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Abstract

This paper discusses the discretization of continuous-time filters for application to discrete time

series sampled at any fixed frequency. In this approach, the filter is first set up directly in

continuous-time – since the filter is expressed over a continuous range of lags, we also refer to

them as continuous-lag filters. The second step is to discretize the filter itself. This approach

applies to different problems in signal extraction, including trend or business cycle analysis, and

the method allows for coherent design of discrete filters for observed data sampled as a stock

or a flow, for nonstationary data with stochastic trend, and for different sampling frequencies.

We derive explicit formulas for the Mean Squared Error optimal discretization filters. We

also discuss the problem of optimal interpolation for nonstationary processes – namely, how to

estimate the values of a process and its components at arbitrary times in-between the sampling

times. A number of illustrations of discrete filter coefficient calculations are provided, including

the Local Level Model trend filter, the Smooth Trend Model trend filter, the Band Pass filter,

and the Henderson filter. The essential methodology can be applied to other kinds of signal

extraction problems.

Keywords. Continuous time processes, Hodrick-Prescott filter, Interpolants, Linear filtering, Sig-

nal extraction.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau or of the Federal Reserve System.

1 Introduction

Economic data are typically sampled as a stock or a flow, are often nonstationary with stochas-

tic trend, and may differ in sampling frequency. In this paper, we propose a general method for

obtaining filters for such data and for addressing the interpolation problem that arises when esti-

mates of data or components are needed in between observation times. An efficient way to initiate
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the general analysis is by setting up an underlying continuous-time model, as in Harvey (1989) and

Harvey and Stock (1993). These authors proceed, as is usually done, by discretizing the under-

lying model, so that the subsequent analysis is done with discrete-time signal extraction methods.

Recently, McElroy and Trimbur (2006) have proposed an alternative method based on filters set

up directly in continuous-time, referred to as continuous-lag filters because the lag/lead index of

the filter coefficients can take on any real value.

This paper develops methods for the discretization of continuous-lag filters. Such filters arise

naturally in considering continuous-time models for economic variables1. One advantage of the

continuous-lag approach to filtering is that one can produce filter estimates from a sampled version

of the series obtained at any fixed sampling interval, and also obtain estimates at intermediate

times between the samples. One simply changes the value of δ – the sampling interval – in our

formulas. Our method does not depend on the continuous-lag filter being derived from a specific

time series model – nonparametric filters such as the Henderson filter in Dagum and Bianconcini

(2006) may also be used.

In this paper, we derive explicit formulas for the Mean Squared Error (MSE) linear optimal

discretized filters. We also discuss the problem of MSE linear optimal interpolation for nonsta-

tionary processes, for values of the process and its components at arbitrary times in-between the

sampling times. The aim is to allow for coherent design of discrete filters for different problems in

signal extraction, such as trend or business cycle analysis, and to handle observed data sampled as

either a stock or a flow. A further advantage is that we are able to work with continuous-lag filters

that specifically target some property of interest, for instance the velocity and acceleration filters

for turning point analysis (see McElroy and Trimbur, 2006).

Section 2 briefly reviews continuous-time processes and filters. This material sets up the back-

ground and notation; a more complete treatment is given in McElroy and Trimbur (2006). Section

3 discusses filter discretization for stocks and flows and presents the main results: Theorem 1 gives

formulas for the discretization of general continuous-lag filters for stock and flow data sampled from

a trend nonstationary process; Theorem 2 gives similar formulas for the trend extraction problem.

These new results are formulated using frequency domain methods, and at each step we allow

for a general sampling frequency δ, as well as treatment of interpolations for both stock and flow

variables.

In Sections 4 and 5, several illustrations of filter coefficient calculations for sampled series are

given. We show how to discretize a continuous-lag Henderson filter (Dagum and Bianconcini, 2006),

and provide derivations for the well-known Local Level Model and Smooth Trend Model. This

latter example amounts to a generalized Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997)
1Bergstrom (1988) argues that it is natural to consider continuous-time models to represent underlying economic

processes. For example, for many flow variables linked to the macroeconomy, increments from production and

exchange occur on a more or less constant basis.
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adapted to stocks and flows and appropriately interpolated, and so the results may be compared

with those in Ravn and Uhlig (2002). More generally, we treat the discretization of the continuous-

time analogue of the Butterworth (BW) filters; see Gómez (2001) and Harvey and Trimbur (2003).

Further, we derive discretized filters for the continuous-lag Band Pass (BP) filter. The same basic

method can equally well be applied to other problems in signal extraction.

2 Processes and Filters in Continuous Time

This section presents the theoretical framework for the analysis of continuous-time processes and

filters. A fuller treatment is given in the companion paper McElroy and Trimbur (2006), which

derives MSE linear optimal filters for continuous time signal extraction problems. Here we just

discuss some concepts and notation that will be needed in the development that follows. Let y(t)

for t ∈ R, the set of real numbers, denote a real-valued continuous-time process that is measurable

and square-integrable for each t. The process is weakly stationary by definition if it has constant

mean – set to zero for simplicity – and an autocovariance function that depends only on the lag h:

Ry(h) = E[y(t)y(t + h)] h ∈ R. (1)

Thus if y(t) is a Gaussian process, Ry completely describes the dynamics of the stochastic process.

A convenient class of stationary continuous-time processes has the form

y(t) = (θ ∗ ε)(t) =
∫ ∞

−∞
θ(x)ε(t− x) dx, (2)

where θ(·) is square integrable on R, and ε(t) is continuous-time white noise (WN) – see Priestley

(1981, p.156). In this case, Ry(h) = (θ ∗ θ−)(h), where θ−(x) = θ(−x) and ∗ is the convolution

operator. We define the continuous-time lag operator L via the equation

Lxy(t) = y(t− x) (3)

for any x ∈ R and for all times t ∈ R. We denote the identity operator L0 by 1, just as in discrete

time. Then a Continuous-Lag Filter is an operator Ψ(L) with associated weighting kernel ψ

(an integrable function) whose effect on a process y(t) is given by

Ψ(L)y(t) =
∫ ∞

−∞
ψ(x) y(t− x) dx = (ψ ∗ y)(t). (4)

Heuristically, we have Ψ(L) =
∫∞
−∞ ψ(x) Lx dx in analogy with discrete-lag filters. The requirement

of integrability for the function ψ(x) is a mild condition that we impose throughout. Then the

frequency response function (frf) is obtained by replacing L by the argument e−iλ:

Ψ(e−iλ) =
∫ ∞

−∞
ψ(x) e−iλx dx, λ ∈ R. (5)
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Denoting the continuous-time Fourier Transform by F [·], equation (5) can be written as Ψ(e−iλ) =

F [ψ]. There is a similar treatment in Priestley (1981, pp. 150–183), although our notation is

slightly different. The power spectrum of a weakly stationary continuous-time process y(t) is the

Fourier Transform of its autocovariance function Ry:

fy(λ) = F [Ry](λ), λ ∈ R. (6)

This exists when Ry is integrable, and the process y(t) is said to be stochastically continuous

(see Priestley (1981, p.151)). We will also need to consider generalized spectra, which includes

non-integrable functions fy – see Hannan (1971, Section II.9). For example, continuous-time white

noise has generalized spectrum given by a constant – which is bounded but not integrable (Priestley,

p.156, 1981). In this case (6) is interpreted as being true in the sense of tempered distributions

(Folland, 1995).

As in discrete time series signal processing, passing an input process through the filter Ψ(L)

results in an output process with spectrum multiplied by the squared modulus of Ψ(e−iλ). Note

that in contrast to the discrete case where the domain is restricted to the interval [−π, π], the frf

(6) is defined over the entire real line. The inverse Fourier Transform of an integrable function g is

defined by

F−1[g](x) =
1
2π

∫ ∞

−∞
g(λ)eiλx dλ, x ∈ R. (7)

For nonstationary models, the mean-square derivative operator D plays a key role (again, see

Priestley (1981)). In the time domain, it is expressed as D = − log L, and its frequency response is

iλ. The operator D gives the continuous-time analogue of the difference operator used in discrete-

time to define nonstationary processes such as the standard ARIMA class, which are difference

equations built on discrete-time white noise. In the same way, nonstationary continuous-time

models may be defined as stochastic differential equations built on continuous-time white noise.

See Brockwell and Marquardt (2005) for further discussion.

Let Cd denote the space of all processes that are dth order stochastically differentiable (see

Priestley (1981, p. 153)); when d = 0, C0 refers to the space of stochastically continuous processes

– for these an orthogonal increments representation exists by Theorem 4.11.1 of Priestley (1981).

If y ∈ Cd, we say that y is integrated of order d, or is I(d), if w(t) = Ddy(t) is a weakly station-

ary continuous-time process (but any lesser number of derivatives does not result in a stationary

process). The CARIMA class of processes (Brockwell and Marquardt, 2005) furnish convenient

examples of I(d) processes. The major topic of this paper is the optimal discretization of a given

continuous-lag filter Ψ(L) that is applied to an I(d) process y(t). A secondary topic is concerned

with the case that Ψ(L) is a signal extraction filter, when y(t) has a signal plus noise decomposition

y(t) = s(t) + n(t) (8)
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with signal s(t) and noise n(t). It is assumed that s is I(d) just like y, but that n is weakly

stationary – possibly n /∈ C0. Letting Dds(t) = u(t), it will be assumed that u(t) and n(t) are

uncorrelated with each other. Even though it is possible that w is not stochastically continuous,

we let fw(λ) = fu(λ) + λ2dfn(λ), which is interpreted as a generalized spectrum when it is non-

integrable.

Examples of continuous-lag filters can be found in McElroy and Trimbur (2006), which discusses

BW and HP filters, as well as model-based low-pass and band-pass filters for estimating trends and

business cycles. Recently, Dagum and Bianconcini (2006) have proposed a weighting kernel to

define a continuous-time version of the Henderson trend filters that are commonly used in seasonal

adjustment methods such as X-12-ARIMA. Stock and flow discretizations of all these filters are

presented in Sections 4 and 5, for any sampling interval length δ.

3 Discretization

In this section we discuss how a given continuous-lag filter Ψ(L) can be optimally discretized. The

problem is formulated as follows: the filter output is x(t) = Ψ(L)y(t) = (ψ ∗y)(t), and the available

sample of data is Y . This sample consists of a bi-infinite collection of regularly sampled stock or

flow observations. We obtain the MSE optimal linear estimate of x(t) given the sample Y . We

also examine a related signal extraction problem, namely how to estimate s(t) given (8) in an

MSE optimal fashion from the given sample Y . In both cases, the time point t is allowed to come

in-between the sampling times of Y .

3.1 Stock and Flow

In economics, most time series are classified as either stock or flow. This distinction expresses

how the data are sampled from an underlying process. Stock observations are estimates of levels

at particular time points, while flow observations are accumulations over time intervals. These

properties are formalized by setting up a continuous-time model with characteristic measurement

equations; see, for example, Harvey (1989, Chapter 9).

As indicated, we now suppose that the observed data are measured at evenly spaced intervals

of length δ. The basic timing unit is defined in the fundamental continuous-time setting, and is

set so that δ = 1 corresponds to these time units. For example, if we have annual units, then

for quarterly data the sampling interval is δ = 1/4 and the sampling frequency is 4 observations

per year. In the analysis that follows, results are derived for general δ; the effects of changing δ

are therefore explicit in the formulas. Observations in the discretized series are indexed by integer

values τ , so that the τth observation occurs at the time δτ . In referring to a discrete-time process,

the time index τ is thus used to represent particular points in continuous-time.
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Starting with a base model in continuous-time, the classification into stock and flow is reflected

in the measurement of observations. Given the sampling interval δ > 0, a stock observation at the

τth time point is defined as

yτ = y(δτ). (9)

We never make stock observations of processes that are not stochastically continuous, since this

is not well-defined mathematically (as shown in Appendix A.1, the spectral density of the stock

observations of such a process would be undefined). A series of flow observations has the form

yτ =
∫ δτ

δ(τ−1)
y(v) dv. (10)

Note that flow variables may also be formulated as differenced stock variables, if the stock variable

can be expressed as the cumulative integral of some other underlying process.

3.2 Discretization of Filters

Now assuming that y ∈ Cd and that Ddy(t) = w(t), where w is stationary, then from Hannan (1971,

p.81) it follows that

y(t) =
d−1∑

j=0

tj

j!
y(j)(0) + [Idw](t), (11)

where y(0), y(1)(0), · · · , y(d−1)(0) represent successive derivatives of y(t) evaluated at time zero.

The I operator is defined by [Iw](t) =
∫ t
0 w(z) dz, and Idw is obtained inductively for d > 1. Using

integration by parts, we can write [Id+1w](t) =
∫ t
0 w(s)(t− s)d ds/d!, for any t ∈ R. Now a stock

observation of (11) at time δτ satisfies

yτ =
d−1∑

j=0

δj

j!
y(j)(0)τ j + [Idw](δτ). (12)

The process {yτ} is a d-integrated discrete-time process, and is reduced to stationarity by taking d

differences (with B = Lδ):

wτ = (1−B)dyτ = (1−B)d[Idw](δτ). (13)

The stationarity is proved in Appendix A.2; note that wτ 6= w(δτ). Now the process {yτ} can be

completely described through {wτ} and d initial values, say y∗ = (y0, y−1, · · · , y1−d) as shown in

Bell (1984). Note that these initial values are distinct from the {y(j)(0)} when d > 1. We have two

assumptions on the initial values:

y∗ is uncorrelated with {wτ}∞τ=−∞ (14)

y∗ is uncorrelated with {w(t)}t∈R. (15)
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Clearly (15) implies (14), since the former is concerned with the stochastic process w(t) at all times

t, whereas the weaker condition is only concerned with the (differenced) sampled values. While

(14) is sufficient for a purely discrete-time setup (e.g., when no interpolation is considered) and is

implied by Assumption A of Bell (1984) – a commonly employed assumption in the theory of signal

extraction, the stronger condition (15) is needed to establish optimality in the more general case.

If on the other hand we flow-observe (11), then

yτ =
d−1∑

j=0

δj+1

(j + 1)!
y(j)(0)(τ j+1 − (τ − 1)j+1) +

∫ δτ

δτ−δ
[Idw](v) dv. (16)

This too is a d-integrated discrete-time process, and in this case d differences yields:

wτ = (1−B)dyτ = (1−B)d
∫ δτ

δτ−δ
[Idw](v) dv. (17)

Now the initial values y∗ and {wτ} have different formulas, but we still refer to the initial value

conditions (14) and (15), with wτ interpreted appropriately.

Much of our treatment relies on frequency domain methods. When sampling at fixed in-

tervals, the range of frequencies considered is restricted to [−π/δ, π/δ]. For any frequency out-

side this interval, the discrete-time behavior is equivalent to that of an “alias” frequency within

the interval; see Koopmans (1974). Below we use the concept of the “fold of a spectral den-

sity”: [f ]δ(λ) = δ−1
∑∞

l=−∞ f(λ + 2πl/δ). This is the definition; if F−1[f ] = R, it follows that

[f ]δ(λ) =
∑∞

h=−∞R(δh)e−iλδh as well, so [f ]δ is the spectral density of the stock-sampled (sta-

tionary) series (9). A discussion of the derivation and etymology of this concept is included in

Appendix A.1 (also see Koopmans, 1974).

Now we address the problem of finding the minimal mean square error linear estimate of x(t),

given the data Y = {yτ}, which is either stock- or flow-sampled according to (9) or (10) respectively.

Here t = δτ +δc, where τ is the greatest integer such that δτ ≤ t, and c ∈ [0, 1). Thus, c determines

to what extent x(t) is placed in-between the sampling times; allowing for c 6= 0 in our optimal filters

provides interpolation estimates of the underlying trend. The optimal solution can then be written

as Ψc(B)yτ , where Ψc(B) is a discrete-lag filter with each coefficient dependent upon c. Below, we

present formulas for the frf Ψc(e−iλ) (for λ ∈ [−π/δ, π/δ]) of the optimal filter, for both the stock

and flow sampling cases, given that y(t) is an integrated process of order d satisfying (15). In both

the stock and flow cases, Ψc

(
e−iλ

)
will be seen to depend on c, d, and δ, on the continuous time

frf F [ψ] = g, and on the (generalized) spectral density fw of the continuous time process w(t). We

use the notation mj(λ) = λ−j , and ec(λ) = eiδcλ.

Theorem 1 In the situation described above assume (15), and that fw has d continuous derivatives

and is positive and bounded. Then at time t = δτ + δc, the frf of the optimal filter Ψc (B) is given
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by

Ψc(e−iλδ) =
[gecfwm2d]δ(λ)

[fwm2d]δ(λ)

Ψc(e−iλδ) =
i

1− e−iλδ

[gecfwm2d+1]δ(λ)
[fwm2d+2]δ(λ)

for the stock (9) and flow (10) cases, respectively.

For the case when t is a sampled time t = δτ , so that c = 0, we call the filter Ψ0 (B) the optimal

discretization of Ψ (L); also Theorem 1 is then true for stocks under the weaker assumption (14).

At in-between times t with 0 < c < 1, by setting Ψ (L) equal to the identity filter Φ (L) = 1,

Theorem 1 provides the frfs of the filters Φc (B) that yield optimal interpolation. That is, for a

Gaussian process (where the linear optimal estimate coincides with the conditional expectation)

E [y (t) |Y ] = Φc (B) yτ . (18)

Explicit formulas for Φc

(
e−iλ

)
are given below.

Corollary 1 Under the assumptions of Theorem 1, the frf of the filter Φc (B) is given by

Φc(e−iλδ) =
[ecfwm2d]δ(λ)
[fwm2d]δ(λ)

Φc(e−iλδ) =
i

1− e−iλδ

[ecfwm2d+1]δ(λ)
[fwm2d+2]δ(λ)

for the stock (9) and flow (10) cases, respectively.

3.3 Optimal Signal Extraction

The next theorem describes the frf of the filter that provides the optimal signal extraction estimate

Ψc(B)yτ of the signal s(t) when the process y(t) has a decomposition (8) with I(d) signal component

s (t) and stationary noise component n(t). It is assumed that u(t) and n(t) are mean zero and

uncorrelated with one another – a common assumption in the signal extraction literature. We do

not assume that n or u are stochastically continuous – for example, they can be white noise. Since

s ∈ Cd with s ∼ I(d), in analogy with (11) we have

s(t) =
d−1∑

j=0

tj

j!
s(j)(0) + [Idu](t). (19)

Note that (11) holds for y(t) only if n ∈ Cd, but in general we do not assume this. Were this true,

we could write Ddy(t) = u(t)+Ddn(t), called w(t) say, and this would be a well-defined stationary

process. If in addition w ∈ C0, then its spectral density would be well-defined:

fw(λ) = fu(λ) + λ2dfn(λ). (20)
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Now in the general case where n 6∈ Cd, we still define the non-integrable function fw via (20),

since it still plays a role in determining the signal extraction filter. Of course fu and fn can be

well-defined even when u, n /∈ C0, being the Fourier Transforms of the respective autocovariance

functions, with transform interpreted in the sense of tempered distributions (Folland, 1995). We

only assume that fu and fn are bounded. Next, putting (8) and (19) together yields

y(t) =
d−1∑

j=0

tj

j!
s(j)(0) + [Idu](t) + n(t). (21)

Now this form (21) is either stock- or flow-observed, as described by equations (9) or (10). However,

it seems to make little sense mathematically to stock-observe a process that is not stochastically

continuous – in this case the spectral density of the stock would be infinite, or undefined (see

Appendix A.1). Therefore, we suppose that when y(t) given by (21) is stock-observed, n ∈ C0; in

the flow case, we only require that fn be bounded.

Next, relations (12) and (13) hold in the stock case with s in place of y, and u in place of w;

similarly in the flow case (16) and (17) hold. But these relations don’t necessarily hold for y, since

we do not assume y ∈ Cd. Nevertheless, in either the stock or flow case yτ is reduced to stationarity

through d differences, and thus by results in Bell (1984) can be represented in terms of initial values

y∗ and the well-defined process wτ . For initial value assumptions, we have

y∗ is uncorrelated with {uτ}∞τ=−∞, {nτ}∞τ=−∞ (22)

y∗ is uncorrelated with {u(t)}t∈R, {n(t)}t∈R. (23)

Note that (22) corresponds to the (canonical) Assumption A of Bell (1984); but the stronger

assumption (15) is needed to establish optimality when interpolation is being considered, or when

we are estimating from flow observations (though see Section 3.5 below).

We employ similar notation to that of the previous section, so t = δτ + δc, etc. The optimal

signal extraction filter that accomplishes interpolation is denoted by Ψc(B), and its frf is given in

the theorem below.

Theorem 2 In the situation described above assume (23), and that fu/fw has d continuous deriva-

tives and is positive and bounded. Assume that u and n are uncorrelated with one another, mean

zero, and weakly stationary, and that fu = F [Ru] and fn = F [Rn] (with Fourier Transform inter-

preted in the sense of tempered distributions) are bounded functions. In the stock case, also assume

that n ∈ C0. Then at time t = δτ + δc, the frf of the optimal filter Ψc(B) is given by

Ψc(e−iλδ) =
[ecfum2d]δ(λ)
[fwm2d]δ(λ)

Ψc(e−iλδ) =
i

1− e−iλδ

[ecfum2d+1]δ(λ)
[fwm2d+2]δ(λ)

for the stock (9) and flow (10) cases respectively.
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Remark 1 The formulas in Theorem 2 are obtained from those of Theorem 1 by letting g = fu/fw,

which is the frf of the optimal continuous-lag signal extraction filter described in McElroy and

Trimbur (2006). Also, we note the following connection with the results of Bell (1984): in the stock

case with c = 0, we only need to assume (22) – this is found by examining the proof of Theorem

2 – and the given frf is precisely the ratio of pseudo-spectra for signal and data process coming

from the stock-discretizations of the continuous-time models. That is, we note that [fum2d]δ is

the spectral density of {uτ}, the differenced stock-sample of the signal process; and [fwm2d]δ is

the spectral density of {wτ}, the differenced stock-sample of the data process. Thus Theorem 2

is a natural generalization of classical signal extraction results to handle interpolation, stocks and

flows, and generic sampling frequency.

3.4 Computing Filter Coefficients

Now in order to obtain the filter coefficients, we must calculate integrals of the frf, i.e.,

ψk(c) =
δ

2π

∫ π/δ

−π/δ
Ψc(e−iλδ)eikλδ dλ.

Noting that in general

δ

2π

∫ π/δ

−π/δ
[f ]δ(λ)eikλδ dλ =

1
2π

∫ ∞

−∞
f(λ)eikλδ dλ = F−1[f ](δk),

we can compute filter coefficients given [mj ]δ(λ) for various j. General formulas for these functions

are provided in Section A.1 of the Appendix; they are always periodic in λ with period 2π/δ, and

so it follows that for the various cases of stock and flow:

ψk(c) =
1
2π

∫ ∞

−∞
g(λ)fw(λ)λ−2d[fwm2d]−1

δ (λ)ei(k+c)λδ dλ

ψk(c) =
1
2π

∫ ∞

−∞

ig(λ)fw(λ)
λ2d+1(1− e−iλδ)

[fwm2d+2]−1
δ (λ)ei(k+c)λδ dλ.

(In the case of signal extraction g = fu/fw, but the case of a generic filter is also covered by these

formulas.) In order to compute the ψks, one must first compute the folded quantities [fwmj ]δ,

and then use the method of residues to derive the inverse Fourier Transform. This can be quite

challenging in certain cases, but in Sections 4 and 5 we give a few examples where explicit solutions

are possible.

The following result gives an alternative formula for the coefficients ψk(c), which is more useful

when the frf g of the continuous-lag filter is not available, or is difficult to compute from a given

kernel ψ. For this result, we suppose that the interpolation filter of Corollary 1 is available, and

that φk(c) is known. Although such filter coefficients are defined for c ∈ [0, 1), we will here extend

them for all c ∈ R via the following rule:

φk(c + j) = φk+j(c) ∀c ∈ [0, 1), j integer. (24)
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This permits a convenient short-hand for the filters, and is justified as follows: the estimate

Φc+1(B)yτ , if defined, should correspond to an interpolation estimate of y at time t = δτ +δ(c+1),

and thus should be identical to Φc(B)yτ+1. Identifying coefficients yields φk(c + 1) = φk+1(c), and

by extension we obtain (24).

Proposition 1 With the interpolant coefficients extended via (24), we have

ψk(c) = δ

∫ ∞

−∞
ψ(δz + δk)φ0(c− z) dz.

This result holds for either the stock or flow case, by using stock or flow interpolants as appropriate.

It is particularly elegant, since it shows that filter discretization occurs as a convolution of the

given kernel with the interpolant filter function. This result is useful for the discretization of the

Henderson filter discussed below. As an example, with the “nearest-past neighbor” interpolant

φj(c) = 1{j=0}, we obtain

ψk(c) =
∫ δc+δk

δc+δk−δ
ψ(z) dz.

3.5 Flow Estimates

Finally, we consider the situation where we are interested in a flow estimate of the form
∫ δτ+δc
δτ−δ+δc ŷ(v) dv,

rather than the stock form ŷ(t). (The same type of estimate can be obtained for signals ŝ(t); in

the following discussion, just use g = fu/fw.) The results of Theorem 1 are easily adapted, and we

obtain the filters (for stock and flow data respectively)

Ψc(e−iλδ) =
1− e−iλδ

i

[gecfwm2d+1]δ(λ)
[fwm2d]δ(λ)

Ψc(e−iλδ) =
[gecfwm2d+2]δ(λ)

[fwm2d+2]δ(λ)

via integration. The results of Corollary 1 and Theorem 2 can be adapted in the same fashion to

generating flow estimates. Of particular interest for applications is the flow-signal estimate from

flow data, which has frequency response

Ψc(e−iλδ) =
[ecfum2d+2]δ(λ)
[fwm2d+2]δ(λ)

. (25)

If one is interested in estimates of this form and c = 0, we can relax condition (23) to (22) in

Theorem 2, and we see at once that the stated frf exactly matches those of Bell (1984) after

flow-discretizing the continuous-time processes for signal and data.

4 Illustrations of Filter Discretization

In this section we set out some explicit examples, intended as illustrations of Theorem 1; we consider

illustrations where the given filter is either a Butterworth filter of order m (abbreviated BW(m))
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or is a Henderson trend filter. Extended derivations of formulas are in the Appendix. When in the

frequency domain, we use the notation z = e−iλδ and z = eiλδ.

4.1 Butterworth Filters Applied to a Random Walk

We now consider that the data process is a random walk, and we apply a BW(m) filter with

m = 1, 2. Note that, although BW filters may be given a model-based interpretation – and under

this interpretation, their application to a Random Walk has little motivation – they can also be

viewed in their original sense, namely as simple nonparametric trend filters giving an approximation

to the ideal low-pass filter (Gómez, 2001). As discussed in McElroy and Trimbur (2006) the BW(m)

frf is g(λ) = (1 + λ2m/q)−1. We proceed somewhat generally at first, with general d > 0 and

fw(λ) = σ2. Then for the stock and flow cases of Theorem 1, we have the following frequency

response functions:

Ψc(e−iλδ) =
[gecm2d]δ(λ)

[m2d]δ(λ)

Ψc(e−iλδ) =
i

1− e−iλδ

[gecm2d+1]δ(λ)
[m2d+2]δ(λ)

.

If g is a rational function in λ, we can use Theorem 4.9b of Henrici (1974) to compute [gecmj ]δ(λ)

for various j. The formula is

[gecmj ]δ(λ) = −1
δ

∑

ζ

Res

(
g(λ + 2π · /δ)(λ + 2π · /δ)−j 2πie2πci·

e2πi· − 1
, ζ

)
eiδcλ. (26)

As usual the sum is over the poles ζ of the functions g(λ+2π ·/δ) and (λ + 2π · /δ)−j . The latter has

a pole of order j at −δλ/2π, whereas the former has a pole at −δ(λ−ω)/2π, where ω is a pole of g.

For the BW(1), these poles are simple and occur at −δ(λ± i
√

q)/2π. For the BW(2), the poles are

also simple and occur at −δ(λ− q1/4eikπ/4)/2π with k = 1, 3, 5, 7. Let χ(x) = 2πie2πcix/(e2πix− 1),

so that for either m = 1 or 2 we have

Res
(
g(λ + 2π · /δ)(λ + 2π · /δ)−jχ,−δλ/2π

)

=
(

δ

2π

)j 1
(j − 1)!

∂j−1

∂xj−1
[g(λ + 2πx/δ)χ(x)] |x=−δλ/2π

=
(

δ

2π

)j 1
(j − 1)!

j−1∑

k=0

(
j − 1

k

)
g(j−1−k)(0)(2π/δ)j−1−kχ(k)(−δλ/2π)

Res
(
g(λ + 2π · /δ)(λ + 2π · /δ)−jχ,−δ(λ− ω)/2π

)

= Res (g(λ + 2π · /δ),−δλ/2π)ω−jχ(−δ(λ− ω)/2π).

Appendix A.3 contains formulas for various higher order derivatives of χ evaluated at −δλ/2π.

Applying these formulas, we can compute all the desired frfs. We present results for the stock case
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of Theorem 1, with m = 1, 2 and d = 1. For BW(1) we have

Ψc(e−iλδ) = 1− c + ceiλδ +
|1− e−iλδ|2

2δ
√

q

(
e−δc

√
q

e−iδλe−δ
√

q − 1
− eδc

√
q

e−iδλeδ
√

q − 1

)
.

It is easily checked that Ψ1(e−iλδ) = Ψ0(e−iλδ)eiλδ. For BW(2) we have

Ψc(e−iλδ) = (c(z − 1) + 1) +
|1− z|2

2
√

2q1/4δ

· { e(i−1)δcq1/4/
√

2

(1− i)(ze(i−1)δcq1/4/
√

2 − 1)
− e(1−i)δcq1/4/

√
2

(1− i)(ze(1−i)δcq1/4/
√

2 − 1)

+
e(−i−1)δcq1/4/

√
2

(i + 1)(ze(−i−1)δcq1/4/
√

2 − 1)
− e(i+1)δcq1/4/

√
2

(i + 1)(ze(i+1)δcq1/4/
√

2 − 1)
}.

These formulas are derived in Appendix A.3, as are the coefficients stated below. For m = 1 we

have

ψj =
(1− e−δ

√
q)2eδ

√
q(c+j+1)

2δ
√

q
j ≤ −2

ψ−1 = c− sinh δc
√

q

δ
√

q
+

(1− e−δ
√

q)2eδ
√

qc

2δ
√

q

ψ0 = 1− c +
sinh δ

√
q(c− 1)

δ
√

q
+

(1− e−δ
√

q)2e−δ
√

q(c−1)

2δ
√

q

ψj =
(1− e−δ

√
q)2e−δ

√
q(c+j−1)

2δ
√

q
j ≥ 1.

For m = 2 we have

ψj =
q1/4

√
2

Re
[
(1 + i)−1(1− e(i−1)δq1/4/

√
2)(1− e(1−i)δq1/4/

√
2)e(1−i)δ(c+j)q1/4/

√
2
]

j ≤ −2

ψ−1 = c +
1

2
√

2q1/4δ
Re

[
(1 + i)−1

(
e−(1+i)cδq1/4/

√
2 − e(1+i)cδq1/4/

√
2
)]

− 1√
2q1/4δ

Re
[
(1 + i)−1e(1+i)(c−1)δq1/4/

√
2(1− e(i+1)δq1/4/

√
2)(1− e−(1+i)δq1/4/

√
2)

]

ψ0 = 1− c +
1

2
√

2q1/4δ
Re

[
(1 + i)−1

(
e(1+i)(c−1)δq1/4/

√
2 − e−(1+i)(c−1)δq1/4/

√
2
)]

− 1√
2q1/4δ

Re
[
(1 + i)−1e−(1+i)cδq1/4/

√
2(1− e(i+1)δq1/4/

√
2)(1− e−(1+i)δq1/4/

√
2)

]

ψj =
q1/4

√
2

Re
[
(1 + i)−1(1− e(i−1)δq1/4/

√
2)(1− e(1−i)δq1/4/

√
2)e(i−1)δ(c+j)q1/4/

√
2
]

j ≥ 1.

4.2 Henderson Filters

The Henderson trend has a long history in actuarial science and the X11 seasonal adjustment

procedure (Findley, Monsell, Bell, Otto, Chen (1998)); a continuous time version of the Henderson
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kernel has been discovered by Dagum and Bianconcini (2006) using the methods of reproducing

kernel Hilbert spaces. According to that work, the third-order Henderson kernel ψ is given by

ψ(x) =
298792800− 16144331127x2 + 26959307942x4 − 17999679943x6 + 4196775128x8

1786542091
1[−1,1](x),

from which it is easily verified that Ψ(L) passes cubic polynomials. The frequency response of the

Henderson is tedious to write down, and has non-simple poles at the origin. It is thus easier to

compute the discretization filter coefficients ψk(c) using Proposition 1. We only need to know the

interpolation filter coefficients, and then convolve with ψ as indicated.

For example, suppose that the data process is a simple continuous-time random walk, so that

d = 1 and fw ∝ 1; then for stock observations we have

Φc(e−iλδ) =
[ecm2]δ(λ)
[m2]δ(λ)

= (1− c) + ceiλδ.

In other words, φ0(c) = 1− c and φ−1(c) = c for c ∈ [0, 1). A short calculation (using the fact that

ψ is supported on [−1, 1]) yields

ψk(c) = δ

∫ 1

0
ψ(δz + δc + δ(k − 1))z dz − δ

∫ 0

−1
ψ(δz + δc + δ(k + 1))z dz.

From here, the exact determination of the bounds of integration will depend on δ and k. That is, z

is constrained to [(1− k− c)/δ, (2− k− c)/δ]∩ [0, 1]; these types of calculations can easily be done

numerically, but are not very simple to express algebraically.

5 Illustrations of Signal Extraction Discretization

In this section we consider some applications of Theorem 2 to models of great interest to econo-

metricians. Specifically, we address the calculation of signal extraction filters for the Local Level

Model (LLM), Smooth Trend Model (STM), and Band-Pass Model (BPM), and also consider a

Turning Point (TP) filter for the STM.

5.1 The Local Level Model

The LLM – introduced in Harvey (1989) and further described in McElroy and Trimbur (2006) –

has the following continuous time formulation:

Ds(t) = u(t) ∼WN(qσ2)

n(t) ∼WN(σ2)

where WN(b) denotes continuous time white noise with spectral density equal to the constant

b. Because of the presence of continuous time white noise n(t) in the underlying process y(t) =
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s(t) + n(t), it only makes sense to consider flow observations. The flow case of Theorem 2 yields

Ψc(e−iλδ) =
i

1− e−iλδ

[ecm3]δ(λ)
[m4]δ(λ) + [m2]δ(λ)/q

=
3δ

(
(eiλδ + 1)− c2|1− e−iλδ|2eiλδ − 2c(1− eiλδ)

)

δ2(2 cosλδ + 4) + 6|1− e−iλδ|2/q
.

If we are interested in a flow-signal, then (25) yields

Ψc(e−iλδ) =
[ecm4]δ(λ)

[m4]δ(λ) + [m2]δ(λ)/q

=
δ2

(
(2 cosλδ + 4) + c3(1− e−iλδ)(1− eiλδ)2 − 3c2|1− e−iλδ|2 + 3c(eiλδ − e−iλδ)

)

δ2(2 cosλδ + 4) + 6|1− e−iλδ|2/q
.

The coefficients depend upon the roots of a certain polynomial, which in turn depend upon the

sign of δ2 − 6/q. We assume this is negative, since generally both δ and q are small (see McElroy

and Trimbur, 2006); some of the following derivations will be changed if δ2 − 6/q ≥ 0. Define η1

and η2 by

η1 =
−(2δ2 + 6/q) +

√
3δ2(δ2 + 12/q)

δ2 − 6/q

η2 =
−(2δ2 + 6/q)−

√
3δ2(δ2 + 12/q)

δ2 − 6/q
.

Now 0 < η1 < 1 but η2 > 1. Then the coefficients in the case of a flow-signal are:

ψj =
δ2

(
c3(1− η1)

3 + 3c2(1− η1)
2η1 + 3c(1− η2

1)η1 + (η3
1 + 4η2

1 + η1)
)

η−j−2
1

(δ2 − 6/q)(η1 − η2)
j ≤ −2

ψ−1 =
δ2c3

δ2 − 6/q

+
δ2

(
c3(1− η1)

3 + 3c2(1− η1)
2η1 + 3c(1− η2

1)η1 + (η3
1 + 4η2

1 + η1)
)

η−1
1

(δ2 − 6/q)(η1 − η2)

ψ0 =
δ2(1− c)3

δ2 − 6/q

+
δ2

(
−c3(1− η1)

3 + 3c2(1− η1)
2 + 3c(η2

1 − 1) + (η2
1 + 4η1 + 1)

)
η−1
1

(δ2 − 6/q)(η1 − η2)

ψj =
δ2(1− c)3

δ2 − 6/q

+
δ2

(
−c3(1− η1)

3 + 3c2(1− η1)
2 + 3c(η2

1 − 1)
)

ηj−1
1 + (η2

1 + 4η1 + 1)

(δ2 − 6/q)(η1 − η2)
j ≥ 1
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In the case of a stock-signal they are:

ψj =
3δ

(
c2(1− η1)

2 + 2c(1− η1)η1 + (η2
1 + η1)

)
η−j−2
1

(δ2 − 6/q)(η1 − η2)
j ≤ −2

ψ−1 =
3δc2

δ2 − 6/q

+
3δ

(
c2(1− η1)

2 + 2c(1− η1)η1 + (η2
1 + η1)

)
η−1
1

(δ2 − 6/q)(η1 − η2)

ψj =
3δ

(
c2(1− η1)

2 − 2c(1− η1) + (1 + η1)
)

ηj
1

(δ2 − 6/q)(η1 − η2)
j ≥ 0

5.2 The Smooth Trend Model

The smooth trend model – see McElroy and Trimbur (2006) – has the following continuous time

formulation:

D2s(t) = u(t) ∼ WN(qσ2)

n(t) ∼WN(σ2).

As before, we must consider only flow sampling; the flow case of Theorem 2 yields

Ψc(e−iλδ) =
i

1− e−iλδ

[ecm5]δ(λ)
[m6]δ(λ) + [m2]δ(λ)/q

= 5δ3(c4z|1− z|4 + 4c3(1− z)|1− z|2 + 6c2(1− z)(z − z)

− 8c(1 + z)(1− z2) + 4c(z + z)(1− z) + 12z(1 + z))

·
(
δ4(66 + 26z + 26z + z2 + z2) + 120|1− z|4/q

)−1
.

For the case of a flow-signal (25) we have

Ψc(e−iλδ) =
[ecm6]δ(λ)

[m6]δ(λ) + [m2]δ(λ)/q

= δ4(c5 |1− z|6
z − 1

+ 5c4|1− z|4 + 10c3(z − z)|1− z|2 + 20c2(z − z)2

+ 10c2(z + z)|1− z|2 − 30c(z − z)(1 + z)(1 + z) + 30c(z2 − z2) + 5c(z − z)|1− z|2

+
(
66 + 26z + 26z + z2 + z2

)
)

·
(
δ4(66 + 26z + 26z + z2 + z2) + 120|1− z|4/q

)−1
.

The coefficient formulas are quite complicated. As in the LLM, we make the assumption that δ

and q are small, such that δ4 < 120/q. Define the quantities

α =
26δ4 + 480/q +

√
60(7δ8 + 960δ4/q)

2(δ4 − 120/q)

β =
26δ4 + 480/q −

√
60(7δ8 + 960δ4/q)

2(δ4 − 120/q)
.
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Then the following quantities are defined in terms of α and β:

ν2 =
−α−√α2 − 4

2
, ν3 =

−β +
√

β2 − 4
2

, ν4 =
−β −

√
β2 − 4

2
.

It follows that 0 < ν2 < 1 but ν3, ν4 are complex conjugates with unit modulus. Also, we let

Θc(x) be the numerator polynomial in the expression for the filter frequency response function as

a rational function, and similarly Φc(x) is the numerator polynomial of Ψc(x−1) when expressed as

a rational function. For the flow-signal case (25) these functions are given explicitly by

Θc(x) = δ4(c5(1− x)5 + 5c4(1− x)4x + 10c3(1− x2)(1− x)2 + 20c2x(1− x2)2

− 10c2(1− x)2(1 + x2) + 30cx(1− x2)(1 + x)2 − 30cx(1− x4)

+ 5cx(1− x)2(1− x2) + x
(
x4 + 26x3 + 66x2 + 26x + 1

)
)

Φc(x) = δ4(c5(1− x)5 + 5c4(1− x)4 − 10c3(1− x2)(1− x)2 + 20c2(1− x2)2

− 10c2(1− x)2(1 + x2)− 30c(1− x2)(1 + x)2 + 30c(1− x4)

− 5c(1− x)2(1− x2) +
(
x4 + 26x3 + 66x2 + 26x + 1

)
).

Using these formulas, the coefficients in the flow-signal case are given by

ψj =
Θc(ν2)ν

−j−2
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)ν

−j−2
3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)ν

−j−2
4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≤ −2

ψ−1 =
Θc(0)

δ4 − 120/q
+

Θc(ν2)ν−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)ν−1

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)ν−1

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

ψ0 =
Φc(0)

δ4 − 120/q
+

Φc(ν2)ν−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Φc(ν3)ν−1

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Φc(ν4)ν−1

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

ψj =
Φc(ν2)ν

j−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Φc(ν3)ν

j−1
3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Φc(ν4)ν

j−1
4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≥ 1.

Now for stock-signal case the roots νj and α, β happen to be the same, but Θc and Φc are different:

Θc(x) = 5δ3(c4(1− x)4 + 4c3(1− x)3x + 6c2x(1 + x)(1− x)2 + 8cx(1 + x)2(1− x)

− 4cx(1− x)(1 + x2) + 12x2(1 + x))

Φc(x) = 5δ3(c4x(1− x)4 − 4c3x(1− x)3 + 6c2x(1 + x)(1− x)2 − 8cx(1− x)(1 + x)2

+ 4cx(1− x)(1 + x2) + 12x2(1 + x)).
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Then the coefficients in the stock-signal case are given by

ψj =
Θc(ν2)ν

−j−2
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)ν

−j−2
3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)ν

−j−2
4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≤ −2

ψ−1 =
5c4δ3

δ4 − 120/q
+

Θc(ν2)ν−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)ν−1

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)ν−1

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

ψj =
Φc(ν2)ν

j−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Φc(ν3)ν

j−1
3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Φc(ν4)ν

j−1
4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≥ 0.

All of these formulas are derived in the Appendix.

5.3 Turning Point Filters

If a given continuous time filter Ψ(L) produces a smooth trend estimate, then the filter with

frequency response iλΨ(e−iλ) estimates the velocity of that trend (see McElroy and Trimbur (2006)

for a discussion). When the velocity changes sign, this indicates a turning point in the estimated

trend. Here we apply this concept to the flow case of the STM. Using Theorem 2, we see that the

frequency response function of the discretized TP filter is

Ψc(e−iλδ) =
i[ecm5]δ(λ)

[m6]δ(λ) + [m2]δ(λ)/q
,

which is just 1− e−iλδ times the frf for the stock-signal case of the STM. So using the notation˜to

denote the TP functions, we have Ψ̃c(x) = (1−x)Ψc(x), and hence Θ̃c(x) = (1−x)Θc(x). Likewise,

Ψ̃c(1/x) = (x− 1)Ψ(1/x)/x, which implies that Φ̃c(x) = (x− 1)Φc(x), but an extra x factor shows

up in the denominator. The result is the following coefficients (where the constants have the same
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definition as in the discussion of the STM):

ψj =
Θc(ν2)(1− ν2)ν

−j−2
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)(1− ν3)ν

−j−2
3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)(1− ν4)ν

−j−2
4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≤ −2

ψ−1 =
5c4δ3

δ4 − 120/q
+

Θc(ν2)(1− ν2)ν−1
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)(1− ν3)ν−1

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)(1− ν4)ν−1

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

ψ0 =
5δ3(1− (1− c)4)

δ4 − 120/q
+

Φc(ν2)(ν2 − 1)ν−2
2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Φc(ν3)(ν3 − 1)ν−2

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Φc(ν4)(ν4 − 1)ν−2

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

ψj =
Θc(ν2)(ν2 − 1)νj−2

2

(δ4 − 120/q)(ν2 − ν1)(ν2
2 + βν2 + 1)

+
Θc(ν3)(ν3 − 1)νj−2

3

2(δ4 − 120/q)(ν3 − ν4)(ν2
3 + αν3 + 1)

+
Θc(ν4)(ν4 − 1)νj−2

4

2(δ4 − 120/q)(ν4 − ν3)(ν2
4 + αν4 + 1)

j ≥ 1

5.4 Band Pass and Low Pass Model Filters

The trend-cycle-irregular model in continuous-time is discussed in McElroy and Trimbur (2006),

where continuous-lag Band Pass (BP) and Low Pass (LP) filters are derived. In this model there

is a trend component m, cycle component c, and irregular component i, which have the following

CARIMA models:

Dm(t) = u(t) ∼WN(qσ2)

i(t) ∼WN(σ2)

(D + ρ + iλc)(D + ρ− iλc)c(t) ∼WN(rσ2).

We must consider only flow sampling because of the continuous white noise irregular. Here q and

r are positive signal-noise ratios, and ρ indicates the strength of the cycle peak in fc. Values of

ρ closer to zero indicate a higher peak, with the location of the maximum occurring close to ±λc.

The component pesudo-spectra are

fm(λ) =
qσ2

λ2

fi(λ) = σ2

fc(λ) =
rσ2

(ρ2 + (λ− λc)
2)(ρ2 + (λ + λc)

2)
.

Using the calculus of residues, we find that

Rc(x) =
rσ2e−ρ|x|

4ρλc(λ2
c + ρ2)

Re
(
eiλc|x|(λc − ρi)

)
.
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The BP filter that we consider is the signal extraction filter for a process with a cyclical signal and

a trend-irregular noise. So we apply Theorem 2 with the role of signal and noise swapped (so that

the signal is stationary and the noise is nonstationary), which is only a change in nomenclature.

The LP filter corresponds to a trend signal with cycle-irregular noise. Focusing on the case of a

flow-signal (25), the BP and LP frequency response functions respectively are given by:

Ψc(e−iλδ) =
[ecfcm4]δ(λ)

[qm4 + m2 + fcm4]δ(λ)

Ψc(e−iλδ) =
[ecqm4]δ(λ)

[qm4 + m2 + fcm4]δ(λ)
.

The explicit expression is complicated. Formulas in Appendix A.1 can be used to compute [ecm4]

and so forth; [ecfcm4]δ is given below:

[ecfcm4]δ =
rσ2

6(ρ2 + λ2
c)

2 (
12δ(λ2

c − ρ2)
(ρ2 + λ2

c)
2

(
c

z − 1
+

1
|1− z|2

)

− δ3

(
c3

z − 1
+

3c2

|1− z|2 +
3c(z − z)
|1− z|4 +

2(z − z)2

|1− z|6 +
z + z

|1− z|4
)

)

− rσ2

8λcρ
((λc + iρ)−5 z(eiδλc(c−1)e−δρ(c−1) − e−iδλc(c−1)eδρ(c−1))− (eiδλcce−δρc − e−iδλcceδρc)

(z − eδ(ρ−iλc))(z − e−δ(ρ−iλc))

− (λc − iρ)−5 z(eiδλc(c−1)eδρ(c−1) − e−iδλc(c−1)e−δρ(c−1))− (eiδλcceδρc − e−iδλcce−δρc)
(z − e−δ(ρ+iλc))(z − eδ(ρ+iλc))

).

This is derived in Appendix A.4. Now for a stock-signal we have

Ψc(e−iλδ) =
i[ecfcm3]δ(λ)

(1− z)[qm4 + m2 + fcm4]δ(λ)

Ψc(e−iλδ) =
i[ecqm3]δ(λ)

(1− z)[qm4 + m2 + fcm4]δ(λ)
.

The formula for [ecfcm3]δ is given below:

[ecfcm3]δ =
iδ2rσ2

2(ρ2 + λ2
c)

2

[
c2

z − 1
+

2c

|1− z|2 +
(z − z)
|1− z|4

]
− 2irσ2(λ2

c − ρ2)
(ρ2 + λ2

c)
4(z − 1)

− rσ2

8λcρ
((λc + iρ)−4 z(eiδλc(c−1)e−δρ(c−1) + e−iδλc(c−1)eδρ(c−1))− (eiδλcce−δρc + e−iδλcceδρc)

(z − eδ(ρ−iλc))(z − e−δ(ρ−iλc))

− (λc − iρ)−4 z(eiδλc(c−1)eδρ(c−1) + e−iδλc(c−1)e−δρ(c−1))− (eiδλcceδρc + e−iδλcce−δρc)
(z − e−δ(ρ+iλc))(z − eδ(ρ+iλc))

).

So the frfs for the BP and LP filters are fairly complicated, and at present the coefficients must be

determined by numerical integration of these functions.

Appendix

The material in this Appendix is organized in correspondence with the order of topics in the main

text. Hence we first discuss folds, then give the proofs of Theorems 1 and 2, then give details on

frf and coefficient calculations for the applications in Sections 4 and 5.
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A.1 Computing Folds

Much is known about folds in the engineering literature: see Solo (1983), and the literature on

Laplace/Z Transform pairs in control engineering (Kuo, 1963 and Jury, 1973). The innovation here

is that we incorporate the sampling frequency δ and the interpolant c into the discussion, and make

distinctions between stock and flow sampling. Suppose that a mean zero stationary continuous

time process x(t) has orthogonal increments representation (Brockwell and Davis, 1991)

x(t) =
∫ ∞

−∞
eitλdZ(λ)

where E[dZ(λ)dZ(λ)] = f(λ)dλ/2π. For example, if x is stochastically continuous, then Theorem

4.11.1 of Priestley (1981) guarantees the existence of such a representation. Then the autocovariance

function is

R(h) =
1
2π

∫ ∞

−∞
eihλf(λ) dλ,

which is defined for all real numbers h. If we stock observe x via the equation xτ = x(δτ), where

τ is integer, then

xτ =
∞∑

l=−∞

∫ (2l+1)π/δ

(2l−1)π/δ
eiτλδdZ(λ) =

∫ π/δ

−π/δ
eiτλδ

∞∑

l=−∞
dZ(λ + 2πl/δ)

by change of variable. Likewise, the autocovariances are only considered at lags δh where h is now

integer, and we can write

Rh = R(δh) =
1
2π

∫ π/δ

−π/δ
eihλδ

∞∑

l=−∞
f(λ + 2πl/δ) dλ.

Hence the spectral density of xτ is given by

∞∑

h=−∞
Rhe−ihλδ =

1
δ

∞∑

l=−∞
f(λ + 2πl/δ) λ ∈ [−π/δ, π/δ];

this latter formula is denoted by the notation [f ]δ(λ). It is called the “fold” of f , since it is

obtained – graphically speaking – by chopping f up into contiguous domains of size [−π/δ, π/δ]

and overlaying the corresponding functions (see Koopmans, 1974 for a picture). It is obvious from

the above equation that the fold is periodic if we view [f ]δ as a function on the real line. In order

to be well-defined, it is necessary that the tails of f decay faster than 1/λ; methods for computing

folds from a given f are discussed below. Now from the expression for [f ]δ(λ), we see that the

highest frequency that can be observed is π/δ, and at any λ the value of the spectrum [f ]δ(λ) is

confounded by the aliases f(λ + 2πl/δ) for all integers l. The frequency 2π/δ is referred to as the

Nyquist folding frequency (Blackman and Tukey, 1958).
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For a flow observation of x(t), we obtain xτ =
∫∞
−∞ eiδτλ(1 − e−iλδ)(iλ)−1dZ(λ), with autoco-

variance function

Rh = R(δh) =
1
2π

∫ π/δ

−π/δ
eihλδ|1− e−iλδ|2

∞∑

l=−∞

f(λ + 2πl/δ)
(λ + 2πl/δ)2

dλ.

The corresponding spectral density is [fm2]δ(λ)|1− e−iλδ|2.
In several places in Section 4, we need to calculate [ecmj ]δ(λ) for various j ≥ 2. When c = 0

and λ 6= 0, we can use Theorem 4.9a of Henrici (1974) as follows:

[mj ]δ(λ) =
1
δ

∞∑

h=−∞
(λ + 2πh/δ)−j = −1

δ

∑

ζ

Res((λ + 2π · /δ)−ja, ζ),

where the sum is over all the poles ζ of the function (λ + 2π · /δ)−j , and Res denotes the residue.

The function a is defined by a(x) = π cotπx. This formula does not cover the case that λ = 0, since

the fold explodes to infinity at that frequency. The above application of Theorem 4.9a of Henrici

(1974) can be made to compute the fold of any function g, so long as it is a rational function of λ

with a zero of order at least two at infinity. In our case, we have a pole of order j at −δλ/2π, so

the fold is given by

[mj ]δ(λ) = − 1
δ(j − 1)!

(
δ

2π

)j

a(j−1)

(−δλ

2π

)
.

We pursue a method of calculation for this below, which is easier than a brute force approach. In

the case that c 6= 0, we instead apply Theorem 4.9b of Henrici (1974) (which also covers c = 0, but

typically involves more computations):

[ecmj ]δ(λ) =
1
δ

∞∑

h=−∞
(λ + 2πh/δ)−jeiδc(λ+2πh/δ)

= −eiδλc

δ

∑

ζ

Res((λ + 2π · /δ)−jχ, ζ)

where the sum is over all the poles ζ of the function (λ + 2π · /δ)−j , and

χ(x) = 2πie2πicx(e2πix − 1)−1
.

Now letting qj(λ, c) = [ecmj ]δ(λ) and using the product rule, it is easy to see that the following

recursion applies:

qj+1(λ, c) = −1
j

(
∂

∂λ
qj(λ, c)− iδcqj(λ, c)

)
.

Starting with q2(λ, c) computed through brute force, we can use this recursion to obtain these

functions for j = 2, 3, 4, 5, 6, which are all needed in Section 4. Using the shorthand z = e−iλδ, we
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have

[ecm2]δ(λ) =
δ(1 + c(z − 1))

|1− z|2

[ecm3]δ(λ) =
i3δ2

2

(
(z − z)|1− z|−4 − c2(z − 1)−1 − 2c|1− z|−2

)

[ecm4]δ(λ) =
δ3

6

(
(z + z + 4)|1− z|−4 − c3(z − 1)−1 − 3c2|1− z|−2 + 3c(z − z)|1− z|−4

)

[ecm5]δ(λ) =
i5δ4

24
(

c4

z − 1
+

4c3

|1− z|2 +
6c2(z − z)
|1− z|4 +

8c(z − z)2

|1− z|6

+
4c(z + z)
|1− z|4 +

6(z − z)3

|1− z|8 +
6(z2 − z2)
|1− z|6 +

z − z

|1− z|4 )

[ecm6]δ(λ) =
δ5

120
(

c5

z − 1
+

5c4

|1− z|2 +
10c3(z − z)
|1− z|4 +

20c2(z − z)2

|1− z|6

+
10c2(z + z)
|1− z|4 +

30c(z − z)3

|1− z|8 +
30c(z2 − z2)
|1− z|6 +

5c(z − z)
|1− z|4 +

24(z − z)4

|1− z|10

+
36(z − z)2(z + z)

|1− z|8 +
z + z

|1− z|4 +
12(z2 + z2) + 2(z − z)2

|1− z|6 ).

A.2 Proofs

Proof of the stationarity of (13) and (17). More generally, we can define the continuous-time

process w(t) = (1−B)d[Idw](t), with w(δτ) = wτ in the stock case. Now using induction and the

defining property of the I operator, we have

w(t) =
∫ δ

0
· · ·

∫ δ

0
w(t− s1 − · · · − sd) ds1 · · · dsd,

which is stationary with autocovariance function given by

1
2π

∫ ∞

−∞

∣∣∣∣
1− e−iλδ

iλ

∣∣∣∣
2d

fw(λ)eiλh dλ. (A.1)

So long as d ≥ 1, this function is continuous at the origin, which shows that it has an integrable

spectral density, even if fw is non-integrable of the form fw(λ) = fu(λ) + λ2dfn(λ). For the flow

case, observe that (17) can be written as wτ = (1−B)d+1[Id+1w](δτ), and apply the previous

arguments with incremented d.

Proof of Theorem 1. For any t = δτ + δc, the filter discretization error process is

ετ = Ψc(B)yτ − x(t);

it suffices to show that this error process is orthogonal to the available data Y . We first demonstrate

that this error process is stationary with mean zero. Consider that yτ is a stock (9); then the
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polynomial term in (12) under application of the filter Ψc(B) is simply

d−1∑

j=0

δj

j!
y(j)(0)

∑

k

ψk(c)(τ − k)j =
d−1∑

j=0

y(j)(0)
ijj!

∂j

∂λj

(
Ψc(e−iδλ)eiλδτ

)
|λ=0.

At the same time, the polynomial term in x(t) is, using (11),

d−1∑

j=0

y(j)(0)
j!

∫
ψ(v)(t− v)j dv =

d−1∑

j=0

y(j)(0)
j!

∫
ψ(v+δc)(δτ − v)j dv =

d−1∑

j=0

y(j)(0)
ijj!

∂j

∂λj
(g(λ)ec+τ (λ)) |λ=0.

So in order for the polynomial terms in the expression for ετ to cancel out, it is sufficient that

(gec)
(k)(0) = Ψ(k)

c (0) for all k < d, where by Ψ(k)
c (0) we denote the kth derivative with respect to λ

of the frf Ψc(e−iλδ), evaluated at λ = 0. It turns out this condition is true for any j < 2d. Define

the function

pj(λ) = fwmj [fwmj ]−1
δ (λ) = δ


1 +

∑

l 6=0

fw(λ + 2πl/δ)
fw(λ)

(
λ

λ + 2πl/δ

)j


−1

.

Since fw has no zeroes or poles, it can be shown that

pj(0) = δ pj(2πl/δ) = 0 if l 6= 0.

Also the first j−1 derivatives of pj are all zero at 2πl/δ for any integer l; this requires the existence

of the first j − 1 derivatives of fw. Now using the stated formula in Theorem 1, Ψc(e−iλδ) =

[gecp2d]δ(λ). It follows that

∂k

∂λk
Ψc(e−iλδ)|λ=0 = (gec)

(k)(0) ∀k ≤ 2d− 1,

which is obtained by expanding the fold of Ψc(e−iλδ), use of the product rule, and use of the

above-stated properties of p2d.

In the flow case let Θc(B) = (1−B)Ψc(B); then the polynomial term in (16) under application

of the filter Ψc(B) is simply

d−1∑

j=0

y(j)(0)
(j + 1)!

(∑

k

θk(c)(δτ − δk)j+1

)
=

d−1∑

j=0

y(j)(0)
ij+1(j + 1)!

∂j+1

∂λj+1

(
Θc(e−iδλ)eiλδτ

)
|λ=0,

where θk(c) are the coefficients of Θc(B). So in order for the polynomial terms in the expression for

ετ to cancel out, it is sufficient that (gec+τ )
(j)(0) = (Θc(e−iλδ)eiλδτ )(j+1)(0)/(i(j + 1)) for every τ .

Using the stated formula for the flow frf in Theorem 1, we have Θ(e−iλδ)/i = [gecm
−1
1 p2d+2]δ(λ),

whose kth derivative at λ = 0 is equal to k(gec)
(k−1)(0) (or zero if k = 0). Then

1
j + 1

j+1∑

k=0

(
j + 1

k

)
k(gec)

(k−1)(0)(iδτ)j+1−k =
j∑

k=0

(
j

k

)
(gec)

(k)(0)(iδτ)j−k = (gec+τ )
(j)(0),
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as desired. Now returning to the stock case, our error process is

ετ =
(
Ψc(B)−Ψ(L)L−δc

)
[Idw](δτ). (A.2)

In this formula, Ψc(B) operates on [Idw] as a discrete filter on a discrete (stock-observed) process,

whereas Ψ(L)L−δc operates on [Idw] as a continuous-lag filter on a continuous time process; we

have shown above that Ψc(B) − Ψ(L)L−δc annihilates polynomials of degree d − 1 in an integer

variable τ . Now since w(t) = (1−B)d[Idw](t), we can apply Lemma 1 of Bell (1984) to obtain a

representation

[Idw](δτ) =
d∑

j=1

Aj,τ+d[Idw](δ(j − d)) + Ξτ (B)w(δτ), (A.3)

where Aj,τ is a deterministic coefficient sequence dependent on time τ , which is completely deter-

mined by the differencing polynomial (1−B)d. Also, the time-dependent discrete filter Ξτ (B) is

given by the formula

Ξτ (B)(1−B)d = 1−
d∑

j=1

Aj,τ+dB
τ+d−j . (A.4)

The coefficient sequences Aj,τ consist of polynomials in τ of degree at most d− 1. Moreover, since

w(t) is a stationary process with integrable spectral density, it is stochastically continuous and

thus has an orthogonal increments representation w(t) =
∫∞
−∞ eiλt dζ(λ) – see Theorem 4.11.1 of

Priestley (1981). Also, from (A.1) we know that E|dζ(λ)|2 = |1− e−iλδ|2d
λ−2dfw(λ)dλ; then by

(A.4)

Ξτ (B)w(δτ) =
∫ ∞

−∞

eiλδτ −∑d
j=1 Aj,τ+de

−iλδ(d−j)

(1− e−iλδ)d
dζ(λ),

with the integrand being bounded. Putting this together with (A.2) and (A.3) yields

ετ =
∫ ∞

−∞

eiλδτ
(
Ψc(e−iλδ)− g(λ)ec(λ)

)

(1− e−iλδ)d
dζ(λ).

This shows that the error process is stationary with mean zero. Moreover, (A.2) shows that the

error process is orthogonal to y∗ under condition (15) – but note that (14) is not sufficient in

general. It only remains to show that the error process is orthogonal to {wτ}:

E[ετwτ+h] =
∫ ∞

−∞
e−iλδh

(
Ψc(e−iλδ)− g(λ)ec(λ)

)
(1− eiλδ)

d
λ−2dfw(λ) dλ

= δ

∫ π/δ

−π/δ
e−iλδh

(
Ψc(e−iλδ)[m2dfw]δ(λ)− [m2dgecfw]δ(λ)

)
(1− eiλδ)

d
dλ,

using the property of folds, and the periodicity of the frf of Ψc(B). Now the stated stock formula

in the theorem makes this covariance identically zero for all τ and h.

Finally, we turn to the flow case; the argument is essentially the same, with a few computational

differences. Now letting w(t) = (1−B)d+1[Id+1w](t), we note that by (17) w(δτ) = wτ ; moreover,
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w(t) is stochastically continuous with integrable spectral density, so it has an orthogonal increments

representation
∫

eiλtdζ(λ), with E|dζ(λ)|2 = |1− e−iλδ|2d+2
λ−2d−2fw(λ)dλ. The analog of (A.2) is

now

ετ =
(
Θc(B)−Ψ(L)L−δcD

)
[Id+1w](δτ),

with similar interpretations of the discrete and continuous-lag filters (recall that D acts by differen-

tiation, mapping [Id+1w] to [Idw]). Moreover, the expression in parentheses annihilates polynomials

of degree d in an integer variable τ , which is implicit in the earlier flow calculations of this proof. So

we obtain that y∗ is orthogonal to the error process under (15). We can also find a representation

for the nonstationary process [Id+1w](δτ) exactly analogous to the stock case; the upshot is that

ετ =
∫ ∞

−∞

eiλδτ
(
Θc(e−iλδ)− g(λ)ec(λ)iλ

)

(1− e−iλδ)d+1
dζ(λ).

(Recall that the frf of D is iλ.) Finally,

E[ετwτ+h] =
∫ ∞

−∞
e−iλδh

(
Θc(e−iλδ)− g(λ)ec(λ)iλ

)
(1− eiλδ)

d+1
λ−2d−2fw(λ) dλ

= δ

∫ π/δ

−π/δ
e−iλδh

(
Θc(e−iλδ)[m2d+2fw]δ(λ)− i[m2d+1gecfw]δ(λ)

)
(1− eiλδ)

d+1
dλ,

which is identically zero by definition of Ψc(B) and Θc(B). This completes the proof. 2

Proof of Theorem 2. This proof follows along the same lines as Theorem 1, though it is not a

corollary. We first consider the case of a stock; then by assumption n is stochastically continuous

and thus can be written as n(t) =
∫

eitλdζn(λ) with fn integrable. The error process is then

ετ = Ψc(B)yτ − s(t) = Ψc(B)nτ +
(
Ψc(B)− L−δc

)
sτ .

Now applying the machinery of the proof of Theorem 1 to the process sτ , we find that the operator

Ψc(B) − L−δc annihilates polynomials of degree d − 1 so long as Ψ(k)
c (0) = (ec)

(k)(0) for k < d –

essentially we substitute g ≡ 1 in the calculations in the proof of Theorem 1. We likewise have

Ψc(e−iλδ) = [ecfup2d/fw]δ(λ), and it follows that

∂k

∂λk
Ψc(e−iλδ)|λ=0 =

k∑

l=0

(
k

l

)
e(k−l)
c (0)

(
fu

fw

)l

(0) = (ec)
(k)(0) ∀k ≤ 2d− 1.

The last equality follows from the fact that the first 2d− 1 derivatives of fu/fw are zero at λ = 0,

but the value of the function at zero is unity. Applying this result, we see that ετ is stationary;

using techniques from the proof of Theorem 1, we easily obtain the representation

ετ =
∫

eiλδτΨc(e−iλδ) dζn(λ) +
∫

eiλδτ Ψc(e−iλδ)− ec(λ)

(1− e−iλδ)d
dζu(λ),
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where E|dζu(λ)|2 = |1− e−iλδ|2d
λ−2dfu(λ)dλ. Likewise, we have

wτ = uτ + (1−B)dnτ =
∫

eiλδτ dζu(λ) +
∫

eiλδτ (1− e−iλδ)
d
dζn(λ).

Now for optimality, it suffices to show that y∗ and {wτ} are orthogonal to the error process; in

order for E[y∗ετ ] = 0 we need to assume (23). Then we have

E[ετwτ+h] =
∫

e−iλδhΨc(e−iλδ)(1− eiλδ)
d
fn(λ) dλ

+
∫

e−iλδh Ψc(e−iλδ)− ec(λ)

(1− e−iλδ)d
|1− e−iλδ|2d

λ−2dfu(λ)dλ

=
∫

e−iλδh(1− eiλδ)
d
(
Ψc(e−iλδ)fw(λ)− ec(λ)fu(λ)

)
λ−2d dλ

= δ

∫ π/δ

−π/δ
e−iλδh(1− eiλδ)

d
(
Ψc(e−iλδ)[fwm2d]δ(λ)− [ecfum2d]δ(λ)

)
dλ,

which is identically zero by the stated formula for the frf of Ψc(B). Turning to the case of a flow,

we no longer have n stochastically continuous, but we can still write nτ =
∫

eiλδτ dζn(λ) with

E|dζn(λ)|2 = |1− e−iλδ|2λ−2fn(λ)dλ, since the flow-sampling of n, considered as a continuous-time

process, will be in C0. As for Ψc(B) − L−δc operating on sτ , this annihilates polynomials and

reduces the signal to stationarity – simply use the concepts from the proof of Theorem 1. Then we

obtain

ετ =
∫

eiλδτΨc(e−iλδ) dζn(λ) +
∫

eiλδτ Θc(e−iλδ)− ec(λ)iλ

(1− e−iλδ)d+1
dζu(λ),

with E|dζu(λ)|2 = |1− e−iλδ|2d+2
λ−2d−2fu(λ)dλ. Hence y∗ is orthogonal to the error process under

(23), and

E[ετwτ+h] =
∫

e−iλδhΨc(e−iλδ)(1− eiλδ)
d|1− e−iλδ|2λ−2fn(λ) dλ

+
∫

e−iλδh Θc(e−iλδ)− ec(λ)iλ

(1− e−iλδ)d+1
|1− e−iλδ|2d+2

λ−2d−2fu(λ)dλ

=
∫

e−iλδh(1− eiλδ)
d+1

(
Θc(e−iλδ)fw(λ)λ−2d−2 − iec(λ)fu(λ)λ−2d−1

)
dλ

= δ

∫ π/δ

−π/δ
e−iλδh(1− eiλδ)

d+1
(
Θc(e−iλδ)[fwm2d+2]δ(λ)− i[ecfum2d+1]δ(λ)

)
dλ.

This is identically zero by the stated formulas for the frf, and this concludes the proof. 2

Proof of Proposition 1. We first derive the following property:

δ

∫ ∞

−∞
ψ(δz)ec−z(λ + 2πj/δ) dz = ec(λ + 2πj/δ)δ

∫ ∞

−∞
ψ(δz)e−z(λ + 2πj/δ) dz

= ec(λ + 2πj/δ)g(λ + 2πj/δ)
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for any integer j. Thus, using this relation we can easily show, for stock or for flow, that

Ψc(e−iλδ) = δ

∫ ∞

−∞
ψ(δz)Φc−z(e−iλδ) dz.

This is obtained by using the explicit formulas in Theorem 1 and Corollary 1. Now

Φc−z(e−iλδ) =
∑

k

φk(c− z)e−iλδk =
∑

k

φ0(c− z + k)e−iλδk,

utilizing (24). Hence we have

Ψc(e−iλδ) =
∑

k

δ

∫ ∞

−∞
ψ(δz)φ0(c− z + k)e−iλδk dz =

∑

k

δ

∫ ∞

−∞
ψ(δz + δk)φ0(c− z) dze−iλδk.

Now Fourier Inversion concludes the proof. 2

A.3 Derivations for Section 4

The derivatives of χ. By definition χ(x) = 2πie2πicx(e2πix − 1)−1, so by the product rule

χ(k)(x) = 2πi
k∑

l=0

(
k

l

)
e2πicx(2πic)k−l

[
(e2πix − 1)−1

](l)
.

We list the first five derivatives of (e2πix − 1)−1:

∂

∂x
(e2πix − 1)−1 =

2πi

(1− e2πix)(1− e−2πix)

∂2

∂x2
(e2πix − 1)−1 =

(2πi)2(e2πix − e−2πix)
(1− e2πix)2(1− e−2πix)2

∂3

∂x3
(e2πix − 1)−1 =

2(2πi)3(e2πix − e−2πix)2

(1− e2πix)3(1− e−2πix)3
+

(2πi)3(e2πix + e−2πix)
(1− e2πix)2(1− e−2πix)2

∂4

∂x4
(e2πix − 1)−1 =

6(2πi)4(e2πix − e−2πix)3

(1− e2πix)4(1− e−2πix)4

+
6(2πi)4(e4πix − e−4πix)

(1− e2πix)3(1− e−2πix)3
+

(2πi)4(e2πix − e−2πix)
(1− e2πix)2(1− e−2πix)2

∂5

∂x5
(e2πix − 1)−1 =

24(2πi)5(e2πix − e−2πix)4

(1− e2πix)5(1− e−2πix)5
+

36(2πi)5(e2πix − e−2πix)2(e2πix + e−2πix)
(1− e2πix)4(1− e−2πix)4

+
(2πi)5

(
12(e4πix + e−4πix) + 2(e2πix − e−2πix)2

)

(1− e2πix)3(1− e−2πix)3
+

(2πi)5(e2πix + e−2πix)
(1− e2πix)2(1− e−2πix)2

.
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Next, we evaluate at x = −δλ/2π.

χ

(
−δλ

2π

)
=

2πizc

z − 1

χ(1)

(
−δλ

2π

)
= (2πi)2zc

(
c

z − 1
+ |1− z|−2

)

χ(2)

(
−δλ

2π

)
= (2πi)3zc

(
c2

z − 1
+

2c

|1− z|2 +
(z − z)
|1− z|4

)

χ(3)

(
−δλ

2π

)
= (2πi)4zc

(
c3

z − 1
+

3c2

|1− z|2 +
3c(z − z)
|1− z|4 +

2(z − z)2

|1− z|6 +
(z + z)
|1− z|4

)

χ(4)

(
−δλ

2π

)
= (2πi)5zc(

c4

z − 1
+

4c3

|1− z|2 +
6c2(z − z)
|1− z|4 +

8c(z − z)2

|1− z|6

+
4c(z + z)
|1− z|4 +

6(z − z)3

|1− z|8 +
6(z2 − z2)
|1− z|6 +

(z − z)
|1− z|4 )

χ(5)

(
−δλ

2π

)
= (2πi)6zc(

c5

z − 1
+

5c4

|1− z|2 +
10c3(z − z)
|1− z|4 +

20c2(z − z)2

|1− z|6 +
10c2(z + z)
|1− z|4

+
30c(z − z)3

|1− z|8 +
30c(z2 − z2)
|1− z|6 +

5c(z − z)
|1− z|4 +

24(z − z)4

|1− z|10 +
36(z − z)2(z + z)

|1− z|8

+
12(z2 + z2) + 2(z − z)2

|1− z|6 +
(z + z)
|1− z|4 )

Derivations for Butterworth Filters on a Random Walk. For the m = 1 case, note that

ġ(0) = 0 and g(0) = 1. Thus using (26), we have

[gecm2]δ(λ) = −eiδλc

δ
{
(

δ

2π

)2 (
2π

δ
ġ(0)χ

(
−δλ

2π

)
+ g(0)χ̇

(
−δλ

2π

))

+
δ
√

q

4πi
χ

(
−δ(λ− i

√
q)

2π

)
(i
√

q)−2 − δ
√

q

4πi
χ

(
−δ(λ + i

√
q)

2π

)
(−i

√
q)−2}

= −eiδλc

δ

{(
δ

2π

)2

χ̇

(
−δλ

2π

)
+

δ

2
√

q

[
e−iδλceδ

√
qc

e−iδλeδ
√

q − 1
− e−iδλce−δ

√
qc

e−iδλe−δ
√

q − 1

]}
.

Now using [m2]δ(λ) = δ|1− e−iλδ|−2, we see that Ψc(e−iλδ) simplifies to the stated formula. For

m = 2, we have ġ(0) = 0 and g(0) = 1 as well. The residue calculations at the poles of g are given

below:

Res

(
g(λ + 2π · /δ)(λ + 2π · /δ)−2χ,

−δ(λ− q1/4eikπ/4)
2π

)
= − δ

2π

χ
(−δ(λ−q1/4eikπ/4)

2π

)

4q1/4eikπ/4
,

with k = 1, 3, 5, 7. So by (26) we have

[gecm2]δ(λ) = −eiδλc

δ
{
(

δ

2π

)2 (
2π

δ
ġ(0)χ

(
−δλ

2π

)
+ g(0)χ̇

(
−δλ

2π

))

− δ

8πq1/4

∑

k=1,3,5,7

χ

(
−δ(λ− q1/4eikπ/4)

2π

)
e−ikπ/4}
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Again ġ(0) = 0 and g(0) = 1, and we observe that

χ

(
−δ(λ− q1/4eiπ/4)

2π

)
− χ

(
−δ(λ− q1/4ei5π/4)

2π

)

= 2πie−iλδc

[
e(i−1)δcq1/4/

√
2

e−iδλe(i−1)δcq1/4/
√

2 − 1
− e(1−i)δcq1/4/

√
2

e−iδλe(1−i)δcq1/4/
√

2 − 1

]

χ

(
−δ(λ− q1/4ei3π/4)

2π

)
− χ

(
−δ(λ− q1/4ei7π/4)

2π

)

= 2πie−iλδc

[
e(−i−1)δcq1/4/

√
2

e−iδλe(−i−1)δcq1/4/
√

2 − 1
− e(i+1)δcq1/4/

√
2

e−iδλe(i+1)δcq1/4/
√

2 − 1

]
.

Putting these residues together we obtain

[gecm2]δ(λ) = δ (c(z − 1) + 1) |1− z|−2 +
1

2
√

2q1/4

{ e(i−1)δcq1/4/
√

2

(1− i)(ze(i−1)δcq1/4/
√

2 − 1)
− e(1−i)δcq1/4/

√
2

(1− i)(ze(1−i)δcq1/4/
√

2 − 1)

+
e(−i−1)δcq1/4/

√
2

(i + 1)(ze(−i−1)δcq1/4/
√

2 − 1)
− e(i+1)δcq1/4/

√
2

(i + 1)(ze(i+1)δcq1/4/
√

2 − 1)
}.

Finally, dividing by [m2]δ(λ) yields the stated frequency response function. Next, we derive the

filter coefficients. Since ψj = δ
2π

∫ π/δ
−π/δ Ψc(e−iλδ)eiλδj dλ, we have by change of variable the following

formula:

ψj =
1

2πi





∫
Ω Ψc(x−1)xj−1 dx j ≥ 0

∫
Ω Ψc(x)x−j−1 dx j ≤ 0.

(A.5)

Here Ω denotes the unit circle. Note that when j = 0, we can apply either case as we see fit.

These formulas are easily derived by just using the change of variable formula. The formula Ψc(x)

is obtained by substituting the variable x everywhere for z (and x−1 for z), whereas for Ψc(x−1)

we do the opposite. Now by considering the analytic extension of Ψc to the unit disk, the above

integrals are computed by calculating the sum of the residues at the poles of the integrand occurring

within the unit disk (see pp. 249–250 of Henrici (1974)). Focusing on the m = 1 case first, we have

Ψc(x) = x−1

(
(1− c)x + c− (1− x)2

2δ
√

q

[
e−δc

√
q

xe−δ
√

q − 1
− eδc

√
q

xeδ
√

q − 1

])

Ψc(1/x) =

(
(1− c) + cx− (1− x)2

2δ
√

q

[
e−δc

√
q

e−δ
√

q − x
− eδc

√
q

eδ
√

q − x

])
.

Suppose that j ≤ −2. Then the only poles of Ψc(x)x−j−1 that are inside the unit circle occur at

e−δ
√

q. Hence

ψj = Res
(
Ψδ(x)x−j−1, e−δ

√
q
)

=
(1− e−δ

√
q)2eδ

√
q(c+j+1)

2δ
√

q
.
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The calculations are simple because the poles are simple. Now let j = −1; the integrand is just

Ψc(x), which has a simple pole at the origin (in addition to the other pole). So

ψ−1 = Res
(
Ψc(x), e−δ

√
q
)

+ Res (Ψc(x), 0) = c− sinh(δc
√

q)
δ
√

q
+

(1− e−δ
√

q)2eδ
√

qc

2δ
√

q
.

Next suppose that j ≥ 1, and we use the other formula. There is only one simple pole at e−δ
√

q in

the unit disk, so

ψj = Res
(
Ψc(1/x)xj−1, e−δ

√
q
)

=
(1− e−δ

√
q)2e−δ

√
q(c+j−1)

2δ
√

q
.

Finally, when j = 0 we use the first formula in (A.5) (since then the pole at zero will be simple,

rather than of order two), and we obtain

ψ0 = Res
(
Ψc(1/x)x−1, e−δ

√
q
)

+ Res
(
Ψc(1/x)x−1, 0

)

= 1− c +
sinh(δ(c− 1)

√
q)

δ
√

q
+

(1− e−δ
√

q)2e−δ
√

q(c−1)

2δ
√

q
.

Next, we turn to the m = 2 case, noting that of course (A.5) still applies. Letting j ≤ −2, the

relevant poles are e(±i−1)δq1/4/
√

2. They are still simple poles, though the residues are a bit more

difficult to compute:

Res
(
Ψc(x)x−j−1, e(i−1)δq1/4/

√
2
)

= −e(1−i)(c+j)δq1/4/
√

2(1− e(i−1)δq1/4/
√

2)(1− e(1−i)δq1/4/
√

2)
2
√

2q1/4δ(1− i)

Res
(
Ψc(x)x−j−1, e(−i−1)δq1/4/

√
2
)

= −e(1+i)(c+j)δq1/4/
√

2(1− e(i+1)δq1/4/
√

2)(1− e−(1+i)δq1/4/
√

2)
2
√

2q1/4δ(1 + i)
.

Adding these we obtain

ψj = − 1√
2q1/4δ

Re
[
(1 + i)−1e(1+i)(c+j)δq1/4/

√
2(1− e(i+1)δq1/4/

√
2)(1− e−(1+i)δq1/4/

√
2)

]
.

For j = −1, we must compute the residue of Ψc(x) at the origin:

Res (Ψc(x), 0) = c +
1

2
√

2q1/4δ
Re

[
(1 + i)−1

(
e−(1+i)cδq1/4/

√
2 − e(1+i)cδq1/4/

√
2
)]

.

Combining with the other residues yields the stated result for ψ−1. When j ≥ 1 the residues are

Res
(
Ψc(1/x)xj−1, e(i−1)δq1/4/

√
2
)

= −e(i−1)(c+j)δq1/4/
√

2(1− e(i−1)δq1/4/
√

2)(1− e(1−i)δq1/4/
√

2)
2
√

2q1/4δ(1− i)

Res
(
Ψc(1/x)xj−1, e(−i−1)δq1/4/

√
2
)

= −e−(1+i)(c+j)δq1/4/
√

2(1− e(i+1)δq1/4/
√

2)(1− e−(1+i)δq1/4/
√

2)
2
√

2q1/4δ(1 + i)
.
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Adding these we obtain

ψj = − 1√
2q1/4δ

Re
[
(1 + i)−1e−(1+i)(c+j)δq1/4/

√
2(1− e(i+1)δq1/4/

√
2)(1− e−(1+i)δq1/4/

√
2)

]
.

Finally, for j = 0 we use the first formula in (A.5), and compute the residue at zero:

Res
(
Ψc(1/x)x−1, 0

)
= 1− c +

1
2
√

2q1/4δ
Re

[
(1 + i)−1

(
e(1+i)(c−1)δq1/4/

√
2 − e−(1+i)(c−1)δq1/4/

√
2
)]

.

This yields the stated formula for ψ0.

A.4 Derivations for Section 5

Derivations for the LLM. Using the formulas derived at the end of A.1, the formulas for the

frequency response functions are immediate. To get the coefficients, we express Ψc(x) as a rational

function:

Ψc(x) =
δ2

(
(x3 + 4x2 + x) + c3(1− x)3 + 3c2x(1− x)2 + 3cx(1− x2)

)

x
(
δ2(x2 + 4x + 1)− 6(1− x)2/q

)

Ψc(x) =
3δ

(
(x2 + x) + c2(1− x)2 + 2cx(1− x)

)

x
(
δ2(x2 + 4x + 1)− 6(1− x)2/q

)

for the flow-signal and stock-signal cases, respectively. So there is a simple pole at the origin; for

the other poles we must analyze the quadratic δ2(x2 + 4x + 1) − 6(1− x)2/q. It follows from the

quadratic formula that the roots are η1, η2 as expressed in 5.1, and it is easy to see that 0 < η1 < 1

and η2 > 1, using our assumptions on δ and q. Now making use of (A.5), we must also compute

Ψc(1/x), which is expressed as a rational function below:

Ψc(1/x) =
δ2

(
(x2 + 4x + 1)− c3(1− x)3 + 3c2(1− x)2 − 3c(1− x2)

)
(
δ2(x2 + 4x + 1)− 6(1− x)2/q

)

Ψc(1/x) =
3δ

(
(x2 + x) + c2x(1− x)2 − 2cx(1− x)

)

x
(
δ2(x2 + 4x + 1)− 6(1− x)2/q

)

for the flow-signal and stock-signal cases, respectively. So there is no pole at the origin, but there

are two simple poles at η1, η2 just as for Ψc(x). So for the flow-signal case we must compute the

following residues to get the coefficients:

ψj = Res(Ψc(x)x−j−1, η1) j ≤ −2

ψ−1 = Res(Ψc(x), η1) + Res(Ψc(x), 0)

ψ0 = Res(Ψc(1/x)x−1, η1) + Res(Ψc(1/x)x−1, 0)

ψj = Res(Ψc(1/x)xj−1, η1) j ≥ 1
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These residues are easy to calculate, and we obtain the stated formulas for the coefficients. For the

stock-signal case, the same formulas apply (although the residues themselves are slightly different),

noting that in the j = 0 case there is no pole at the origin, so that

ψ0 = Res(Ψc(1/x)x−1, η1).

Derivations for the STM and Turning Point. The frequency response formulas follow im-

mediately from the formulas derived in A.1. To get the coefficients, we express Ψc(x) as a rational

function:

Ψc(x) =
Θc(x)

x
(
δ4(x4 + 26x3 + 66x2 + 26x + 1)− 120(1− x)4/q

) ,

noting that Θc(x) has a different definition for the flow-signal and stock-signal cases. This ratio-

nalization is obtained by multiplying numerator and denominator by x3. Likewise for Ψc(1/x) we

have

Ψc(1/x) =
Φc(x)

δ4(x4 + 26x3 + 66x2 + 26x + 1)− 120(1− x)4/q

for either of the cases, obtained by multiplying numerator and denominator by x2. So Ψc(x) has

a simple pole at the origin, whereas Ψc(1/x) does not. For their other poles, we must consider

the quartic function δ4(x4 + 26x3 + 66x2 + 26x + 1) − 120(1− x)4/q. We employ the following

factorization:

δ4(x4 + 26x3 + 66x2 + 26x + 1)− 120(1− x)4/q

= (δ4 − 120/q)
(
x4 + bx3 + dx2 + bx + 1

)

= (δ4 − 120/q)(x2 + αx + 1)(x2 + βx + 1),

where b = (26δ4 + 480/q)/(δ4 − 120/q) and d = (66δ4 − 720/q)/(δ4 − 120/q). Note that the

symmetry in the quartic allows us to proceed without recourse to Cardano’s formula. Now in the

second equality, α and β are generally given by

α =
b−√b2 − 4d + 8

2
β =

b +
√

b2 − 4d + 8
2

,

which simplify to the stated formulas for α and β in 5.2. Each of the two quadratics is then further

factored using the quadratic formula, which yields the stated form for the roots ν2, ν3, ν4 (and

ν1 = (−α +
√

α2 − 4)/2). Now from the formula for α, we can show that α < −2, which implies

that ν1 > 1. Playing with the inequalities shows that 0 < ν2 < 1. As for the other roots, observe

that |β| < 2 (after some more inequality calculations), so that

ν3 =
−β + i

√
4− β2

2
ν4 =

−β − i
√

4− β2

2
.

Hence they are complex conjugate, and their product is unity. So the coefficients are just given

by sums of residues, where the poles under consideration are ν2, ν3, ν4 and zero. These are all
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simple poles, so the calculations are easy. Note that since the poles ν3, ν4 occur on the unit circle,

we should multiply their contribution to the residue sum by 1/2 (Henrici, 1974). From here the

determination of the coefficients is straightforward.

For the turning point calculations, the coefficient formulas are straightforward using the new

numerator polynomials Θ̃c(x) and Φ̃c(x). When j = 0, there is now a simple pole at the origin, so

we must also add in the residue

Res(Ψc(1/x)(x− 1)/x2, 0) = −Ψc(1/x)
x

|x=0 = −5δ3(c4 − 4c3 + 6c2 − 4c)
δ4 − 120/q

.

Derivations for the BP and LP. For the bandpass filter, we first derive the autocovariance

function for c(t). Write

fc(ω) =
rσ2

[ρ + i(ω − λc)][ρ− i(ω − λc)][ρ + i(ω + λc)][ρ− i(ω + λc)]
,

where ω ∈ C by analytic extension. The poles in C+ are therefore ±λc + iρ. So for x ≥ 0 we have

Rc(x) =
1
2π

∫ ∞

−∞
fc(λ)eiλx dλ = i

∑

ζ∈C+

Res(fce
ix·, ζ)

=
rσ2

8ρλc
e−ρx

(
eixλc

λc + iρ
+

e−ixλc

λc − iρ

)

=
rσ2e−ρx

4ρλc(λ2
c + ρ2)

Re

(
eixλc

λc + iρ

)
.

Noting that Rc is an even function, we obtain the stated result. In order to obtain the spectrum

of the flow-sampled cycle, we must compute |1− z|2[fcm2]δ. The fold is

[fcm2]δ(λ) =
δrσ2

(ρ2 + λ2
c)

2 |1− z|−2

− rσ2

8λcρ

(
(λc + iρ)−3 1− e2δ(ρ−iλc)

|z − eδ(ρ−iλc)|2
+ (λc − iρ)−3 1− e2δ(ρ+iλc)

|z − eδ(ρ+iλc)|2
)

,

which is determined by using Theorem 4.9a of Henrici (1974). Alternatively, one can differentiate

with respect to c the expressions given below, evaluating at c = 0. Now multiplying the above

formula by |1− z|2, we see that the spectrum corresponds to an ARMA(2,2) process.

We next compute [eicδ·fcm4]δ(λ). By Theorem 4.9b of Henrici (1974) we have the fold equal to

−1
δ

∑

ζ

Res
(
fc(λ + 2π · /δ)(λ + 2π · /δ)−4χ, ζ

)
eiδcλ,
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where the sum is over all poles ζ. There is a pole of order 4 at − δλ
2π , and the residue is

1
6

(
δ

2π

)4 (
fc(0)

...
χ(−δλ

2π
) + 3(

2π

δ
)
2

f̈c(0)χ̇(−δλ

2π
)
)

=
1
6

(
δ

2π

)4

(
rσ2

(ρ2 + λ2
c)

2 (2πi)4e−iδcλ

(
c3

z − 1
+

3c2

|1− z|2 +
3c(z − z)
|1− z|4 +

2(z − z)2

|1− z|6 +
z + z

|1− z|4
)

+ (
2π

δ
)
2 12rσ2(λ2

c − ρ2)
(ρ2 + λ2

c)
4 (2πi)2e−iδcλ

(
c

z − 1
+

1
|1− z|2

)
).

There are also simple poles at δ
2π (−λ± λc ± iρ), whose residues are given below:

− δ

2πi

(λc − iρ)−5rσ2

8ρλc
χ(

δ

2π
(−λ + λc − iρ))

δ

2πi

(λc + iρ)−5rσ2

8ρλc
χ(

δ

2π
(−λ + λc + iρ))

− δ

2πi

(λc + iρ)−5rσ2

8ρλc
χ(

δ

2π
(−λ− λc − iρ))

δ

2πi

(λc − iρ)−5rσ2

8ρλc
χ(

δ

2π
(−λ− λc + iρ)).

Summing these and simplifying gives the stated result. Now we also note that

∂

∂c
[eicδ·fcm4]δ(λ) = iδ[eicδ·fcm3]δ(λ)

∂2

∂c2
[eicδ·fcm4]δ(λ) = −δ2[eicδ·fcm2]δ(λ),

which allows us to obtain the other folds fairly easily.
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