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Abstract

Trend extraction is one of the major tasks of time series analysis. The trend of a time series

is considered as a smooth additive component that contains information about global change.

This paper presents a review of some modern approaches to trend extraction for one-dimensional

time series. We do not aim to review all the novel approaches, but rather to observe the

problem from different viewpoints and from different areas of expertise. The paper contributes

to understanding the concept of a trend and the problem of its extraction. We present an

overview of advantages and disadvantages of the approaches under consideration, which are:

the Model-Based Approach, nonparametric linear filtering, Singular Spectrum Analysis, and

wavelets. The Model-Based Approach assumes the specification of a stochastic time series

model for the trend, which is usually either an ARIMA model or a state space model. The

nonparametric filtering methods (i.e., the Henderson, LOESS, and Hodrick-Prescott filters) do

not require specification of a model; they are quite easy to apply and are used in all applied

areas of time series analysis. For these well-known methods we show how their properties can

be improved by exploiting Reproducing Kernel Hilbert Space methodology. In addition to these

extremely popular approaches, we consider Singular Spectrum Analysis (SSA) and wavelet-based

methods. Singular Spectrum Analysis is widespread in the geosciences; its algorithm is similar

to that of Principal Components Analysis, but SSA is applied to time series. Wavelet-based

methods are currently a de facto standard for denoising in many fields. We summarize how the

powerful wavelets approach can be used for trend extraction.

Key words: Model-based approach; Nonparametric linear filtering; Singular spectrum analysis;

Time series; Trend; Wavelets.
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Disclaimer: This report is released to inform interested parties of research and to encourage

discussion. Any views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau or the Universities of Bremen and Bologna.

1 Introduction

Mathematical approaches to the trend extraction problem have a long history. At the beginning

this problem was formulated as fitting of a simple deterministic function (usually a linear one)

to data. With rapid growth of the theory of stationary time series, the trend was considered

as a deterministic component that needed to be subtracted out in order to obtain a stationary

time series, which afterwards can be successfully modeled – see Wold (1938). At the present time,

stochastic approaches to the definition of a trend are widely used, especially in econometrics. In this

paper, we present the contemporary research on the trend extraction problem for one-dimensional

time series.

Let us define a time series of length N as X = (x0, . . . , xN−1), xn ∈ R. There are a variety of

definitions of trend but all of them imply the following additive model:

xn = tn + rn, or X = T + R, (1)

where T = (t0, . . . , tN−1) denotes a trend and R = (r0, . . . , rN−1) is referred as residual. The latter

can have both deterministic and stochastic parts, dn and sn. Hence, we come to the following

expansion

xn = tn + dn + sn. (2)

Model (2) with a periodic dn and a zero mean sn is referred to as the classical decomposition model

(Brockwell & Davis, 2003).

In his remarkable book, Chatfield (1996) defines trend as “a long-term change in the mean

level” and expresses a typical viewpoint on trend by considering it as a smooth additive component

which contains the information about time series global change. The problem of extraction of

such a component occurs in many applied sciences and attracts scientists in different areas which

apply their knowledge for its solution. Therefore, at the present time there exist many methods

for trend extraction. These methods differ in their complexity and interpretability, as well as the

mathematical tools that they use, and hence produce different results. One can hardly determine

the best method, because each method is superior to the others when applied within its intended

context. On the other hand, the estimation of the quality of processing of real-life time series is

subject to the preferences of experts in the area of application.

In this paper, we evaluate the following prominent approaches to trend extraction: Model-

Based Approach, nonparametric filtering, singular spectrum analysis, and wavelets. Model-Based
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Approach (MBA) unites methods by assuming specification of a stochastic time series model which

is usually either an autoregressive model or a state space model. The developments of such methods

were heavily influenced by engineering and econometric problems. Currently, they are the most

popular in econometrics and used in many other areas. The nonparametric filtering methods do not

require specification of a model; they are quite easy in application and are used in all applied areas

of time series analysis. In addition to these extremely popular approaches, we consider Singular

Spectrum Analysis (SSA) and wavelets-based methods. Algorithm and principles of SSA are very

similar to those of Principal Components Analysis, but SSA is applied to time series. It mainly

originated in dynamical systems and at the present time is widespread in geosciences. Wavelets-

based methods are currently a de facto standard for denoising in many applications. We provide

an overview of how they can be used for trend extraction.

Certainly, there are many other methods for trend extraction. Nevertheless, the majority of

methods for this problem follow one of the considered approaches. This paper is organized as

follows. In section 2, we discuss the problem of trend extraction. Section 3 reviews the Model-

Based Approach. In section 4, we describe the nonparametric linear filtering methods, based on

the Henderson, the LOESS and the Hodrick-Prescott filters. Then we show how the “kernel trick”

of operating in a Reproducing Kernel Hilbert Space can improve their properties. In section 5,

we consider Singular Spectrum Analysis. Wavelet methods for trend extraction are reviewed in

section 6. Finally, in section 7, an example of application of the methods to a real-life time series is

examined. Even though one cannot derive general conclusions from this single example, nevertheless

it demonstrates some special aspects of the methods.

2 The trend extraction problem

For a time series satisfying model (1), the problem of trend extraction is defined as estimation of

an unknown T having only X. Note that in the literature devoted to state space methods (see

section 3) one refers to the smoothing problem as estimating the whole vector T from X (Durbin

& Koopman, 2001). However, if we only desire tN−1, i.e., the most current value of the trend, then

this is called the filtering problem.

2.1 Deterministic and stochastic trend definition

Following a deterministic approach, the trend is defined as a deterministic function of time which

belongs to some class. The function can be defined explicitly, specifying a parametric model,

or implicitly, exploiting some long-changing (or smoothness) condition. A widespread example

of the parametric trend is a polynomial trend and its elementary version, that is a linear trend.

Its simplicity still makes it of use as a deterministic portion in stochastic time series modeling

(Hamilton, 1994). The smoothness condition is usually formulated in terms of derivatives or Fourier
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coefficients. The advanced approaches to the definition of smoothness imply the use of Sobolev and

Besov spaces (Triebel, 1992).

There exists a stochastic viewpoint on the definition of trend, namely when the trend is defined

as a realization of a stochastic process. This trend is supposed to be smooth where the smoothness is

expressed in terms of a variance or autocorrelation function (Froeb & Koyak, 1994). An elementary

example of a stochastic trend is a random walk with a drift. Modeling of this trend is used in

economic applications (Pierce, 1978; Stock & Watson, 1988). In the stochastic approaches, it is

typical to assume orthogonality between the trend and the residual (the latter is generally supposed

to be stochastic) – see section 3.

Certainly, the property of smoothness (or slow-changing) is related to the length of the time

series. Economists and statisticians are often interested in the “short” term trend of socioeconomic

time series. The short-term trend generally includes cyclical fluctuations and is referred to as the

trend-cycle.

2.2 Difference from denoising problem

If sn corresponds to noise then the problem of trend extraction is similar to the problem of denoising.

The difference lies in two facts. Firstly, having nonzero dn in trend extraction, one should take care

on separating a trend from dn. For example, when a time series has some periodic component, a

trend extraction procedure should omit it. Secondly, in denoising sn is usually assumed to follow

one of the typical noise models (i.e., white or red noise), whereas in trend extraction sn may follow

much more general models (i.e., it may be non-stationary).

2.3 Updating trend with new data

In signal processing, the filter which uses only past and present values is called a causal filter. In

econometrics, such a filter is named a concurrent filter.

Given a time series where more data will arrive in the future, one has two options for present-

ing trends: the online approach and the window approach. The online approach generally uses

concurrent filters (or trend extraction methods that do not require future data), and each time a

new data point arrives, one generates the next concurrent estimate. This approach is favored by

many users of data who are not statisticians, from day-traders to bankers – see Wildi (2005) for

a discussion for the motivations behind online estimates of trend. Exponential smoothing is really

online filtering (Durbin & Koopman, 2001).

On the other hand, the window approach produces trend estimates at every time point in the

sample. When new data arrives, trend estimates in the middle of the sample must be updated,

or revised. For references on revisions in the context of seasonal adjustment, see Pierce (1980);

Findley et al. (1998); Maravall & Caporello (2004); McElroy & Gagnon (2006).
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Generally statisticians prefer the window method, whereas public users who are non-experts

dislike it because revisions are problematic.

2.4 Trend detection

Sometimes, one needs to determine whether there exists a trend in a given time series. This

problem is usually referred to as trend detection and solved by means of statistical tests, which

require specification of a trend model.

The detection of monotonic trends has been the most extensively studied. One of the widespread

tests for this problem is the non-parametric Mann-Kendall test and its modifications for handling

seasonality (Hirsch & Slack, 1984) and autocorrelated data (Hamed & Rao, 1998). Among others

are: the parametric t-test and the nonparametric Mann-Whitney and Spearman tests. Berryman

et al. (1988) describes many methods for monotonic trend detection and provides a selection algo-

rithm for them. For more recent developments see the review of Esterby (1996), which is focused

on hydrological applications; also see the comparative study Yue & Pilon (2004), which describes

some bootstrap-based tests.

3 Model-based approach

3.1 Preamble

The Model-Based Approach (MBA) to trend estimation refers to a family of methods, which have

in common the reliance upon time series models for the observed, trend, and residual processes.

The history of this approach is briefly discussed below.

In the discussion of trend estimation in this article, we naturally focus upon finite samples,

since this is the only data available in practice. The early literature on MBA signal extraction

developed the theory for bi-infinite (Wiener, 1949; Kolmogorov, 1939, 1941) or semi-infinite samples

(Whittle, 1963), and exclusively focused on stationary processes. We also note that this early theory

encompassed continuous-time processes as well, since early “filters” were essentially given by the

operation of analog-type hardware; however we do not pursue continuous-time trend estimation

here; see Koopmans (1974) for a discussion.

The MBA literature on trend extraction began to be generalized in two directions: dealing with

boundary effects (i.e., the finite sample) and handling nonstationarity (generally speaking, homo-

geneous nonstationarity exemplified by ARIMA processes). The engineering community focused on

the former, the pivotal discovery being the so-called Kalman filter (Kalman, 1960). Rauch (1963)

extended the Kalman filter to a smoother that could handle boundary effects; these algorithms

rely on a State Space Formulation (SSF) of trend extraction. Additional discussion of state space

methods from an engineering perspective can be found in Anderson & Moore (1979); Young (1984).
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However, since engineers are primarily concerned with stationary data, the SSF approach did

not handle nonstationary data until econometricians became involved later on. Books that dis-

cuss SSF from an econometrics/statistical perspective include Harvey (1989); West & Harrison

(1997); Kitagawa & Gersch (1996); Durbin & Koopman (2001). Generally speaking, trends are

nonstationary processes, so the basic stationary approach of the older engineering literature is not

adequate.

In our description of MBA we focus upon methods following the window approach (see section

2.3) although the discussion is easily adapted to online-trend extraction as well, since concurrent

filters are included within a linear smoother.

General questions The MBA method of trend estimation generally requires a specification

of the dynamics of signal and noise (trend and residual). These are typically considered to be

stochastic, but with possible deterministic portions as well. The deterministic portions of the

trend refer to linear or quadratic polynomial functions that are related to the initial values of the

stochastic process, and underlie the stochastic trend. Given this fundamental notion, the MBA

method requires some thought about the following issues, in more or less this order: (i) How are

the trend and residual processes related to the observed process? (ii) How are trend and residual

related to one another? (iii) How are trend estimates to be generated? (iv) What types of models

are being considered, and how are they estimated?

3.2 Trend in MBA

One approach is to view the trend as the output of a known linear filter applied to the data. This

assumption is implicitly understood in many of the trend estimation approaches in the engineering

literature. One example is the Direct Filter Approach of Wildi (2005). However, it is more common

for statisticians to specify a target trend T that is not a direct function of the data X, but whose

dynamics are specified to a greater or lesser extent by the practitioner, typically by specifying a

model.

Relation between trend and residual The two most popular assumptions which regulate

the relations between trend and residual are the orthogonal and Beveridge-Nelson (Beveridge &

Nelson, 1981), or BN. The BN assumes that both trend and residual can be written as linear filters

of the data innovation process, and thus are “fully” correlated. The orthogonal approach assumes

that “differenced” trend and residual (i.e., the components after nonstationary effects have been

removed by differencing) are uncorrelated with one another. This supposition is more consistent

with economic data, since diverse components are thought to originate from diverse aspects of the

economy, and thus should not be correlated. Naturally, the orthogonal decomposition and BN
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decomposition represent the opposite ends of the spectrum; some work by Proietti (2006) deals

with the case that the components are less than fully correlated.

3.3 Construction of the trend model

For MBA trend extraction, we require a model for the trend and residual – note that this resid-

ual may contain seasonal effects, and can therefore be nonstationary. There are several popular

approaches for obtaining these models from the data: Decomposition, Structural, and BN.

The Decomposition approach (Hillmer & Tiao, 1982; Burman, 1980) begins by attempting to

fit an optimal model to the observed data, where optimality is often equated with maximum

likelihood estimation of model parameters after different model specifications have been compared

via information criteria (e.g., Akaike Information Criterion or other goodness-of-fit diagnostic tests;

see Findley et al. (1998) for a discussion). Then the models for trend and residual are determined via

partial fraction decomposition techniques applied to the autocovariance generating function of the

model for the data (this assumes that ARIMA or Seasonal ARIMA models are being used). Some

amount of user-specification is required, since all differencing operators and autoregressive operators

that appeared in the data model must be allocated (subjectively) to the various components. For

more discussion of this, see Bell & Hillmer (1984) and Chapter 8 of Peña et al. (2001). Typically

there is indeterminancy of the derived component models; maximizing the variance of the irregular

component results in the Canonical Decomposition, which results in signals that are as stable as

possible.

The Structural approach (Harvey, 1989) on the other hand also uses maximum likelihood esti-

mation, but the form of the likelihood is dictated by a pre-specified model form for the components.

This is also referred to as an Unobserved Components (UC) approach. While sometimes a canonical

decomposition does not exist (mathematically this is possible and not uncommon), the structural

approach is always viable. However, the implied model for the data process need not be the best

among all contenders, as it is in the decomposition approach. Also, more a priori information about

the trend and residual dynamics are needed from the user, such as specifying the differencing order

for the trend ahead of time. See Durbin & Koopman (2001) for more discussion.

Note that the term Structural Model refers to a particularly simple class of component models

promoted by Gersch & Kitagawa (1983), which are essentially parameter-restricted ARIMA models.

Here we distinguish between the Structural Approach to estimating component models (which can

be general ARIMA models) and the more specific Structural Models utilized in STAMP and SsfPack

(Koopman et al., 1999).

The BN approach is much like the Structural, though now the component models are fully

correlated. Naturally this dictates a different form for the likelihood of the data in terms of the

component models, since they are no longer orthogonal. However, we can still utilize maximum
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likelihood estimation to get the component models, and the corresponding trend filters are then

easy to obtain; see Morley et al. (2003) and Proietti (2006).

3.4 Penalty function

The next issue is: what sort of penalty function is used to determine optimal signal extraction?

Mean Squared Error (MSE) is very popular among statisticians, and is the original penalty function

used in Wiener (1949) and Kolmogorov (1939, 1941). The conditional expectation of the trend T

onto the data F is the estimate that minimizes MSE; when the data has a Gaussian distribution,

this will be a linear function of the data, i.e., a smoother. This explains the central role of linear

smoothers in the MBA literature. However, when alternative distributions are present (e.g., log-

normals), other penalty functions such as Relative MSE may be more appropriate; see Thomson &

Ozaki (2002) and McElroy (2006).

If we are interested in linear smoothers, how do we find the best one? Bell (1984) discusses how

these are computed from the autocovariance generating functions of trend and residual, assuming

certain conditions on the initial values of the data; also see Cleveland & Tiao (1976). Adaptations of

this theory to finite samples can be found in Bell & Hilmer (1988); Bell (2004); McElroy & Sutcliffe

(2006) and McElroy (2008). The following references discuss the finite-sample theory from an SSF

viewpoint: Bell & Hilmer (1991); De Jong (1991); Koopman (1997) and Durbin & Koopman (2001).

Since these MSE-optimal linear smoothers produce estimates with dynamics that differ from that

of the target, some work has been done in producing estimates whose dynamics exactly match

those of the target (Wecker (1979); also see the discussion in Findley & Martin (2006)). Another

type of smoothing is given in the Square-Wave work of Pollock (2000). An excellent discussion of

smoothers, contrasting the SSF approach with deterministic methods can be found in Young &

Pedregal (1999).

Given that most statistical readers will be interested in linear MSE-optimal smoothers, we focus

on the SSF approach and the matrix approach, which are equivalent. The widely-used SSF smoother

requires Assumption A of Bell (1984) for its estimates to be MSE-optimal, as is discussed in Bell

& Hilmer (1988). Assumption A states that the d initial values of the process xn are independent

of differenced trend and differenced residual. Note that the SSF smoother is a linear operation on

the data F that produces a vector of trend estimates T ; the linear matrix that accomplishes this

is derived in McElroy (2008). For some purposes, it is convenient to have this matrix, e.g., the full

error covariance matrix is easily obtained using this approach.

3.5 Model classes

Finally, the MBA requires a choice of model classes. As mentioned above, the Decomposition

approach relies on seasonal ARIMA models for the components. The ARIMA and Structural
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models (Harvey, 1989) are the most popular models in econometric MBA trend estimation. In

theory, one only needs the autocovariance generating function for trend and residual in order to

proceed. For example, another class of models are time-varying coefficient models, where the

parameters evolve according to a random walk or other such process; a discussion of using such

models can be found in Young et al. (1999).

3.6 Software

Several of the main software packages for MBA trend estimation include X-12-ARIMA (Findley

et al., 1998), TRAMO-SEATS (Maravall & Caporello, 2004), STAMP (Koopman et al., 2000),

and microCAPTAIN (Young & Benner, 1991). X-12-ARIMA mixes nonparametric linear filtering

with model-based forecast and backcast extension, so it can be viewed as a partial MBA. SEATS

is fully MBA, and utilizes the Canonical Decomposition approach. On the other hand, STAMP

utilizes a Structural Approach as well as Structural Models. The program microCAPTAIN also

uses a Structural Approach, but with time-varying coefficient models that are estimated using the

frequency domain method of Dynamic Harmonic Regression (DHR), as opposed to the Maximum

Likelihood Estimation method of the other software (Young et al., 1999). These are some of the

core MBA software products for trend estimation, of which some other products (DEMETRA of

EuroStat, SAS implementations of Structural Models) are derivatives. We also mention the Reg-

Component software (Bell, 2004), which uses a Structural Approach with ARIMA models (although

extensions now allow for a Decomposition Approach as well); this was one of the first programs to

simultaneously handle smoothing by SSF methods and also estimate fixed regression effects.

4 Nonparametric trend predictors

4.1 Preamble

In the nonparametric trend filtering approach the model (1) is usually considered, where tn is

referred as a signal and rn is assumed to be either a white noise, NID(0, σ2), or, more generally,

to follow a stationary and invertible Autoregressive Moving Average process. Assuming that the

input series X is seasonally adjusted or without seasonality, the signal represents the trend and

cyclical components, usually referred to as trend-cycle for they are estimated jointly. Expecting

that the signal tn is smooth, it can be locally approximated by a polynomial of degree d on the time

distance j between xn and its neighbors xn+j

tn+j = a0 + a1j + ... + adj
d + εn+j ,

where ak ∈ R and εn is assumed to follow a white noise process mutually uncorrelated with rn. The

coefficients {ak} can be estimated by ordinary or weighted least squares or by summation formulae.
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The solution for â0 provides the trend-cycle estimate T̂ = {t̂n}, which equivalently consists in a

moving weighted average

t̂n =
m∑

j=−m

bjxn−j .

The applied weights {bj} depend on: (i) the degree of the fitted polynomial d, (ii) the amplitude

of the neighborhood 2m + 1, and (iii) the shape of the function used to average the observations in

each neighborhood.

The local polynomial regression predictor developed by Henderson (1916) and LOESS due to

Cleveland (1979) are the most widely applied nonparametric local filtering methods to estimate the

short-term trend of seasonally adjusted economic indicators. In this section we also consider the

Hodrick & Prescott (1997) filter which is widely used for economic and financial applications.

4.2 Henderson filter

The Henderson filters are derived from the graduation theory, known to minimize smoothing with

respect to a third degree polynomial within the span of the filter. The minimization problem

min
ak,06k63





m∑

j=−m

wj

[
xt+j − a0 − a1j − a2j

2 − a3j
3
]2



 , (3)

is considered, where the symmetric weights wj are chosen to minimize the sum of squares of

their third differences (smoothing criterion). This filter has the property that fitted to exact

cubic functions will reproduce their values, and fitted to stochastic cubic polynomials it will give

smoother results than those obtained by OLS – see Macauley (1931). Henderson (1916) proved that

two alternative smoothing criteria give the same formula, as shown explicitly by Kenny & Durbin

(1982) and Gray & Thomson (1996): (i) minimization of the variance of the third differences of the

series t̂n defined by the application of the moving average; (ii) minimization of the sum of squares

of the third differences of the coefficients bj of the moving average formula. Moreover, Henderson

(1916) showed that the nth element of the trend estimation, t̂n, is given by

t̂n =
m∑

j=−m

φ(j)wjxn−j

where φ(j) is a cubic polynomial whose coefficients have the property that the smoother reproduces

the data if they follow a cubic. Henderson also proved the converse: if the coefficients bj of a cubic-

reproducing summation formula do not change their sign more than three times within the filter

span, then the formula can be represented as a local cubic smoother with weights wj > 0 and a

cubic polynomial φ(j) such that φ(j)wj = bj . To obtain wj from bj one simply divides bj by a

cubic polynomial whose roots match those of bj .
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The asymmetric filters commonly used in association with the Henderson smoother were de-

veloped by Musgrave (1964) on the basis of minimizing the mean squared revision between final

and preliminary estimates. Although the basic assumption is that of fitting a linear trend within

the span of the filter, the asymmetric weights can only reproduce a constant for the only imposed

constraint is that the weights add to one, see Doherty (1992). Important studies related to these

kind of trend-cycle estimators have been made, among many others, by Pierce (1975), Burman

(1980), Cleveland & Tiao (1976), Kenny & Durbin (1982), and Dagum & Bianconcini (2007).

4.3 LOESS filter

The LOESS estimator is based on nearest neighbor weights and is applied in an iterative manner for

robustification. This filter consists of locally fitting polynomials of degree d by means of weighted

least squares on a neighborhood of q observations around the estimated point. As q increases, the

estimated trend T̂ becomes smoother.

In general, LOESS is defined for not equally spaced observations, but for time series X = {xn}
where each xn is taken in time point χn. Moreover, the LOESS estimator exists not only at points

{χn} but everywhere. This feature allows one to fill in the missing values if necessary. Let λq(χ) be

the distance from χ to the qth outermost time point and introduce a weight function W (x). Then

for estimation of the trend at the point χ the regression weights for any χk are given by

wk(χ) = W
(|χk − χ|λ−1

q (χ)
)
.

The estimate is defined as t̂n =
∑d

k=0 âkχ
k
n, where

{âk} = arg min
ak,06k6d





m∑

j=−m

wj(χn)

[
xn+j −

d∑

k=0

akχ
k
n+j

]2


 .

The LOESS estimator is quite similar to the Henderson one, but the former (i) allows one to

fit polynomials of degree d, (ii) is defined everywhere and (iii) does not impose the Henderson

smoothing criterion for the weights.

The degree d of the fitting polynomial, the shape of the weight function W (x), and the value

of the smoothing parameter q are the three crucial choices to be made in LOESS.

Polynomials of degree d = 1 or d = 2 are generally suitable choices. The highest degree is

more appropriate when the plot of observations against the target points presents many points

of maximum and minimum. For this reason, in general, the flexibility of a quadratic fitting is

preferred to the computational easiness of a linear one. As weighting function one can use the
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tricube proposed by Cleveland (1979) and defined by

W (t) =
(
1− |t|3)3

I[0,1](t),

where I[0,1](t) is the indicator function.

The ratio between the amplitude of the neighborhood q and the full span of the series N

defines the smoothing parameter. It is sensible to choose an odd value for q in order to allow

symmetric neighborhoods for central observations. A low smoothing parameter gives unbiased but

highly variable estimates, while increasing its value reduces the variance but augments the bias.

Therefore, in choosing the smoothing parameter, the aim is therefore to take a large q in order to

minimize the variability in the smoothed points but without distorting the underlying trend.

The asymmetric weights of the filters are derived following the same technique by weighting

the data belonging to an asymmetric neighborhood which contains the same number of data points

of the symmetric one, as described by Gray & Thomson (1990). However, these authors showed

that this implies a heavier than expected smoothing at the ends of the series with respect to the

body, and represents a drawback, particularly for economic time series where turning points are

important to identify.

4.4 Hodrick-Prescott filter

The Hodrick & Prescott (1997) filter follows the cubic smoothing spline approach. The framework

used in Hodrick & Prescott (1997) is that a given time series X is the sum of a growth component

T and a cyclical component C: X = T + C. The measure of the smoothness of the trend T is

the sum of the squares of its second difference. The C are deviations from T and the conceptual

framework is that over long time periods, their average is near zero. These considerations lead to

the following programming problem of estimation of the trend T

min
{tn}N−1

n=0

{
N−1∑

n=0

(xn − tn)2 + λ
N−1∑

n=0

[(tn − tn−1)− (tn−1 − tn−2)]
2

}
. (4)

The parameter λ is a positive number which penalizes variability in the growth component series.

The larger the value of λ, the smoother is the solution series. For a sufficiently large λ, at the

optimum all the tn+1− tn must be arbitrarily near some constant β and therefore for tn arbitrarily

near t0 + βn. This implies that the limit of the solution to (4) as λ approaches infinity is the least

squares fit of a linear time trend model.

The Hodrick-Prescott (HP) filter was not developed to be appropriate, much less optimal, for

specific time series generating processes. Rather, apart from the choice of λ, the same filter is

intended to be applied to all series. Nevertheless, the smoother that results from the solution of

eq. (4) can be viewed in terms of optimal signal extraction literature pioneered by Wiener (1949)
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and Whittle (1963) and extended by Bell (1984) to incorporate integrated time series generating

processes. King & Rebelo (1993) and Ehglen (1998) analyzed the HP filter in this framework,

motivating it as a generalization of the exponential smoothing filter. On the other hand, Kaiser

& Maravall (2001) showed that under certain restriction the HP filter can be well approximated

by a Integrated Moving Average model of order 2, whereas Harvey & Jaeger (1993) interpreted

the HP filter in terms of structural time series models (see section 3.5). Several authors have

analyzed shortcomings and drawbacks of the filter, concentrating on the stochastic properties of

the estimated components induced by the filter. We refer to Ravn & Uhlig (1997) for a detailed

summary.

4.5 Filters in Reproducing Kernel Hilbert Space

A different characterization of the nonparametric estimators previously introduced in this section

can be provided using the Reproducing Kernel Hilbert Space (RKHS) methodology.

The main theory and systematic development of reproducing kernels and associated Hilbert

spaces was laid out by Aronszajn (1950), who showed that the properties of RKHS are intimately

bounded up with properties of nonnegative definite functions. A RKHS is a Hilbert space character-

ized by a kernel that reproduces, via an inner product, every function of the space or, equivalently,

by the fact that every point evaluation functional is bounded. Loéve (1948) proved that there is an

isometric isomorphism between the closed linear span of a second order stationary random process

and the RKHS determined by its covariance function. Parzen (1959) was the first to apply this

fundamental result to time series problems by means of a strictly parametric approach. Recently,

reproducing kernel methods have been prominent as a framework for penalized spline methodology

(see Wahba (1990)) and in the support vector machine literature, as described in Wahba (1999),

Evgeniou et al. (2000), and Pearce & Wand (2006).

Dagum & Bianconcini (2006, 2007) have found reproducing kernels in Hilbert spaces of the

Henderson and LOESS local polynomial regression predictors with particular emphasis on the

asymmetric filters applied to the most recent observations. These authors show that the asymmetric

filters can be derived coherently with the corresponding symmetric weights, or from a lower or

higher order kernel within a hierarchy, if preferred. In the particular case of the currently applied

asymmetric Henderson and LOESS filters, those obtained by means of the RKHS are shown to

have superior properties relative to the classical ones from the view point of signal passing, noise

suppression and revisions.

An important consequence of the RKHS theory is that nonparametric linear smoothers can be

grouped into hierarchies with the following property: each hierarchy is identified by a density f0

and contains estimators of order 2, 3, 4, ... which are products of orthonormal polynomials with f0.

The density function f0 represents the second order kernel within the hierarchy, and provides the
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“initial weighting shape” from which the higher order kernels inherit their properties. Therefore, if

f0 is optimal in a certain sense, each kernel of the hierarchy inherits the optimality property at its

own order. Estimators based on different assumptions of smoothing building can be compared by

considering smoothers of different order within the same hierarchy as well as kernels of the same

order, but belonging to different hierarchies. Filters of any length, including the infinite ones, can

be derived in the RKHS framework. Therefore, for every estimator the density function f0 and the

corresponding reproducing kernel are derived. In this framework, the LOESS kernel hierarchy is

based on the tricube density function f0T . Higher order kernels are obtained via multiplication of

f0T by a linear combination of its corresponding orthonormal polynomials up to order two. These

latter are derived using a determinantal expression based on the moments of the tricube density

function f0T , as shown in Dagum & Bianconcini (2006). On the other hand, Dagum & Bianconcini

(2007) showed that the weight diagram of the Henderson smoother can be well-reproduced by two

different density functions and corresponding orthonormal polynomials. These functions are the

exact density derived by the penalty weight wj given in eq. (3), and the biweight density function

f0B. The two density functions are very close to one another, hence the former can be well-

approximated by the latter. One of the main advantages of this approximation is that the biweight

density, and also the corresponding hierarchy, does not need to be calculated any time that the

length of the filter changes, as happens for the exact probability function. Furthermore, f0B belongs

to the well-known Beta distribution family, and the corresponding orthonormal polynomials are the

Jacobi ones, for which explicit expressions for computation are available and their properties have

been widely studied in the literature.

The hierarchies, here considered, reproduce and describe several temporal dynamics by estimat-

ing polynomial trends of different degrees that solve several minimization problems, and we refer to

Dagum & Bianconcini (2006, 2007) for a theoretical study of their properties by means of Fourier

analysis.

4.6 Software

The Henderson filter is available in nonparametric seasonal adjustment software such as the X11

method developed by the U.S. Census Bureau (Shiskin et al., 1967), and its variants X-11-ARIMA

(Dagum, 1980) and X-12-ARIMA (Findley et al., 1998). The LOESS filter is implemented in STL

(Cleveland et al., 1990). Software implementing RKHS variants of Henderson and LOESS filters is

available upon request. The Hodrick-Prescott filter can be found in the most widely used statistical

packages, such as Eviews, Stata, S-plus, R, Matlab, SAS.
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5 Singular Spectrum Analysis

5.1 Preamble

In this section, we consider the use of Singular Spectrum Analysis (SSA) for trend extraction. This

approach is based on building some matrix from a time series and on operating with the Singular

Value Decomposition of this matrix. Based on the information provided by singular vectors, a

matrix approximation is obtained and then it is converted into an additive component of the time

series. Apart from the transformation of a time series to a matrix and vice-versa, the algorithm

of SSA coincides with the procedure of Principal Component Analysis (Danilov, 1997). Sometimes

SSA is referred to as the Karhunen-Loéve decomposition of time series (Basilevsky & Hum, 1979).

SSA originated between the late 70s and early 80s, mainly in the area of dynamical systems

as the result of Bertero & Pike (1982); Broomhead & King (1986); Fraedrich (1986). The name

Singular Spectrum Analysis was introduced by Vautard & Ghil (1989), but this approach is also

referred to as the Caterpillar approach. For historical surveys see Golyandina et al. (2001) and Ghil

et al. (2002). The ideas of SSA appeared in other areas, such as digital signal processing (Kumaresan

& Tufts, 1980) or oceanology (Colebrook, 1978). The present literature on SSA includes two

monographs (Elsner & Tsonis, 1996; Golyandina et al., 2001), three book chapters (Schreiber,

1998; Vautard, 1999; Alonso et al., 2004), and over a hundred papers.

Singular Spectrum Analysis can be used in a wide range of issues: trend or periodical component

extraction, denoising, forecasting, and change-point detection. At the present time, SSA is a

proven technique in the geosciences (Ghil & Vautard, 1991; Ghil et al., 2002), and it is starting

to be applied in other areas, e.g., biology (Alonso et al., 2004), tomography (Pereira et al., 2004),

material processing (Salgado & Alonso, 2006) and nuclear science (Verdu & Ginestar, 2001).

5.2 Basic algorithm and general questions

The basic algorithm of SSA consists of two parts: decomposition of a time series and reconstruction

of a desired additive component (e.g., trend). At the stage of decomposition, we choose only the

window length, denoted by L, and we construct a trajectory matrix X ∈ RL×K , K = N − L + 1,

with stepwise portions of the time series X taken as columns:

X = (x0, . . . , xN−1) → X = [X1 : . . . : XK ], Xj = (xj−1, . . . , xj+L−2)T.

Then we perform the Singular Value Decomposition (SVD) of X where the jth component of SVD

is described by an eigenvalue λj and a real-valued eigenvector Uj of XXT:

X =
L∑

j=1

√
λjUjVj

T, Vj = XTUj

/√
λj .
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The SVD components are numbered in the decreasing order of their eigenvalues. The reconstruction

stage combines (i) selection of a group J of several SVD components and (ii) reconstruction of a

trend by Hankelization (averaging through anti-diagonals) of the matrix formed from the selected

part J of the SVD: ∑

j∈J

√
λjUjVj

T → estimation of T .

For the complete description of the algorithm see Golyandina et al. (2001).

The problem of trend extraction in SSA is reduced to (i) the choice of window length L and

(ii) the selection of the group J of SVD components. The former problem had no reasonable

solution before Nekrutkin (1996) showed how the quality of SSA decomposition depends on L. His

separability theory provides instructions for choosing L according to the properties of assumed

components of a time series, such as trend, periodical components, and noise (Golyandina et al.,

2001, Chapter 6). The selection of SVD components is the major task in SSA and at the present

time there exist several methods realizing trend extraction.

5.3 Trend in SSA

The SSA approach is essentially a nonparametric approach and does not need a priori specification

of a model for a time series or for a trend, neither deterministic nor stochastic one. The classes of

trends and residual which can be successfully separated by SSA are characterized as follows.

Firstly, since we extract a trend by selecting a subgroup of all L SVD components, it should

generate only d (d < L) of them. For infinite time series, the class of such trends coincides with the

class of time series governed by finite difference equations (Golyandina et al., 2001). This class can

be described explicitly as linear combinations of products of polynomials, exponentials and sines

(Buchstaber, 1995). An element of this class approximates well a smooth time series and is not

suitable for the approximation of a swiftly changing time series.

Secondly, a residual should belong to the class of time series which can be separated from a

trend. The separability theory allows to define this class and postulates that (i) every determinis-

tic function can be asymptotically separated from any ergodic stochastic noise (Nekrutkin, 1996;

Golyandina et al., 2001) as the time series length and the window length tends to infinity; (ii)

under some conditions a trend can be separated from a quasi-periodic component. These proper-

ties of SSA allow one to apply this approach to extraction of trend in the presence of noise and

quasi-periodic components.

Notice that SSA takes into account the information about the whole time series, for it considers

the SVD of the trajectory matrix built from all parts of the time series. Therefore SSA is not

a local method – in contrast to the linear filtering or wavelet methods. On the other hand, this

property makes SSA robust to outliers.
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5.4 Methods of trend extraction in SSA

The näıve idea of SVD components selection for trend extraction is to take several of the first

SVD components. This simple approach works in many real-life cases, given the optimal properties

of SVD (Golyandina et al., 2001, chapter 4). An eigenvalue represents the contribution of the

corresponding SVD component into the form of the trajectory matrix and of the original time

series, respectively. Since a trend usually characterizes the time series, its eigenvalues are larger

than the other ones, which implies small order numbers for the trend SVD components. However,

the selection procedure fails when the values of a trend are small as compared with the residual

(Golyandina et al., 2001, Section 1.6). Note that this approach takes into account only eigenvalues

but not eigenvectors.

A more clever way of selection of trend SVD components is to choose the components with

smooth Empirical Orthogonal Functions (EOFs), where the nth EOF is defined as the sequence of

elements of the nth eigenvector. This approach was presented in Golyandina et al. (2001), where

the cases of polynomial and exponential trends are thoroughly examined. Using the concept of

trajectory vector space which is spanned by the columns of the trajectory matrix and has the

eigenvectors as an orthonormal basis, one can prove that the smoothness of a trend controls the

smoothness of its EOFs on the assumption of separability of the trend and the residual.

The methods following this approach are presented in Vautard et al. (1992); Golyandina et al.

(2001); Salgado & Alonso (2006) and Alexandrov (2006). Golyandina et al. (2001) proposed to

select trend SVD components by visual examination of EOFs. Alexandrov (2006) presented a

parametric method which follows the frequency approach to smoothness and exploits properties of

the Fourier decomposition of EOFs. Earlier, in Vautard et al. (1992), another parametric method

was described which is based on the Kendall correlation coefficient, but for the properties of this

coefficient this method is aimed at extraction of monotonous trends. An original modification

of SSA for producing smooth trends was proposed in Solow & Patwardhan (1996). Instead of

calculating the eigensystem of XXT, the authors considered some special matrix depending on the

first differences of a time series.

5.5 Pros and cons

SSA is a model-free approach that provides good results for short time series (Vautard et al., 1992),

and allows one to extract trends from a wide class of time series. An essential disadvantage of SSA

is its computational complexity in the calculation of the SVD. This cost can be reduced by using

parallel computing (Jessup & Sorensen, 1994). For updating the SVD in the case of receiving new

data points (trend revision), a computationally attractive algorithm of Gu & Eisenstat (1993) can

be used. Moreover, Drmač & Veselić (2005) recently proposed a new method for SVD calculation

which is as fast as QR-factorization and as stable as the conventional Jacobi method.
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5.6 Software

The main software packages for trend extraction implementing SSA include CaterpillarSSA (Golyan-

dina et al., 2001), SSA-MTM Toolkit (Vautard et al., 1992), AutoSSA (Alexandrov, 2006) and

kSpectra Toolkit, which allows one to apply SSA on many computing platforms. CaterpillarSSA

provides an interactive framework for time series processing and can be used for trend extraction

and forecast. SSA-MTM Toolkit implements only the Kendall method, and kSpectra Toolkit repre-

sents the commercial version of SSA-MTM Toolkit. AutoSSA for Windows realizes three parametric

methods (in particular, the Low Frequencies (LF) and Kendall methods); AutoSSA for Matlab has

only the LF method but with adaptive selection of the parameters. Moreover, SSA is available

in a collection of scripts and packages; for details see the website SSAwiki (http://www.math.uni-

bremen.de/∼theodore/ssawiki).

6 Wavelets

6.1 Preamble

The name wavelet first appeared in the early 1980’s in the context of seismic data analysis. Earlier,

the term was introduced to the general scientific community in a pioneering paper (Grossmann

& Morlet, 1984) jointly written by a geophysicist, a theoretical physicist and a mathematician.

This combination of different points of view has demonstrated the practical importance of the

theoretical findings since the beginning and has sparked the rapid development of wavelet analysis

in the subsequent years.

However, a closer look at mathematical history (Meyer, 1993) reveals that several almost iden-

tical approaches – or at least similar concepts – have been around since the 1930’s. A first wavelet

construction can be found in several investigations of suitable model spaces for signals and functions

(Littlewood-Payley theory). In addition, the Calderon’s identity – or more recently the so-called

pyramidal algorithms (Burt & Adelson, 1983) – share some features with wavelet methods.

Nevertheless, the early input from diverse neighboring scientific fields created a rich theoretical

framework, which has led both to algorithms that are mathematically justified as well as to theoret-

ical generalizations. These generalized concepts exceed the previous approaches by far, particularly

in terms of their potential for different applications in signal and image processing.

The term wavelet analysis is currently used for the somewhat larger field of multiscale analysis,

with both its theoretical, mathematical foundations and its resulting algorithms in signal and image

processing. Wavelet analysis in general rests on a formal framework for decomposing a signal or

function in its different components on different “scales”. The scales can be distinguished either

by different levels of resolution or different sizes/scales of detail. In this sense it generates what is

commonly called a phase space decomposition, where the phase space is defined by two parameters

18



(scale, time/location). It is a counterpart to classical Fourier or Gabor decompositions, which

generate a phase space decomposition defined via a frequency and time/location parametrization.

On a purely discrete level, every wavelet algorithm is defined by a dual pair (low pass, band

pass) of Finite Impulse Response (FIR) filters, which allows a decomposition and reconstruction

by symmetric convolution operators. Its efficient implementations (Daubechies, 1992; Sweldens,

1997; Mallat, 2001) as well as its flexibility have led to several outstanding applications, including

the design of efficient image and video compression standards (JPEG2000, MPEG) and advanced

audio technology (Kowalski & Torresani, 2006). In addition, the analysis of wavelet methods in

a statistical framework has led to some powerful methods, e.g., for denoising signals and images

(Donoho & Johnstone, 1994; Donoho, 1995). Wavelet methods are now a generally accepted alter-

native to more classical statistical approaches or filtering techniques in a wide range of applications

– see Chui (1992); Vedam & Venkatasubramanian (1997); Maass et al. (2003); Partal & Kuecuek

(2006) and the citations therein. The most recent applied developments are regularly reported in

several series of specialized conferences, e.g., SPIE, IEEE conferences.

6.2 Basic algorithms and general considerations

The basic wavelet algorithm computes a decomposition (wavelet transform) of a time series with a

pair of FIR filters in several steps. Let us introduce some additional notation and call the original

time series c0 = {c0
k | k = 0, 1, . . . , N − 1}. In a first step, the data c0 is convolved with a low pass

{hk} and a band pass filter {gk}. The results of both filters are then subsampled by factor of 2 in

order to reduce complexity:

c1
k = Hc0 =

∞∑

`=−∞
h`c

0
2k−` , d1

k = Gc0 =
∞∑

`=−∞
g`c

0
2k−` .

This first step separates the components on a finest level of resolution. The result of the band

pass filter d1 is stored as the fine scale component of the original time series. The low pass filter

generates a smoothed version c1 of the original time series, which is further processed iteratively.

In a second step, all computations of the first step are repeated on a low pass filtered version c1.

The outcome of the subsampled band pass filtering in the second step is again stored, it contains

the details of the original time series on scale two. The application of the subsampled low pass

filter gives an even smoother version of the original time series.

Repeating this process for a fixed number of s steps produces a family of sequences, which

represent details on different scales {dj , j = 1, . . . , s} as well as a final version cs of the original

sequence c0 that is very smooth:

cj+1
k = Hcj =

∞∑

`=−∞
h2k−`c

j
` , d1

k = Gcj =
∞∑

`=−∞
g2k−`c

j
` , j = 0, 1, . . . , s− 1.
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Notice that due to the subsampling the overall number of coefficients to be stored (it is the sequences

dj , j = 1, . . . , s, and cs) is equivalent to the length of the original time series.

The success of wavelet methods relies on the existence of a dual pair of low and band pass

filters for reconstruction. By a symmetric algorithm, these dual filters allow an equally efficient

reconstruction of the original time series from its multi-scale decomposition:

cj
k = H̃cj+1 + G̃cj+1 =

∞∑

`=−∞
hk−2`c

j+1
` +

∞∑

`=−∞
gk−2`d

j+1
` , j = s− 1, s− 2, . . . , 0.

It results in an additive decomposition of the original data by

c0 = H̃scs +
s∑

j=1

Hj−1Gdj .

The filters need to satisfy some stability criteria in order to control reconstruction errors. The

choice of an appropriate filter bank for decomposition and reconstruction is crucial for the success

of wavelet methods. There exists an extensive library of wavelet filters that are appropriate for all

kinds of applications.

In principle, a wavelet algorithm is fully defined by the choice of the wavelet filters and the

number of decomposition steps s. However, we want to emphasize that before using a wavelet

algorithm one should answer the two basic questions: (i) why should we use a wavelet method? (ii)

how do we want to analyze the wavelet decomposition?

The first question can be answered positively whenever the time series under consideration has

a multi-scale (as opposed to a multi-frequency) structure. This in particular includes the analysis

of non-stationary effects, e.g., defects in signals for monitoring technical processes or applications

of change-of-trend detection.

The second question is extremely important. The wavelet transform only generates an alterna-

tive representations of the time series: no information is lost, no information is added by the wavelet

transform. For certain applications, however, we might expect that any sought-after information

can be more easily detected in the transformed data. Hence, at the beginning we need to consider

how we want to extract this information after having computed the wavelet transform.

6.3 Trend extraction with wavelet methods

Following the general considerations described in the previous subsection, we first need to determine

why wavelet methods should be useful for trend analysis. In this section we follow the classical

decomposition model (see section 1)

X = T + P + R
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with trend component T , seasonal component P and noise-component R. This model is well-suited

for a wavelet decomposition, which results in an additive multi-scale decomposition {cs, dj , j =

1, .., s} of the time series X. An increasing “scale of detail” is assigned to every component of the

decomposition, i.e., we interpret the different components as being the sum of all details in the

time series which live on a prescribed scale (resolution or size of detail).

Therefore, a typical wavelet decomposition concentrates the noise component on the first fine

scales, then the seasonal components are detected on the subsequent intermediate scales, and finally

the trend component is given on the coarse scale components. However, notice that the notion of

seasonal component is more general in a wavelet setting, since it does not only refer to purely

periodic components, but also models variations and non-stationary seasonality.

Hence, the basic trend extraction procedure with wavelet methods proceeds by (i) choosing an

appropriate wavelet filter bank, (ii) computing a wavelet decomposition up to scale s, (iii) deleting

all fine scales (scales of noise and seasonal components), and (iv) reconstructing the remaining

additive component:

T ∼ H̃scs.

The seasonal component is determined by the components on the intermediate scales, d2, .., ds, and

the noise is approximated by the difference coefficients d1 on the finest scale.

P ∼
s∑

j=2

H̃j−1G̃dj , R = G̃d1.

Some of the most prominent applications for trend extraction by wavelet methods include process

monitoring of technical processes (Vedam & Venkatasubramanian, 1997; Bakhtazad et al., 2000),

analysis of environmental data (Tona et al., 2005; Partal & Kuecuek, 2006) or applications to

financial data (Maass et al., 2003). This list is neither complete nor representative, but rather

serves to demonstrate some of basic examples presented in the vast literature on wavelet trend

analysis.

This typically results in a good “visualization” of the underlying non-stationary trend. In

this sense, wavelet methods use a semi-parametric trend model: the choice of the wavelet filters

determines the trend model, since it determines whether we capture piecewise constant, linear,

polynomial or exponential trends – see Bakshi & Stephanopoulos (1994) or the general references on

polynomial reproduction by wavelet basis in Louis et al. (1997); Mallat (2001). On the other hand,

the choice of the wavelet is only important for the intermediate computations. After reconstruction

we obtain a trend model in the physical space given by the measurement data. The trend can be

subsequently analyzed without any underlying model.

We want to emphasize that applying a wavelet method usually constitutes just one step in

a more complex scenario for trend analysis. Typical tasks, such as change point detection, re-
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quire one to analyze the extracted trend and to give precise estimates for the time instances of

change-of-trend. There exist refined wavelet methods based on shrinkage operations for this kind

of analysis. Change-of-trend features exist on all scales of resolution, hence these methods use the

full wavelet decomposition and rely on adaptive thresholding procedures on all scales (Vedam &

Venkatasubramanian, 1997; Mallat, 2001; Partal & Kuecuek, 2006).

A different scenario for the application might require the determination of a physical model

for the underlying process. In this case, the trend extraction and the determination of different

time intervals with a stationary behavior are only a first step. Hence, the characterization of the

model on each time interval with a stable trend is then left to other methods of signal analysis

(e.g., dynamical systems or the methods following MBA, see section 3).

To conclude, the potential of wavelet methods for trend extraction is based on its non-stationary,

quasi-local properties. Wavelet methods are well-suited for the determination of change-of-trend

points, as well as the decomposition of the time axis in different time intervals with stable trend

behavior.

6.4 Advantages and disadvantages

The application of a wavelet algorithm starts by choosing an appropriate wavelet basis or wavelet

filter bank. This offers some flexibility for optimization, since there exist highly specialized wavelet

filters for a large variety of complex situations. Its main feature is a non-stationary multi-scale

decomposition, which is particularly suited for analyzing localized effects. This flexibility, which

allows one to finely tune the wavelet algorithms to different specific tasks, is also one of its major

disadvantages; some experience with wavelet methods is required in order to fully exploit its power.

In addition, the treatment of boundary effects is crucial for some applications. Wavelet algo-

rithms are based on a repeated application of linear filters, which require an adjustment at the

end of the given data series. This could be done by adapting the filter coefficients, even if the

standard approach is to add a sufficient amount of data points. Several algorithms generally use

either a zero-padding or a periodic continuation. Both approaches yield acceptable results for most

applications of trend detection, in particular if one uses a short wavelet filter. However, optimal

results are achieved by fine-tuning the treatment of boundary effects depending on whether one

wants to determine a polynomial or exponential trend. A simple least square fit of a polynomial to

the last given data points allows one to determine a more suitable continuation.

Also, the visualization of wavelet transforms has not yet been fully standardized. Again, some

experience is required in order to “understand” the results of the wavelet transform. Typically, the

best way to analyze a wavelet transform is to reconstruct the manipulated wavelet decomposition

and to display the result in the physical domain of the original signal.

The major advantage is the efficiency of the fast wavelet decompositions. In its basic form
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the wavelet transform is an O(n)-algorithm. Efficient implementations are by now included in any

software toolbox for signal or image analysis, e.g., MATLAB or S+.

7 Example

Let us consider an application of the described methods to observations of the electric power

use by industry in the U.S. for the period from 1972/1 to 2005/10 provided by the Federal Re-

serve Board (FRB). The data is monthly of length 406, and is available on the FRB webpage:

http://www.federalreserve.gov/releases/g17/ipdisk/kwh nsa.txt.
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Figure 1: Left panel: electric power use by industry in US, monthly data; Right panel: seasonally
adjusted time series (S.A.) and the trends (each shifted from the previous one).

We selected this time series because: (i) it contains a clear and complex trend, (ii) we can

test trend extraction in the presence of a sizeable seasonal component, (iii) the length of several

hundred points is usual for many applications, and (iv) noise is significant enough to demonstrate

the smoothing properties of the various methods.

The time series has clear seasonality. MBA, SSA and wavelets are able to extract trend from

data of such kind, while nonparametric filtering methods (Henderson, LOESS, Hodrick-Prescott)

require seasonally adjusted data. Fortunately, the Federal Reserve Board also provides seasonally

adjusted time series, and we have applied the nonparametric methods to these data. The resulting

trends are shown in Figure 1.

MBA The regARIMA modeling of X-12-ARIMA software was used to identify regression param-

eters and significance, and determine the best model using AICC. This was a (1 1 0)(0 1 1) SARIMA

model, and the canonical decomposition into trend, seasonal, and irregular exists. The minimum

MSE trend extraction filter for finite sample (McElroy, 2008) was determined and applied.

SSA We exploited parametric methods implemented in AutoSSA software for Matlab, available

at the webpage: http://www.pdmi.ras.ru/∼theo/autossa. A trend can be extracted directly from

the original time series, but we first performed seasonal adjustment and then extracted the trend,
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both by AutoSSA. Such an iterative application of AutoSSA is reasonable because its methods are

quite restrictive and repeated application can refine the results. For seasonal adjustment we used

the Fourier method for extraction of periodical components (Alexandrov, 2006). Window length

was selected close to N/2 and divisible by seasonal period (12), L = 12bN/24c = 192. The trend

was extracted by the Low Frequencies method, where the low frequencies boundary was selected

smaller but close to 1/12, equal to 0.07.

Wavelets For trend extraction by means of wavelets, the Coifman wavelet of order 4 (coif4 ) was

selected given its symmetry and good smoothing properties. After wavelet transformation, a trend

was reconstructed by all wavelet coefficients excepting only detail coefficients on levels 1 and 2. As a

multiscale approach, wavelet transformation allows one to extract trends of different resolution (or

scale). The extracted trend seems to contain some insignificant portions of the seasonal component

opposite to a trend reconstructed without details on levels 1, 2 and 3. Nevertheless, we selected

the former one because it better represents our point of view on the sought-for trend-cycle.

Nonparametric Notice that for nonparametric filtering we used seasonally adjusted time series.

The length of Henderson and LOESS filters was selected according to the signal-to-noise ratio

(provided by X-11-ARIMA software), which is equal to 1.14. Hence, a 13-term filter is appropriate

for the estimation of the trend-cycle. The trend estimates were obtained based on the following

RKHS filters: (i) 13-term 3rd order Henderson kernel within the biweight hierarchy; (ii) 13-term

3rd order LOESS kernel within the tricube hierarchy. For the Hodrick-Prescott trend we applied

the pspline package of R, with the smoothing parameter selected by means of generalized cross-

validation.

7.1 Comparative analysis of the trends

As the quality of extraction of a prior unknown trend is hard to evaluate, we do not search for the

best method but rather seek to evaluate some of their features. Firstly, the LOESS estimator is

quite close to the Henderson trend almost everywhere, even if at the ends it represents the shifted

Henderson trend (plus u 0.3); hence, hereafter we do not consider the LOESS trend.

Capturing the details With respect to captured details the trends can be organized as follows:

Hodrick-Prescott (detailed), MBA, Henderson, SSA and wavelets (coarse). From our point of view,

the Hodrick-Prescott trend is not smooth enough, which contradicts the definition of the trend as a

smooth component – see Figure 2. These resulting trends are not unique for the considered methods.

In general, by specifying different parameters, one can change the resolution. For example, in

wavelets/AutoSSA, the degree of selected scale levels/value of low-frequencies-boundary controls

the resolution. But in this example including more scales in wavelets leads to inclusion of a portion
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of the seasonal component into the trend. On the other hand, selecting a larger low-frequencies-

boundary in AutoSSA reduces the smoothness of the trend considerably.

95/1 96/1 97/1 98/1 99/1 00/1 01/1

SSA

Hend

MBA

HP

S.A.

wavelets

76/1 77/1 78/1 79/1

This big wave in trend is induced by 
the following sharp change of time series

HP

MBA

SSA

wavelets

Hend

Figure 2: Left panel: The seasonally adjusted time series (S.A.) and the trends (each shifted from
the previous one), points 270-350; Right panel: the trends (each shifted from the previous one)
(dotted line) with the seasonally adjusted time series in background (gray bold line), points 49-96.

Boundary effect Notice that in this example the wavelet trend goes up close to the end, which

demonstrates the boundary effect discussed in section 6.4.

Influence of sharp changes Finally, we examine how sharp changes of time series influence

behavior of the trend. Usually, it is desirable to have trend robust to such changes. We consider a

interval of points [49-96], including such a change in the beginning of 1978 – see Figure 2. Hodrick-

Prescott and MBA trends track the dip and one can argue about whether a trend should contain

it. Henderson and SSA trends smooth out the dip. The wavelet trend is distorted around the sharp

changes, because their impact spreads over all levels of wavelet coefficients and affect the trend

coefficients.
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Drmač, Z. & Veselić, K. (2005). New fast and accurate Jacobi SVD algorithm: I, II. Tech. Report LAPACK

Working Note 169, Dep. of Mathematics, University of Zagreb, Croatia.

Durbin, J. & Koopman, S. J. (2001). Time series analysis by state space methods, volume 24 of Oxford

Statistical Science Series. Oxford: Oxford University Press.

Ehglen, J. (1998). Distortionary effects of the optimal Hodrick-Prescott filter. Econ. Lett., 61, 345–349.

Elsner, J. B. & Tsonis, A. A. (1996). Singular Spectrum Analysis: A New Tool in Time Series Analysis.

Plenum.

Esterby, S. R. (1996). Review of methods for the detection and estimation of trends with emphasis on water

quality applications. Hydrol. Process., 10, 127–149.

27



Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines.

Advanced in Computational Mathematics, 13, 1–50.

Findley, D. & Martin, D. (2006). Frequency domain analyses of SEATS and X12ARIMA seasonal adjustment

filters for short and moderate-length time series. J.Off.Stat., 22, 1–34.

Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B. C. (1998). New capabilities and methods

of the X-12-ARIMA seasonal adjustment program. J. Bus. Econ. Stat., 16(2), 127–177. (with discussion).

Fraedrich, K. (1986). Estimating dimensions of weather and climate attractors. J. Atmos. Sci., 43, 419–432.

Froeb, L. & Koyak, R. (1994). Measuring and comparing smoothness in time series: the production smoothing

hypothesis. J. Econometrics, 64(1-2), 97–122.

Gersch, W. & Kitagawa, G. (1983). The prediction of time series with trends and seasonalities. J. Bus.

Econ. Stat., 1(3), 253–264.

Ghil, M., Allen, R. M., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A., Saunders,

A., Tian, Y., Varadi, F., & P., Y. (2002). Advanced spectral methods for climatic time series. Rev.

Geophys., 40(1), 1–41.

Ghil, M. & Vautard, R. (1991). Interdecadal oscillations and the warming trend in global temperature time

series. Nature, 350, 324–327.

Golyandina, N. E., Nekrutkin, V. V., & Zhigljavsky, A. A. (2001). Analysis of Time Series Structure: SSA

and Related Techniques. Chapman&Hall/CRC.

Gray, A. & Thomson, P. (1990). Comments on STL: A seasonal trend decomposition procedure based on

LOESS. Journal of Official Statistics, 6, 47–55.

Gray, A. & Thomson, P. (1996). Design of moving-average trend filters using fidelit and smoothness criteria.

Time series analysis in memory of E.J. Hannan, , pp. 205–219.

Grossmann, A. & Morlet, J. (1984). Decomposition of hardy functions into square integrable wavelets of

constant shape. SIAM J. of Math. Anal., 15(4), 723–736.

Gu, M. & Eisenstat, S. C. (1993). A Stable and Fast Algorithm for Updating the Singular Value Decompo-

sition. Tech. Report YALEU/DCS/RR-966, Dep. of Computer Science, Yale University.

Hamed, K. & Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol.,

204(1), 182–196.

Hamilton, J. D. (1994). Time series analysis. Princeton.

Harvey, A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cam-

bridge University Press.

Harvey, A. & Jaeger, A. (1993). Detrending, stylized facts and the business cycle. Journal of applied

econometrics, 8, 231–247.

28



Henderson, R. (1916). Note on graduation by adjusted average. Trans. Actuar. Soc. Amer., 17, 43–48.

Hillmer, S. & Tiao, G. (1982). An ARIMA-model-based approach to seasonal adjustment. J. Am. Stat.

Assoc., 77(377), 63–70.

Hirsch, R. M. & Slack, J. R. (1984). Nonparametric trend test for seasonal data with serial dependence.

Water Resources Research, 20(6), 727–732.

Hodrick, R. & Prescott, E. (1997). Postwar u.s. business cycles: An empirical investigation. Journal of

Money, Credit and Banking, 29(1), 1–16.

Jessup, E. R. & Sorensen, D. C. (1994). A parallel algorithm for computing the singular value decomposition

of a matrix. SIAM J. Matrix Anal. Appl., 15(2), 530–548.

Kaiser, R. & Maravall, A. (2001). Measuring Cycles in Economic Statistics. Lecture Notes in Statistics, NY:

Springer-Verlag.

Kalman, R. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng-t ASME D,

82, 35–45.

Kenny, P. & Durbin, J. (1982). Local trend estimation and seasonal adjustment of economic and social time

series. Journal of the Royal Statistical Sociaety A, 145, 1–41.

King, R. & Rebelo, S. (1993). Low frequency filtering and real business cycles. Journal of Economic Dynamics

and Control, 17, 207–233.

Kitagawa, G. & Gersch, W. (1996). Smoothness Priors Analysis of Time Series. Springer.

Kolmogorov, A. N. (1939). Sur l’interpretation et extrapolation des suites stationnaires. C.R. Acad. Sci.

Paris, 208, 2043–2045.

Kolmogorov, A. N. (1941). Interpolation and extrapolation von stationaeren zufaelligen Folgen. Bull. Acad.

Sci. U.R.S.S. Ser. Math., 5, 3–14.

Koopman, S. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. J.

Am. Stat. Assoc., 92, 1630–1638.

Koopman, S., Harvey, A., Doornik, J., & Shepherd, N. (2000). Stamp 6.0: Structural Time Series Analyser,

Modeller, and Predictor. London: Timberlake Consultants.

Koopman, S., Shepherd, N., & Doornik, J. (1999). Statistical algorithms for models in state space using

SsfPack 2.2. Economet. J., 2, 113–166.

Koopmans, L. (1974). The Spectral Analysis of Time Series. NY: Academic Press.

Kowalski, M. & Torresani, B. (2006). A family of random waveform models for audio coding. Proc.

ICASSP’06, Toulouse, pp. III–57–60.

Kumaresan, R. & Tufts, D. W. (1980). Data-adaptive principal component signal processing. Proc. of IEEE

Conference On Decision and Control, pp. 949–954.: Albuquerque.

29
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