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Signal Extraction Revision Variances as a Goodness-of-Fit Measure

Tucker McElroy and Marc Wildi

U.S. Census Bureau and Institute of Data Analysis and Process Design

Abstract

Typically, model misspecification is addressed by statistics relying on model-residuals, i.e., on

one-step ahead forecasting errors. In practice, however, users are often interested in problems

involving (also) multi-step ahead forecasting performances, which are not explicitly addressed

by traditional diagnostics. In this article, we consider the topic of misspecification from the

perspective of signal extraction. More precisely, we emphasize the connection between models

and real-time (concurrent) filter performances by analyzing revision errors instead of one-step

ahead forecasting errors. In applications, real-time filters are important for computing trends,

for performing seasonal adjustment or for inferring turning-points towards the current boundary

of time series. Since revision errors of real-time filters generally rely on particular linear combi-

nations of one- and multi-step ahead forecasts, we here address a generalization of traditional

diagnostics. Formally, a hypothesis testing paradigm for the empirical revision measure is devel-

oped through theoretical calculations of the asymptotic distribution under the null hypothesis,

and the method is assessed through real data studies as well as simulations. In particular, we

analyze the effect of model misspecification with respect to unit roots, which are likely to de-

termine multi-step ahead forecasting performances. We also show that this framework can be

extended to general forecasting problems by defining suitable artificial signals.

Keywords. Model-diagnostics; Nonstationary time series; Real-time filtering; Seasonality; Signal

extraction.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Generally speaking, time series models of economic data are misspecified, as models are essentially

simplified portraits of the underlying stochastic dynamics. The task of model diagnostics is then

to identify “relevant” mismatches so that faulty models can be refined accordingly. The predicate

“relevant” means that diagnostic tools should account for the purpose of a particular application
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by emphasizing model failures that are likely to affect results. Traditional diagnostics in time series

analysis focus on one-step ahead forecasting errors. Typical examples are (partial) autocorrelation

functions of model residuals, as well as Ljung-Box (Ljung and Box, 1978) and Box-Pierce statistics.

If the purpose of a particular application is short term one-step ahead forecasting, then these tools

are appropriate. But for many applications, the performance of a model over multiple forecast

leads is more important than the modeling of short-term behavior. We now briefly discuss such an

application field.

Signal extraction concerns the definition and the estimation of interesting components of a time

series. In practice, signal estimates at the current boundary are important, because of the need

for timely information (Findley, Bell, Monsell, Otto, and Chen, 1998). Unfortunately, symmetric

filters cannot be used directly because future data hasn’t been observed yet. Traditional methods

overcome this difficulty by expanding series on both ends by backcasts and forecasts generated by

a time series model – typically an ARIMA model – so that the symmetric filter can be used. If the

coefficients of the symmetric filter decay slowly, then forecasts of longer horizons are emphasized.

Therefore, a “good” forecasting model should perform well with respect to all forecasting horizons

simultaneously. Unfortunately, as the following example illustrates, traditional diagnostics cannot

account for “relevant” model failures in general.

Wildi (2008) compares real-time performances of various approaches in the context of leading

indicators. The so-called KOF-Economic-Barometer (see www.kof.ethz.ch) is based on business

survey data. The latter time series are bounded by construction in [−100%, 100%]. For a particular

series seen in Figure 1 (solid line), TRAMO1 selects the following airline-model

(1−B)(1−B12)Xt = (1− 0.662B)(1− 0.824B12)εt (1)

after adjustments for outliers and calendar effects. As can be seen from typical diagnostic plots

in Figure 2 standard model assumptions are met; neither the autocorrelation nor the partial au-

tocorrelation function nor the Ljung-Box statistics suggest significant departures from the null

hypothesis2. However, a realization (simulation) of the process defined by (1) in Figure 1 (dotted

line) shows obvious departures from the original path. A longer simulation of the same process

in Figure 3 confirms that the artificial series is dominated by a strong trend component which is

a “stylized fact” of I(2)-processes and therefore of the identified airline model. The level of the

original time series is much more “stationary” because the series is bounded, as are many important

economic time series (such as inflation rates, interest rates or unemployment rates, for example).

In fact, a glance at the sample ACF plot of the series shows no indications of trend or seasonal

nonstationarity (Figure 4).
1TSW-package (March 2006) which can be downloaded from the Bank of Spain (http://www.bde.es/servicio

/software /econome).
2TRAMO as well as X-12-ARIMA provide additional diagnostic tools such as heteroscedasticity or model stability

tests which did not lead to a rejection of the above model either.
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Figure 2: Diagnostics airline model for series 31

With respect to the limited one-step ahead forecasting perspective the above model performs

well, thus confirming the usefulness of traditional diagnostics in this particular setting. Unfortu-

nately, the “relevant” real-time estimates that are based on one- and multi-step ahead forecasts

are inefficient – see Wildi (2004, 2008). Moreover, signal definitions based on misspecified models

(for example canonical components) automatically inherit model failures and may be difficult to

interpret in practice. Therefore, specific diagnostics are needed that match the signal extraction

problem.

3



Time

0 5000 10000 15000 20000 25000 30000

-4
00

-3
00

-2
00

-1
00

0

Figure 3: Long model simulation for series 31
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Figure 4: Sample ACF plot for series 31

A popular measure of the quality of signal estimates is the revision variance, because it conveys

information as to what extent real-time (concurrent) estimates are subject to ex-post adjustments.

Revision variances can be generated through model-based calculations, such as in SEATS (Mar-
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avall and Caporello, 2004) and X13-ARIMA-SEATS. (Revision variance calculations are discussed

in McElroy and Gagnon, 2006.) These revision variances should coincide asymptotically with em-

pirical revision sample variances if the model is the “true” one. Therefore, a diagnostic test based

on a comparison of revision variances accounts specifically for the signal extraction problem. More-

over, such a test involves one- and multi-step ahead model forecasts simultaneously. The main

contribution of the paper is the proposal of a new test statistic that matches the signal extraction

problem and a derivation of its distribution under the hypothesis that the model fits the DGP.

In Section 2 we discuss some of the background theory needed for a finite sample approach to

signal extraction in a model-based context. We define the goodness-of-fit test statistic RV, and

discuss its important finite sample and asymptotic properties under the null hypothesis that the

given model is correct. Section 3 gives some of the details on implementing our testing procedure,

with a discussion of the decomposition, structural, and direct approaches to defining a “signal.” In

Section 4 we apply these concepts to several real series where there is suspicion of model misspec-

ification; the series are sectoral leading indices used in the KOF economic barometer. Section 5

concludes and mathematical proofs are in the appendix.

2 Theory

We begin with a background discussion on model-based signal extraction in a finite-sample context;

then we discuss signal extraction revisions for such estimates, and their autocovariance structure

is provided in Proposition 1. We then define our goodness-of-fit test statistic RV and determine its

statistical properties.

2.1 Background on Signal Extraction

The following material can be found in an expanded form in McElroy (2008a). We consider the

additive decomposition of our data vector Y = (Y1, Y2, · · · , Yn)′ into signal S and noise N , via

Y = S + N. The signal might be the trend component, while the noise includes the seasonal

and irregular components. Following Bell (1984), we let Yt be an integrated process such that

Wt = δ(B)Yt is stationary, where B is the backshift operator and δ(z) is a polynomial with all

roots located on the unit circle of the complex plane. (Also, δ(0) = 1 by convention.) This δ(z) is

referred to as the differencing operator of the series, and we assume it can be factored into relatively

prime polynomials δS(z) and δN (z) (i.e., polynomials with no common zeroes), such that the series

Ut = δS(B)St Vt = δN (B)Nt (2)

are mean zero stationary time series that are uncorrelated with one another. Note that δS = 1

and/or δN = 1 are included as special cases (in these cases either the signal or the noise or both
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are stationary). We let d be the order of δ, and dS and dN are the orders of δS and δN ; since the

latter operators are relatively prime, δ = δS · δN and d = dS + dN .

As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds for the component

decomposition, and we treat the case of a finite sample with t = 1, 2, · · · , n with n > d. Assumption

A states that the initial d values of Yt, i.e., the variables Y∗ = (Y1, Y2, · · · , Yd), are independent of

{Ut} and {Vt}. For a discussion of the implications of this assumption, see Bell (1984) and Bell

and Hillmer (1988).

Now we can write (2) in a matrix form, as follows. Let ∆ be a (n− d)× n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d).

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




The matrices ∆S and ∆N have entries given by the coefficients of δS(z) and δN (z), but are (n −
dS) × n and (n − dN ) × n dimensional respectively. This means that each row of these matrices

consists of the coefficients of the corresponding differencing polynomial, horizontally shifted in an

appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN (3)

where W , U , V , S, and N are column vectors of appropriate dimension. Then it is possible to

write the mean square linear optimal estimate Ŝ as a linear matrix operating on Y , i.e., Ŝ = FY .

The error covariance matrix, i.e., the covariance matrix of Ŝ − S, is denoted by M ; both F and M

are given in McElroy (2008a). The formulas for F and M are given by:

F =
(
∆′

SΣ−1
U ∆S + ∆′

NΣ−1
V ∆N

)−1∆′
NΣ−1

V ∆N (4)

M =
(
∆′

SΣ−1
U ∆S + ∆′

NΣ−1
V ∆N

)−1 (5)

where ΣX denote the covariance matrix for any random vector X.

Now these basic notions are generalized slightly for the development needed below. We will be

considering samples of varying dimension; denote the signal extraction matrix of dimension m by

F (m), and the MSE matrix by M (m). Also em denotes the mth unit vector in Rl, where the dimen-

sion l ≥ m will be apparent from the context. We introduce a general notation for signal extraction

estimates: Ŝt|ms . This is an estimate of St, which is a linear function of the data Ys, Ys+1, · · · , Ym

such that the associated error Ŝt|ms − St is uncorrelated with the data Ys, Ys+1, · · · , Ym under As-

sumption A. Such a signal extraction estimate has minimum Mean Squared Error (MSE) among

all estimates that are linear in the data. Note that Assumption A has to do with the initial values
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Y1, · · · , Yd, which may not even be a part of the sample Ys, · · · , Ym (e.g., say s > d). The actual

initial values in this sample are Ys, · · · , Ys+d−1, but these can be expressed as a linear combination

of the initial values Y∗. Therefore Assumption A does indeed guarantee the validity of all the signal

extraction formulas for samples computed at subsequent time periods.

We make a final distinction. Any model-based signal extraction matrix will have the form F

given by (4), though we allow that the model may be mis-specified. That is, any of δS , δN , ΣU ,

or ΣV may be in error. If we wish to denote the “true” specifications of these quantities, we place

a tilde over it, e.g., Σ̃U is the true autocovariance matrix of Ut, whereas ΣU denotes the matrix

implied by our model. Misspecifying δS and δN is a worse error than the misspecification of ΣU

and ΣV .

2.2 Revisions

The main concept in revision calculations is to consider a “window-sample” of size n; this is a

sample Yt+1, Yt+2, · · · , Yt+n for some t = 0, 1, · · · , N − 1, where N denotes the number of windows

that we consider (not to be confused with the noise vector N). We focus on the concurrent signal

extraction estimate, where we are interested in the signal at time t + n; simple extensions of our

method can deal with the signal considered at other time points within the sample. Hence we

consider signal extraction estimates Ŝt+n|t+n
t+1

, and are interested in the revision error that occurs

if our sample was increased by a further h > 0 data points; the revised estimate would then be

Ŝt+n|t+n+h
t+1

. Using the convention that the revision is “new minus old,” the revision equals

εt = Ŝt+n|t+n+h
t+1

− Ŝt+n|t+n
t+1

.

Of course the revision εt depends on n and h as well as t, but these will be held fixed throughout our

analysis, so they don’t enter the notation for the revision. If the nonstationary operators δS and

δN have been correctly specified, then εt will be a stationary sequence; this is because Ŝt+n|t+n+h
t+1

and Ŝt+n|t+n
t+1

will have no noise nonstationarity, and will both contain signal nonstationarity in such

a manner that their difference is in fact stationary. The following proposition describes some of

the important statistical properties of these revisions. Let ẽn denote the nth unit vector in Rn+h,

whereas en denotes the nth unit vector in Rn.

Proposition 1 Assume that the signal extraction conditions of Section 2 hold, and in particular

that δS and δN are correctly specified (though ΣU and ΣV need not be). Then the sequence of
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revisions εt is weakly stationary with mean zero and autocovariance sequence

γε(k) =
(
ẽ′nM (n+h)∆′

SΣ−1
U [1n+h−dS

0k]− e′nM (n)∆′
SΣ−1

U [1n−dS
0k+h]

)
Σ̃U

(
[0k 1n+h−dS

]′Σ−1
U ∆SM (n+h)ẽn − [0k 1n−dS

0h]′Σ−1
U ∆SM (n)en

)

+
(
ẽ′nM (n+h)∆′

NΣ−1
V [1n+h−dN

0k]− e′nM (n)∆′
NΣ−1

V [1n−dN
0k+h]

)
Σ̃V

(
[0k 1n+h−dN

]′Σ−1
V ∆NM (n+h)ẽn − [0k 1n−dN

0h]′Σ−1
V ∆NM (n)en

)
.

The dimension of the M matrices is indicated by the superscript, and the 1 refers to an identity

matrix of indicated dimension. The subscript on the 0 then indicates the number of zero columns.

The other matrices, such as ΣU , ∆S, etc., have dimensions implied by the other matrices that

multiply them.

Proposition 1 will be useful for determining the statistical properties of our goodness-of-fit statistic.

Our null hypothesis (stated below) states that the model used actually describes the true process,

so that ΣU = Σ̃U and ΣV = Σ̃V . Hence for implementation, one needs to compute γε(k) under

this type of assumption, for a sufficient number of lags k. Below, we discuss the test statistic RV

in more detail.

2.3 Goodness-of-Fit Test Statistic

Now we want to use the empirical within-sample revision error as a measure of goodness-of-fit;

since the theoretical mean of the revisions is zero, we can compute an estimate of their variance

via 1
N

∑N−1
t=0 ε2t . More generally, let our Revision Variance statistic be defined as

RV (B) =
1
N

ε′Bε,

where B is a square matrix and ε = (ε0, ε1, · · · , εN−1)
′. Clearly, taking B equal to the identity

matrix yields the sample second moment of the revisions, but other choices of B will grant better

size and power properties. This RV (B) has mean

ERV (B) =
1
N

tr(B Σ̃ε),

where Σ̃ε is the (true) covariance matrix of ε. Hence taking B = Σ−1
ε based on our model speci-

fication (using Proposition 1), the mean of the revision statistic will be equal to 1 under the null

hypothesis. Moreover, if the data is Gaussian, the variance will be equal to 2/N . Now RV (Σ−1
ε ) is

the goodness-of-fit statistic considered in this paper; we will just use RV for short. The normalized

test statistic is defined to be √
N

RV − 1√
2

. (6)

Note that if the data is Gaussian, ε′Σ−1
ε ε has a χ2

N distribution. The following result, which is

essentially Theorem 1 of McElroy (2008b), gives the statistical properties of RV. Suppose that we
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specify δS and δN correctly, so that by Proposition 1 the revision process is stationary; let fε be the

spectral density corresponding to the given autocovariance sequence. If ΣU = Σ̃U and ΣV = Σ̃V ,

then the model is correctly specified with correct parameter values as well. The corresponding

spectral density is the true spectrum for the revision process, and is denoted by f̃ε. Likewise, let

Σε and Σ̃ε be the associated covariance matrices.

Theorem 1 (Theorem 1 of McElroy (2008b)) The mean of RV is tr(Σ−1
ε Σ̃ε)/N , and if the third

and fourth cumulants are zero the variance is 2tr([Σ−1
ε Σ̃ε]

2
)/N2. If f̃ε and 1/fε are continuously

differentiable, then

ERV → 1
2π

∫ π

−π

f̃ε(λ)
fε(λ)

dλ

N V arRV → 2
2π

∫ π

−π

f̃2
ε (λ)

f2
ε (λ)

dλ

as N → ∞. Also if the revision process satisfies either condition (B) or (HT) referenced below,

then as N →∞
RV − ERV√

V arRV

L=⇒ N (0, 1).

Remark 1 Some mild conditions on the data are required for the asymptotic theory; we follow the

material in Taniguchi and Kakizawa (2000, Section 3.1.1). Condition (B), due to Brillinger (1981),

states that the process is strictly stationary and condition (B1) of Taniguchi and Kakizawa (2000,

p. 55) holds. Condition (HT), due to Hosoya and Taniguchi (1982), states that the process has a

linear representation, and conditions (H1) through (H6) of Taniguchi and Kakizawa (2000, pp. 55

– 56) hold.

Remark 2 The computations required for the variance of the empirical revision measure RV are

considerable, since we must consider up to N + h different MSE matrices of various dimensions.

There is no straight-forward way to obtain the required quantities using a State Space smoother –

one must use the direct matrix approach of McElroy (2008a).

Our null hypothesis is that the model is correctly specified with correct covariance structure for

the components as well, i.e.,

H0 : δN = δ̃N , δS = δ̃S , ΣU = Σ̃U , ΣV = Σ̃V .

The alternative hypothesis is that the model is incorrectly specified, which includes not only the case

that the proposed differencing operators may be incorrect, but also that the models for Ut and/or

Vt may be incorrect. Not only may the parameter values be faulty, but the model specifications for

these components may be wrong as well. In general we may speak of over- and under-specification

of differencing operators. This refers to assigning too many or too few unit root differencing factors
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in δ (which are then allocated among the signal and the noise). For example, if the true process

is I(1) and we use an I(2) model, this corresponds to over-specification, whereas using an I(0)

model is under-specification. Generally speaking, our test is much more powerful for detection of

under-specification, because in this case the revision process is nonstationary and the RV statistic

explodes asymptotically. But with over-specification, the revision process will still be stationary;

only now the variance normalization will be incorrect, leading us to reject H0. There are many

other interesting cases that arise, for example: δ̃(z) = 1− z12 but our model specifies δ(z) = 1− z;

this is under-specification, because the operator 1 + z + · · ·+ z11 has been omitted.

3 Implementation

The previous section discussed the theoretical properties of the revision diagnostic RV, given that

we compute signal extraction estimates using (4). We now discuss the details of implementing these

ideas. In order to construct the signal extraction matrix F , we must specify the matrices ΣU and

ΣV (as well as δS and δN ) – or equivalently, their spectral densities fU and fV . Our null hypothesis

states that our model is correct, and thus we have a true knowledge of the spectral density fW

under H0. Generally, fU and fV are in turn determined from fW in a variety of ways. If we are

dealing with ARIMA processes, it may be possible to mathematically solve for fU and fV using the

canonical decomposition approach of Hillmer and Tiao (1982). The structural approach (Harvey,

1989) is to specify models for fU and fV ahead of time and determine their parameters implicitly

through fW during estimation, noting that

fW (λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ). (7)

A third approach is to set up equations relating the signal and noise pseudo-spectra to that of the

original process, i.e.,

fS(λ) = g(λ)fY (λ) fN (λ) = (1− g(λ))fY (λ),

where g : [−π, π] → [0, 1] ia a user-defined function, and fS(λ) = fU (λ)|δS(e−iλ)|−2, fN (λ) =

fV (λ)|δN (e−iλ)|−2, fY (λ) = fW (λ)|δ(e−iλ)|−2
. We call this the direct approach (see Kaiser and

Maravall, 2005).

The canonical decomposition approach is quite popular, and is the method of the widely-used

seasonal adjustment program TRAMO-SEATS. The structural approach is also widely used, being

implemented in the the program STAMP. Both of these methods use the fitted model fW to

determine the component models. The direct approach depends on fW as well, but by choosing

g one can control what sorts of signals one is interested in. The basic conditions on g are that

g|δN (e−i·)|−2 and (1− g)|δS(e−iλ)|−2 are bounded functions. (These conditions ensure that fS and

fN only have poles at the appropriate signal and noise frequencies.) Since there is less literature on
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the direct approach, we illustrate it through a particular choice of g. Suppose that δS(z) = 1−z and

δN (z) = 1+z+ · · ·+z11, which correspond to trend signal and seasonal noise processes respectively.

Let g(λ) = |δN (e−iλ)|2/144; it then follows that

1− g(λ)

|δS(e−iλ)|2
= |h(e−iλ)|2/144,

where h(z) = 10.787+8.570z +6.672z2 +5.070z3 +3.738z4 +2.652z5 +1.788z6 +1.123z7 + .634z8 +

.297z9 + .093z10. Then we obtain

fU (λ) = fW (λ)/144 fV (λ) = |h(e−iλ)|2 fW (λ)/144.

These equations represent a very direct and clear relationship between fW and fU , fV . In contrast,

(7) does not (in general) provide a unique fU , fV for each specification of fW . From these definitions

of fU and fV , it is straightforward to obtain ΣU and ΣV , their associated covariance matrices. The

general procedure for computing the revision goodness-of-fit measure is the following:

1. Begin with a proposed model fY , which consists of: signal and noise differencing operators

δS and δN , and spectrum of the differenced process fW .

2. Obtain fU and fV from fW . In the structural approach, fU and fV are actually determined

at the model estimation stage, whereas for the decomposition and direct approaches there

are algorithms for computing fU and fV from fW .

3. Construct the filter matrix F and the revision process ε by applying the appropriate rows of

F to the data.

4. Obtain the covariance matrix of ε under the null hypothesis (by using Proposition 1). Com-

pute the normalized RV via (6) and get the p-value using the χ2
N distribution.

In the context of model-based seasonal adjustment or trend estimation of economic data, typ-

ically steps 1 and 2 (and part of 3) are already performed by the analyst. The implementation

challenge lies in the correct construction of Σε based on Proposition 1, which takes some care. Also,

as noted in the previous section, the computation of RV requires a choice of revision lead h and

window size n. We have written our implementation (of the decomposition and direct approaches)

in Ox, utilizing SsfPack routines (Koopman, Shephard, and Doornik, 1999).

4 Empirical Studies

In this section, we focus on the finite-sample statistical properties of the empirical revision measure

RV, considering both the decomposition and direct approaches (for the direct approach, we take g

as defined in Section 3). In 4.1 we summarize various size and power studies, and in 4.2 we examine

the method on several series from the KOF-Economic-Barometer.
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4.1 Simulations

We wish for our power studies to correspond with the empirical studies of section 4.2. The series

we consider are of length 322, so we take three window sizes n = 120, 150, 180 – hence the number

of windows is N = 202 − h, 172 − h, 142 − h, where h is the revision lead. We consider several

values of h, up to five years out (the data is monthly): h = 12, 24, 36, 48, 60. For our first study, we

employ the decomposition approach applied to the popular Box-Jenkins airline model. Our second

study employs the direct approach, but in this case the model is only I(1) plus seasonal. Details

on these two implementations are provided below.

In the decomposition study, there are three components: trend, seasonal, and irregular. The

airline model is given by the ARIMA equation

(1−B)(1−B12)Xt = (1− θB)(1−ΘB12)εt.

Both the trend and seasonal are typically nonstationary in economic data, and thus are the com-

ponents of greatest interest for our purposes. Here the trend differencing operator is (1−B)2,

whereas the seasonal differencing operator is U(B) = 1 + B + · · · + B11. Hence we will consider

either the trend or the seasonal as the signal of interest – note that the revision process for the

associated noise is that of the signal multiplied by −1. So the RV for the seasonal component

and the seasonally adjusted component will be identical. We consider a null hypothesis of a Box-

Jenkins airline model with various specifications of the parameters θ,Θ. Given the specification of

a null model via a choice θ, Θ, we can determine RV for either the trend or seasonal components

as discussed in Section 3.

In the direct study, there are two components: the seasonal and the nonseasonal. The spectra

of these components are defined through g(λ) = |U(e−iλ)|2/144, as discussed in Section 3. In that

section, St is nonseasonal and Nt is seasonal; note that if we swap roles and let the seasonal be the

signal instead, the revision measure RV will yield identical results (again, since the revision process

for noise is related to the revision process of signal via multiplication by −1). So, we only report

results for the nonseasonal. The model for the data process is

(1−B12)Xt = (1−ΘB12)εt, (8)

which can be viewed as a subset model of the airline model when θ = 1 (after cancelation).

These clearly do not reflect a comprehensive study, but nevertheless will reveal some useful

observations. First, airline models form a fairly basic trend-seasonal model, and thus are a good

starting place. The window sizes were chosen to reflect common data lengths – typically monthly

seasonal time series at many statistical agencies may be between 10 and 15 years long. Of course,

the number of revisions N is much larger than it would be in practice, though in our case the

length of the KOF series facilitates a large N . The asymptotics of Theorem 1 are with respect to
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increasing N , so decreasing n and h should provide a RV that is more normally distributed. The

revision leads h are fairly typical – in practice the revisions from model-based seasonal adjustments

(using SEATS or X-12-ARIMA) are generally negligible after 5 years.

In order to investigate the power of the diagnostic tests in both studies, we consider the following

alternative models:

(1− φB)(1− ΦB12)Xt = (1− .6B)(1− .6B12)εt

with φ,Φ = .6, .9, 1. Therefore, taking all possible combinations and making cancelations where

appropriate, we obtain the following 9 models: φ = Φ = 1 (Model 0); φ = .9, Φ = 1 (Model 1);

φ = .6, Φ = 1 (Model 2); φ = 1, Φ = .9 (Model 3); φ = 1, Φ = .6 (Model 4); φ = .9 = Φ (Model 5);

φ = .9, Φ = .6 (Model 6); φ = .6, Φ = .9 (Model 7); φ = .6 = Φ (Model 8).

These alternative models have varying degrees of nonstationarity (and Model 8 corresponds to

white noise after cancelation of factors). In computing the power, we simulated Gaussian data

from the models but applied the signal extraction filters associated with the null model, which for

the first study was a .6, .6 airline model (or Model 0); we consider both the trend and seasonal

signals. For the second study (direct approach), the null model corresponds to the choice Θ = .6

in the data process (8), which is actually Model 2. In the first study all 8 alternative models (i.e.,

Model 1 through 8) correspond to over-specification of the order of nonstationarity. However, in

the second study Model 0 corresponds to under-specification and Models 3 through 8 correspond to

over-specification (i.e., the null model over-differences these processes). (A note on the simulation

of nonstationary stochastic processes: in the over-specification case, the application of the revision

filter in the calculation of RV always annihilates all initial values, but there will be initial values

leftover in the under-specification case. Thus, power in the under-specification case actually depends

upon the choice of starting values in the stochastic process. For the simulation of Model 0 in study

2, we initialize with 13 zeroes and discard the first 500 observations, which amounts to a random

initialization of the process.)

The results are reported in Table 1 below. In the first study, the power is quite low for Models

1, 3, and 5, which are fairly close to the null model. Models 2 and 4 are further from the null

model, and the power is unexceptional, breaking past 50% for the larger sample sizes (i.e., smaller

h and n). Models 6 and 7 are quite different from the null, and the power is decent, approaching

75% in larger samples. Finally Model 8 is very different from the null, and the power is quite high.

Thus the power results are intuitive, increasing both with sample size and the discrepancy between

null and alternative model. Generally the power for trend and seasonal are similar, though the

former was usually greater than the latter. In the second study, Model 0 produces perfect power

(in this case the normalized RV statistic was explosive, taking on values in the thousands), as to

be expected. Model 2 just provides the size; power was surprisingly high for Models 3 and 4, which

have no nonstationary seasonality. Models 1, 5 and 6 provide very good power as well, even though
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the latter two correspond to the over-specification case. Power is low for Model 7, which perhaps

is closest to the null model in some sense, and power is moderate for Model 8.

In order to provide a reference frame for these results, we computed Ljung-Box (LB) statistics

on the same data generating processes, when fitting an airline model. As with the RV study, we

kept the parameters in the fitted model fixed at .6, .6. We do this, rather than using the MLEs in

each simulation, in order that comparisons with the RV statistic – which uses fixed parameters –

will be meaningful. Table 2 summarizes the results; we consider the LB at lags 12, 24, and 36, since

these are multiples of the seasonal lag. Although there are some problems with the size (Model

0 for Study 1, and Model 2 for Study 2), the power is generally quite good – especially in the

under-specification cases. In terms of comparing the RV and LB methods, we note that for Study

1 our RV statistic is marginally more powerful for Models 4, 5, and 6 (note that we can maximize

power by taking h and n smaller, but there is no a priori reason to consider one of the lags 12,

24, or 36 as preferable to the others in the LB statistics), but the LB statistics are superior in the

other cases. In Study 2, only Model 8 provides more power than the LB. Therefore, according to

the simulation studies the RV statistic is not competitive with LB.

In order to explain these results and, in particular, the seemingly low power of RV for Models 1, 3

and 5 in study 1 (see Table 1) it is useful to recall that our statistic is designed with real-time signal-

extraction in mind; misspecification is directly related to performances of real-time filters. With

that particular design-aspect in mind we propose to compare the performances of the misspecified

filters (based on Model 0) for Models 1, 3 and 5 with the performance obtained for Model 0 (no

misspecification). For that purpose, we computed empirical revision error variances (N−1ε′ε) by

simulations based on 1000 replications of Models 0, 1, 3 and 5. The results are reported in Table 3.

As can be seen, the revision error variances of the misspecified filters (the last three columns) are

close to the performance obtained for the true model (Model 0). Since misspecification does not

have a dramatic impact with regard to the interesting real-time signal extraction performances, it

is not surprising that our RV statistic does not lead to rejection of the false model in these cases.

However, increased power gains are to be expected whenever real-time performances are affected

by the misspecification, as shown in the analysis of the KOF series below.

In summary, we note that the RV procedure is quite flexible, as any combination of unit roots

can be specified in the null hypothesis, and tested against an alternative where some or all of the

roots no longer lie on the unit circle. The size is good and the power results are reasonable in finite

sample (though not as good as LB, generally speaking). We observe that our statistic emphasizes

signal extraction problems so that it cannot detect misspecifications that do not affect real-time

filter performances. In terms of a recommendation for the choice of h and n, it is noted that smaller

values effectively increase the sample size N used in the RV statistic, and thus increase the power;

therefore, these should be taken as small as practicable.
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4.2 Revisions of the KOF Data

We next applied these diagnostic tests to the KOF series mentioned in the Introduction. To focus

the discussion, we concentrate on four series that were all identified by X-12-ARIMA as having

seasonality and an I(2) trend. Due to the bounded nature of these series, the I(2) trend seems to

be misspecified; so we expect our diagnostic tests to reject these models. We applied both revision

diagnostic tests discussed above; the first is used to show that the I(2) is over-specified, and the

second shows that I(1) is also over-specified. The series KOF9, KOF25, KOF27, and KOF29 were

specified as airline models by X-12-ARIMA. Values of the standardized RV statistic are reported

in Table 4.

All of the RV statistics were computed with the null model given by the maximum likelihood

parameter estimates, for each given model specification, when fitted to a subset of the data (given

by the window size). Recall from the introduction that LB statistics were generally not significant

for all of the KOF series; in particular, at lag 12 the LB statistics are above the 5% level for all four

series, though KOF9 and KOF29 have a few significant LB statistics at other lags. (Some rejections

due to pure chance are to be expected due to multiple testing.) Yet even the smallest of these RVs

is significant (p-value < .025) as a two-sided test, using the Gaussian distribution. All the values

were negative, indicating over-specification, and in fact, there is a remarkable pattern in the test

statistics evident from Table 4. Letting the effective sample size N = 322 − h − n, each value in

Table 4 (independent of the type of study, or the series) is approximately equal to −
√

N/2, which

can be easily verified. This is because the (un-standardized) RV statistic is approximately zero in

every case, hence by (6) we obtain −
√

N/2.

Why do we obtain these results? By glancing at ACF plots (such as Figure 4), we know that

these KOF series are close to stationarity, even though conventional model identification software

classifies them as I(2)3. So the computed trends (and trend-irregulars) derived from such an

over-specified model will tend to be very smooth and fairly flat. In this case, there will be little

improvement to the trend estimate obtained by moving from a concurrent filter to a less asymmetric

filter, and therefore the revisions will tend to be small with no particular directionality. In fact,

the empirical revision process will have zero mean, little discernible autocorrelation pattern, and

a small variance. Hence the RV will be quite small (values of .001 typically), resulting in the

standardized RV being approximately −
√

N/2. It is primarily for this reason that the RV is so

powerful at detecting model misspecification for the KOF series.

Another explanation can be based on results obtained in Wildi (2008) where the author shows

that substantial performance gains (reduction of revision error variances) can be obtained in real-

time by selecting filters that are not misspecified in the unit-root frequencies. Specifically, the author
3This is because models in differences are parsimonious (only two parameters for the airline model) and because

one-step ahead forecasts are quite good. Of course, multi-step ahead forecasts are of poor quality because the series

are bounded.
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obtained reductions of 16%, 41%, 22% and 23% of the revision error variances for series 9, 25, 27

and 29 by relaxing the misspecified I(2)-filter-constraints (see Table 10.9 in the cited literature).

This result confirms that the power of the RV-statistic increases as real-time performances are

affected by the model misspecification.

5 Conclusion

It is well-known that models that pass traditional one-step ahead diagnostic tests may perform

rather poorly in a multi-step ahead perspective – recall the discussion in section 1. It is therefore

necessary to account for the purpose of a particular application when selecting and checking model

performances. We have proposed a test for model misspecification which fits a general class of

forecasting problems.

Although we restricted attention towards real-time signal-extraction problems, the scope of the

proposed approach is more general because we allowed for arbitrary signals. Therefore, revision

errors can be “designed” by choosing suitable (artificial) signal definitions. As an example, assume

that a signal is defined by a symmetric MA(3)-filter with coefficients γ−1, γ0, γ1 where γ−1 = γ1.

If γ1 = 1, then the revision error would correspond to the one-step ahead forecasting error. Thus,

traditional (one-step ahead) diagnostics can be replicated in our framework by choosing the above

artificial filter. More generally, revision errors relying on arbitrary linear combinations of one- and

multi-step ahead forecasts can be derived by specifying a corresponding symmetric MA-filter. (Note

that the central weight γ0 is not important here.) Therefore, a diagnostic test can be set-up which

accounts for performances involving any linear combination of forecasts. As a consequence, the

proposed diagnostic test can fit a variety of practically relevant estimation problems whose precise

structures can be accounted for explicitly.

Our simulation results confirm a good concordance between asymptotic and finite sample test

distributions; although in our Monte Carlo simulations the LB statistics generally out-performed

RV, the latter is very successful in real-data studies, particularly if the misspecification directly

affects filter performances. Results in the context of the KOF economic barometer suggest stronger

rejection of false unit roots hypotheses, in both seasonal and trend roots. This is due to the fact

that the above series exhibit mid-term trend reversion which cannot be detected by statistics relying

on short-term forecasting performances exclusively.

Traditional model-fitting diagnostics are based on computing model residuals and testing them

for whiteness, i.e., whether or not they are serially uncorrelated. The signal extraction revision

process is similar in many ways to model residuals, although under the null hypothesis of correct

model and covariance specification they do not behave as white noise, but rather have another

covariance structure (as given in Proposition 1). Both model residuals and signal extraction revi-

sions can be used to assess poorness of model fit, but each examines different aspects of the data’s
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dynamics. For the KOF series, model residuals appear to be white and hence no problems with the

over-specified model are indicated, whereas the signal extraction revisions also appear to be white

and generate a small value of RV, indicating a strong rejection of the fitted model. Hence, model

residuals and signal extraction revisions present different information about a series. Essentially,

signal extraction revisions allow the practitioner to focus on particular aspects or sections of the

data’s pseudo-spectrum, whereas model residuals look at the spectrum as a whole.

Given these findings, we present the RV statistic as a useful tool to be used in addition to

standard goodness-of-fit statistics, such as LB and unit root tests. One drawback of the RV statistic

is that it takes some time and effort to encode the formulas of Proposition 1, and some thought

must also be given to how the models for signal and noise are related to the data process. We have

found Ox to be a convenient language for implementation. A second caution is the finite-sample

power of the RV statistic, as shown in Table 1, which will tend to be lower than desired in the

over-specification case. However, we feel that these results are more than offset by the tremendous

“empirical power” of the method on typical business-survey data where real-time performances are

often substantially affected by model misspecification.

Appendix

Proof of Proposition 1. For the first assertion, we write out εt in vector form.

εt = ẽ′nF (n+h)


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Yt+1

...
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
− e′nF (n)
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


= ẽ′n


F (n+h)




Yt+1

...

Yt+n+h


−




St+1

...
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



− e′n


F (n)




Yt+1

...

Yt+n


−




St+1

...

St+n







= ẽ′nE
(n+h)
t − e′nE

(n)
t ,

where E
(n)
t denotes the error process at time t based on the sample from time t + 1 to t + n. Such

an error process is simply a linear combination of Us and Vs – the differenced signal and noise

processes – at times t + 1 ≤ s ≤ t + n. The same goes for E
(n+h)
t , so εt is a linear combination of

{Us} and {Vs}, which are weakly stationary and uncorrelated with one another. Thus, the revisions

are weakly stationary, too (and if the {Us} and {Vs} processes are strictly stationary, then so is

the revision process). Since these error processes have mean zero, so does the revision process.

Finally, we consider the autocovariance at lag k; considering k ≥ 0, we have

εtεt+k = ẽ′nE
(n+h)
t E

(n+h)
t+k

′
ẽn − ẽ′nE

(n+h)
t E

(n)
t+k

′
en

− e′nE
(n)
t E

(n+h)
t+k

′
ẽn + e′nE

(n)
t E

(n)
t+k

′
en.

17



Next, we compute each of the error processes:

E
(n)
t = −M (n)∆′

SΣ−1
U Ut+1+dS :t+n + M (n)∆′

NΣ−1
V Vt+1+dN :t+n

E
(n)
t+k = −M (n)∆′

SΣ−1
U Ut+k+1+dS :t+k+n + M (n)∆′

NΣ−1
V Vt+k+1+dN :t+k+n

E
(n+h)
t = −M (n+h)∆′

SΣ−1
U Ut+1+dS :t+n+h + M (n+h)∆′

NΣ−1
V Vt+1+dN :t+n+h

E
(n+h)
t+k = −M (n+h)∆′

SΣ−1
U Ut+k+1+dS :t+k+n+h + M (n+h)∆′

NΣ−1
V Vt+k+1+dN :t+k+n+h

We can conceive of a vector U of dimension k + n + h− dS , which contains the Uj for t + 1 + dS ≤
j ≤ t + k + n + h. Then we can substitute selection matrices into the above expressions, such as

[1n+h−dS
0]U , and so forth. Similarly, we can do the same with the vector V . These expressions may

be substituted into the formula for εtεt+k above, and the expectation of UU ′ is ΣU of appropriate

dimension. The same holds for V , though note that EUV ′ is a zero matrix due to our assumptions

on the components. Then by rearranging terms, we arrive at the stated formula. 2
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Table 1. RV Size and Power

Models

St1 (T) 0 1 2 3 4 5 6 7 8

Ld 12 .05 .05 .05 .09 .08 .07 .59 .53 .45 .08 .08 .07 .60 .53 .46 .19 .17 .15 .78 .71 .63 .75 .68 .60 .98 .96 .92

Ld 24 .05 .05 .05 .08 .08 .07 .56 .50 .42 .08 .08 .07 .57 .50 .42 .18 .16 .14 .75 .68 .59 .73 .65 .56 .97 .95 .90

Ld 36 .05 .05 .05 .08 .08 .07 .54 .47 .39 .08 .08 .07 .54 .47 .39 .18 .15 .13 .72 .65 .55 .70 .62 .52 .96 .93 .87

Ld 48 .05 .04 .05 .08 .08 .07 .51 .44 .35 .08 .07 .07 .52 .43 .36 .16 .14 .12 .69 .61 .50 .67 .58 .48 .96 .91 .83

Ld 60 .05 .04 .05 .08 .07 .07 .48 .40 .32 .07 .07 .07 .49 .41 .32 .15 .13 .11 .66 .57 .46 .64 .55 .43 .94 .89 .79

St1 (S) 0 1 2 3 4 5 6 7 8

Ld 12 .05 .05 .05 .09 .08 .08 .59 .53 .46 .08 .08 .07 .59 .53 .45 .20 .17 .16 .78 .71 .62 .75 .68 .61 .98 .96 .92

Ld 24 .05 .05 .05 .08 .08 .08 .57 .50 .43 .08 .08 .07 .52 .45 .37 .18 .16 .13 .71 .63 .53 .72 .64 .56 .97 .93 .87

Ld 36 .05 .05 .05 .08 .08 .07 .54 .47 .40 .07 .07 .07 .47 .39 .31 .17 .14 .12 .66 .56 .45 .68 .60 .51 .95 .90 .81

Ld 48 .05 .05 .05 .08 .08 .07 .51 .44 .37 .07 .07 .06 .43 .34 .26 .15 .13 .11 .61 .51 .38 .65 .57 .46 .93 .86 .75

Ld 60 .05 .05 .05 .08 .07 .07 .48 .40 .33 .07 .07 .06 .39 .30 .21 .14 .12 .10 .57 .45 .32 .62 .52 .41 .91 .82 .67

St2 0 1 2 3 4 5 6 7 8

Ld 12 1.0 1.0 1.0 .87 .83 .77 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .91 .87 .83 .98 .97 .94 .09 .09 .08 .62 .57 .49

Ld 24 1.0 1.0 1.0 .86 .80 .75 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .90 .85 .80 .98 .96 .93 .09 .09 .08 .60 .54 .46

Ld 36 1.0 1.0 1.0 .84 .78 .72 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .88 .83 .78 .97 .95 .91 .09 .09 .08 .58 .51 .43

Ld 48 1.0 1.0 1.0 .82 .76 .70 .05 .05 .05 1.0 1.0 .99 1.0 1.0 .99 .87 .81 .74 .97 .94 .89 .09 .08 .08 .56 .48 .40

Ld 60 1.0 1.0 1.0 .80 .73 .66 .05 .05 .05 1.0 1.0 .99 1.0 1.0 .99 .85 .79 .71 .96 .92 .86 .09 .09 .08 .53 .45 .37

Table 1: Entries indicate empirical size and power as a percentage, computed via 10,000 Monte
Carlo simulations, of the RV statistic. The Models 0 through 8 indicates the data generating process
that was simulated, with the Lead (Ld) and type of Study (St1, St2) on the left. St1 (S) refers
to revision statistics based on the seasonal signal, whereas St1 (T) refers to the trend. For these
studies Model 0 corresponds to the null hypothesis, so this column gives size, whereas the other
columns give power. For St2 the null hypothesis corresponds to Model 2, so this column gives size
and the other columns give power. The three numbers in each cell are size/power for window sizes
120, 150, and 180 respectively, from left to right.

Table 2. LB Size and Power

Models

0 1 2 3 4 5 6 7 8

St1 .05 .06 .07 .15 .14 .13 .97 .83 .72 .07 .08 .10 .57 .60 .56 .18 .18 .18 .72 .72 .68 .97 .83 .77 1.0 .99 .98

St2 1.0 1.0 1.0 1.0 1.0 1.0 .06 .06 .07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .08 .09 .10 .56 .60 .56

Table 2: Entries indicate empirical size and power as a percentage, computed via 10,000 Monte
Carlo simulations, of the LB statistic (computed using fixed parameters). The Models 0 through
8 indicates the data generating process that was simulated, with the type of Study (St1, St2) on
the left. Model 0 corresponds to the null hypothesis for St1, so this column gives size, whereas
the other columns give power. For St2 the null hypothesis corresponds to Model 2, so this column
gives size and the other columns give power. The three numbers in each cell are size/power for LB
lags 12, 24, and 36 respectively, from left to right.
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Table 3. Revision Error Variances: misspecification versus true model

Models

0 1 3 5

St1 .192 (0.033) 0.207 (0.037) 0.209 (0.037) 0.227 (0.041)

Table 3: Empirical revision variances based on 1000 simulations from Models 0, 1, 3, and 5 under
the null Model 0. Numbers in parentheses are empirical standard deviations of the revision variance
estimates.

Table 4. Standardized RV statistics for the KOF series.

Series

St1 (T) KOF9 KOF25 KOF27 KOF29

Ld 12 -9.73 -8.93 -8.05 -9.74 -8.94 -8.06 -9.74 -8.94 -8.06 -9.74 -8.94 -8.06

Ld 24 -9.42 -8.59 -7.67 -9.43 -8.60 -7.68 -9.43 -8.60 -7.68 -9.43 -8.60 -7.68

Ld 36 -9.10 -8.24 -7.27 -9.10 -8.24 -7.27 -9.10 -8.24 -7.28 -9.11 -8.24 -7.27

Ld 48 -8.76 -7.87 -6.85 -8.77 -7.87 -6.85 -8.77 -7.87 -6.85 -8.77 -7.87 -6.85

Ld 60 -8.42 -7.48 -6.40 -8.42 -7.48 -6.40 -8.42 -7.48 -6.40 -8.42 -7.48 -6.40

St1 (S) KOF9 KOF25 KOF27 KOF29

Ld 12 -9.73 -8.92 -8.03 -9.74 -8.94 -8.06 -9.70 -8.90 -7.99 -9.74 -8.94 -8.06

Ld 24 -9.40 -8.57 -7.64 -9.43 -8.59 -7.67 -9.32 -8.50 -7.57 -9.43 -8.60 -7.68

Ld 36 -9.08 -8.22 -7.25 -9.10 -8.24 -7.27 -9.05 -8.19 -7.21 -9.11 -8.24 -7.28

Ld 48 -8.75 -7.87 -6.83 -8.77 -7.87 -6.85 -8.71 -7.82 -6.80 -8.77 -7.87 -6.85

Ld 60 -8.40 -7.46 -6.39 -8.42 -7.48 -6.40 -8.36 -7.43 -6.34 -8.42 -7.48 -6.40

St2 KOF9 KOF25 KOF27 KOF29

Ld 12 -9.74 -8.94 -8.06 -9.75 -8.94 -8.06 -9.75 -8.94 -8.06 -9.75 -8.94 -8.06

Ld 24 -9.43 -8.60 -7.68 -9.43 -8.60 -7.68 -9.43 -8.60 -7.68 -9.43 -8.60 -7.68

Ld 36 -9.11 -8.24 -7.28 -9.11 -8.25 -7.28 -9.11 -8.24 -7.28 -9.11 -8.25 -7.28

Ld 48 -8.77 -7.87 -6.85 -8.77 -7.87 -6.86 -8.77 -7.87 -6.85 -8.77 -7.87 -6.85

Ld 60 -8.42 -7.48 -6.40 -8.43 -7.48 -6.40 -8.43 -7.48 -6.40 -8.43 -7.48 -6.40

Table 4: Normalized RV test statistics for KOF series 9, 25, 27, and 29. An airline model was fitted
to a subset of the data (corresponding to the window size) using Maximum Likelihood Estimation,
and the corresponding parameter values were used to determine the null hypothesis. The type
of Study (St1, St2) is on the left, along with revision lead. The three numbers in each cell are
normalized RV at window sizes 120, 150, and 180 respectively, from left to right.
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