 0.001130 1.33 21.34 53.25 2.02 29.45 63.67 
OH 88 0.000001 0.000028 0.000244 0.13 2.73 19.74 1.09 18.92 67.20 
OK 77 0.000005 0.000124 0.000820 0.46 11.09 45.26 1.30 26.31 70.30 
OR 36 0.000003 0.000078 0.000483 0.26 7.33 32.75 1.25 28.05 70.58 
PA 67 0.000001 0.000017 0.000242 0.14 1.67 19.61 0.21 2.47 26.67 
SC 46 0.000006 0.000059 0.000328 0.64 5.63 24.85 1.87 15.12 49.69 
SD 66 0.000008 0.000250 0.000758 0.82 20.11 43.32 0.72 18.15 40.23 
TN 95 0.000003 0.000085 0.000675 0.27 7.88 40.49 0.70 17.94 63.50 
TX 254 0.000001 0.000182 0.007850 0.11 15.54 88.78 0.08 11.84 85.24 
UT 29 0.000002 0.000118 0.000661 0.25 10.66 39.99 0.86 29.31 69.83 
VT 14 0.000011 0.000047 0.000119 1.07 4.55 10.71 10.95 35.07 57.63 
VA 135 0.000002 0.000099 0.001099 0.16 9.10 52.56 0.63 28.54 81.56 
WA 39 0.000001 0.000049 0.000645 0.09 4.66 39.40 0.34 15.21 70.45 
WV 55 0.000010 0.000111 0.000926 0.99 10.09 48.28 3.18 26.89 75.36 
WI 72 0.000001 0.000024 0.000541 0.14 2.34 35.29 0.35 5.49 57.00 
WY 23 0.000026 0.000183 0.000518 2.54 15.58 34.31 3.20 18.94 39.80 

States with 5 or fewer counties        
DE 3 0.000003 0.000013 0.000026 0.35 1.29 2.55    
DC 1  0.000004   0.44     
HI 5 0.000003 0.000045 0.022305 0.33 4.36 95.74    
RI 5 0.000003 0.000031 0.000038 0.32 2.99 3.69    
 

 



 

 
 

Table 6. County variance reductions for PPH with minimum, median, and maximum sampling variances 
County Sampling Variances 

 
National Model 

% Variance Reductions 
State Model 

% Variance Reductions State 
Number 

of 
Counties Minimum Median Maximum Minimum Median Maximum Minimum Median Maximum 

AL 67 0.000157 0.002713 0.014745 9.49 64.47 90.80 31.48 88.83 97.74 
AK 24 0.000519 0.013020 0.061369 25.75 89.70 97.62 100.00 100.00 100.00 
AZ 15 0.000066 0.002794 0.017086 4.25 65.14 91.96 100.00 100.00 100.00 
AR 75 0.000289 0.004469 0.015420 16.20 74.93 91.16 56.90 95.33 98.60 
CA 58 0.000020 0.001030 0.071084 1.31 40.80 97.94 2.28 54.71 98.81 
CO 63 0.000176 0.009335 0.084704 10.56 86.20 98.27 15.49 90.65 98.88 
CN 8 0.000097 0.000517 0.000890 6.10 25.69 37.32 100.00 100.00 100.00 
FL 66 0.000099 0.001899 0.024534 6.21 55.96 94.26 14.12 75.93 97.60 
GA 159 0.000180 0.006544 0.035329 10.74 81.40 95.94 21.45 90.85 98.17 
ID 44 0.000392 0.007322 0.071696 20.76 83.04 97.96 32.79 90.12 98.89 
IL 102 0.000027 0.002938 0.023318 1.76 66.28 93.98 7.26 89.55 98.55 
IN 92 0.000124 0.002642 0.017670 7.67 63.87 92.20 34.48 91.80 98.68 
IA 99 0.000225 0.003622 0.009495 13.08 70.78 86.39 24.19 83.71 93.08 
KS 105 0.000216 0.007403 0.023455 12.61 83.20 94.01 100.00 100.00 100.00 
KY 120 0.000108 0.005129 0.023073 6.76 77.43 93.91 14.92 89.25 97.39 
LA 64 0.000255 0.003955 0.033185 14.55 72.57 95.69 98.84 99.92 99.99 
ME 16 0.000408 0.001452 0.005165 21.42 49.27 77.57 100.00 100.00 100.00 
MD 24 0.000102 0.001055 0.005853 6.41 41.38 79.65 100.00 100.00 100.00 
MA 14 0.000063 0.000313 0.039656 4.02 17.32 96.37 91.27 98.12 99.98 
MI 83 0.000054 0.001719 0.020491 3.48 53.49 93.20 9.21 76.37 97.47 
MN 87 0.000067 0.001905 0.033714 4.31 56.03 95.75 6.56 66.54 97.24 
MS 82 0.000604 0.005396 0.023891 28.79 78.30 94.11 38.83 85.00 96.17 
MO 115 0.000087 0.004717 0.016943 5.49 75.93 91.89 8.64 83.69 94.85 
MT 56 0.000651 0.012311 0.061474 30.34 89.17 97.63 100.00 100.00 100.00 
NE 93 0.000208 0.006397 0.068969 12.21 81.06 97.88 100.00 100.00 100.00 
NV 17 0.000151 0.010466 0.043772 9.18 87.50 96.70 100.00 100.00 100.00 
NH 10 0.000264 0.001216 0.003519 15.03 44.85 70.19 100.00 100.00 100.00 
NJ 21 0.000110 0.000321 0.002693 6.87 17.69 64.28 23.59 47.37 88.28 
NM 33 0.000200 0.007252 0.066009 11.79 82.91 97.79 100.00 100.00 100.00 
NY 62 0.000062 0.001015 0.010799 3.97 40.43 87.84 17.71 77.95 97.41 
NC 100 0.000167 0.002282 0.041561 10.07 60.42 96.53 19.48 76.73 98.36 
ND 53 0.000640 0.009678 0.050056 29.96 86.62 97.10 100.00 100.00 100.00 
OH 88 0.000060 0.001396 0.009011 3.87 48.29 85.77 15.57 81.07 96.51 
OK 77 0.000168 0.004687 0.027789 10.13 75.82 94.89 81.59 99.20 99.86 
OR 36 0.000133 0.002618 0.015191 8.15 63.65 91.04 35.02 91.41 98.41 
PA 67 0.000057 0.000713 0.017423 3.68 32.28 92.10 11.14 60.98 97.45 
SC 46 0.000261 0.002644 0.013071 14.87 63.88 89.74 58.15 93.36 98.58 
SD 66 0.000536 0.010491 0.067097 26.39 87.53 97.82 100.00 100.00 100.00 
TN 95 0.000144 0.003216 0.023021 8.78 68.26 93.90 100.00 100.00 100.00 
TX 254 0.000056 0.007945 0.651198 3.61 84.16 99.77 5.35 88.90 99.85 
UT 29 0.000207 0.008147 0.093894 12.15 84.50 98.43 3.73 60.44 94.63 
VT 14 0.000558 0.001971 0.007816 27.18 56.87 83.95 100.00 100.00 100.00 
VA 135 0.000116 0.004020 0.036676 7.18 72.89 96.08 4.03 59.35 93.02 
WA 39 0.000052 0.002294 0.022549 3.34 60.55 93.78 100.00 100.00 100.00 
WV 55 0.000364 0.004028 0.038480 19.59 72.93 96.26 100.00 100.00 100.00 
WI 72 0.000090 0.001304 0.034511 5.65 46.59 95.85 8.28 56.80 97.21 
WY 23 0.001153 0.008623 0.017455 43.55 85.22 92.11 31.05 77.10 87.20 
States with 5 or fewer counties        
DE 3 0.000195 0.000751 0.001409 11.52 33.44 48.52     
DC 1 0.000179 0.000179 0.000179  10.68      
HI 5 0.000214 0.002612 0.172595 12.50 63.60 99.14     
RI 5 0.000169 0.001329 0.001658 10.14 47.06 52.61       
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Figure 1. Percent Variance Reduction in %OCC by State   
 

 

 

     

     

 



 

 
 

Figure 2. Percent Variance Reduction in PPH by State   
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Figure 3. Comparison of County Estimates of Change in %OCC for Mississippi 
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Figure 4. Comparison of County Estimates of Change in PPH for Mississippi 
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 Appendix 2 – Approximate Variance of Estimate of Total Persons in a County 
 
 
If there is complete response, then the estimated variance of total persons is   
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where 
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 is the estimated variance in the number of persons per HU,  

occupied and vacant, 
xh,i,90  is the number of persons in HU i in stratum h, and 
xh,90  is the mean number of persons in a HU in stratum h. 
 
But occupied units have nonresponse and vacant units don’t, so we can’t use s2

h,90  and can’t 
simply change it to a formula that uses the responding units, because the proportions of occupied 
and vacant responding units are not the same as in the full population.  If instead we base the 
variance on only the occupied units and know how many there are, then the variance estimation 
formula is (A2.2), where the subscripts o and r respectively denote occupied and responding 
units. 
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where 
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 is the estimated variance of the number of persons per 

occupied HU in stratum h based on the responding HUs, 
Nho,90  is the number of occupied units in stratum h, 
xhor,i,90  is the number of persons in occupied responding HU i in stratum h, 
xhor,90  is the mean number of persons in occupied responding HUs in stratum h, 
nho,90  is the number of sample occupied units in stratum h, and 
ρho,90  is the response rate for occupied HUs in stratum h.   
 
However, we don’t know Nho,90 .  An estimate is pN h,90h,90  but then we must account for V( ph,90 ) 
and (A2.2) is no longer the appropriate formula. 



 

Instead, we develop an approximation by letting Th,90 be the total population in stratum h and 
writing it as 
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where the subscripts nr and v denote nonresponding and vacant units, 
Nhor,90  is the number of occupied respondent units in stratum h, 
Nhonr,90  is the number of occupied nonrespondent units in stratum h, 
Nhv,90  is the number of vacant units in stratum h, 
xhonr,90  is the mean number of persons in occupied respondent HUs in stratum h, and 
xhv,90  is the mean number of persons in vacant respondent HUs in stratum h. 
 
We know that xhv,90 = 0.  If we assume that xhor,90  = xhonr,90  = xho,90  and note that 

P
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N
N
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90,h

90,hor =+ , the proportion of occupied units in stratum h, then we can write 

xPNT 90,ho90,ho90,h90,h = .  This can be estimated as 
 
  xpNT̂ 90,hor90,ho90,h90,h = .         (A2.4) 
 
For simplicity in developing an approximation for )T̂(V̂ 90,h , we drop the subscripts h and 90 and 

consider a single stratum.  This leaves us with )xpN(V̂)T̂(V̂ oro= .  Now use the relationship 
 
 V(a) = E(V(a|b)) + V(E(a|b)),         (A2.5) 
 
where a and b are random variables and a is a function of b.  In this case a = xpN oro   and b = po.  
For the first term on the right hand side of (A2.5), 
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For the second term on the right hand side of (A2.5), 
 
 
 ))x(EpN(V))xpN(E(V orooro =  
 
          )p(V)x(EN oor

22=        (A2.7) 

 



 

 

Now approximate )p(E o  with po  to get 
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In addition, substitute the estimates ( )( )
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=  for )x(V or , from the term in parentheses on the right hand side (A2.2), to 

get the overall stratum estimate of variance used in (9). 
 

 ( )( )
( )

( ) ( )
⎭
⎬
⎫−

+
⎢
⎢
⎣

⎡
⎥
⎦

⎤
+

−

⎩
⎨
⎧

−
−−

≈
nρ

fρ1spxnρ
fρ1s

1n
f1p1p

N)xpN(V̂
o o

o
2
or2

o
2
or

o o

o
2
or2

oro .            (A2.9) 

 


	eb report 3.3b body only 100308.pdf
	eb report 3.2a apps only 082908

