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Abstract

We propose a new model-based, nonlinear method for seasonally adjusting time series in a

multiplicative components model. The method seeks to reduce the bias inherent in linear model-

based approaches, while at the same time preserving the flexibility of parametric methods. We

discuss the problem of bias and the concept of recovery, and demonstrate the favorable properties

of the proposed algorithm on several synthetic series.
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1 Introduction

Many economic time series exhibiting seasonality are naturally explained via a multiplicative com-

ponents decomposition; a very common three-component decomposition is given by

yτ = sτ · tτ · iτ (1)

where y is the observed data (with outliers and other regression effects removed), s is the seasonal

component, t is the trend component, and i is the irregular. We index time with the variable

τ = 1, 2, · · · , N . This description of the data is justified empirically by the observation that the

variability in seasonal fluctuations seems roughly proportional to the trend level for many economic

series – see Findley, Monsell, Bell, Otto, and Chen (1998) and the references therein for additional

discussion. The goal of seasonal adjustment is estimation of sτ for each τ ; we then obtain the

seasonally adjusted data by dividing the seasonal estimate into yτ . In the vast literature on seasonal

adjustment there are two main approaches to multiplicative seasonal adjustment: model-based and

nonlinear.
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In the model-based approach, one typically log-transforms the data, which makes the compo-

nents take on an additive structure. One can then develop models for the components either via

direct estimation utilizing the philosophy of structural models (see Harvey (1989) for a discussion),

or by the canonical decomposition approach of Hillmer and Tiao (1982). Finite sample conditional

expectations can be used to produce MSE optimal estimates of the log-signals – see Bell and Hillmer

(1988) and McElroy (2005). Then one exponentiates the result to translate the estimates back into

the original domain. This is the method implemented in SEATS, the widely-used model-based sea-

sonal adjustment software of the Bank of Spain (Maravall and Caporello, 2004). Unfortunately, the

introduction of the two nonlinear transformations – the logarithm and the exponential – actually

disrupt the MSE optimality property, and the signal estimates will always be downwardly biased

in a sense discussed in Section 2.

In contrast, nonlinear methods involve writing down systems of nonlinear equations relating

the desired estimated seasonal and trend components, and solving these equations via iterative

methods. The filters used in these nonlinear equations are typically nonparametric. The old X-11

program exemplifies this approach: the estimated components are related by nonparametric filters,

such as the Henderson trend, and the resulting nonlinear equations are solved via a simple iteration

scheme (Shiskin, Young, and Musgrave, 1967). Since this method treats the data in its original

scale, it presumably avoids the distortions inherent in the model-based approach. A drawback is

that the filters are typically not matched to the underlying dynamics of the data, such as would be

done in a model-based approach.

The main topic of this paper is a new approach to seasonal adjustment that attempts to reap

the advantages of both the above methods. Component models are formulated as outlined above,

and the corresponding model-based filters are plugged into the nonlinear components equations.

Thus the proposed method is both model-based and nonlinear. Our particular implementation is

via an algorithm we call Model-Based X-11 (MBX-11). The MBX-11 method seeks to resolve the

bias issue in signal extraction estimates via its nonlinear approach, while retaining the flexibility

implicity in a model-based approach to filtering. See Ozaki and Thomson (2002) for related work

on nonlinear parametric methods.

In Section 2 we discuss the bias problem for multiplicative components time series, and introduce

the important concept of “recovery.” Here the signal extraction bias is given a precise mathematical

definition, and it is shown that the basic model-based procedure always results in biased estimates.

Section 3 discusses the MBX-11 algorithm, and in Section 4 we compare alternative trend estimation

methodologies through the use of synthetic studies. The study reveals how downward bias in trend

estimates is directly related to the different, somewhat incompatible definitions of the seasonal

component in additive and multiplicative component decompositions. The appendix contains some

material on alternative error criteria, which are more appropriate for multiplicative components

data, as well as implementation details of MBX-11.
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2 The Bias Problem and Recovery

The general multiplicative model for observed data Yτ is given by equation (1). If we take logarithms

in (1) – assuming that yτ is always positive – we obtain the additive decomposition

Yτ = Sτ + Tτ + Iτ (2)

where Yτ = log yτ , Sτ = log sτ , etc. In a model-based framework, these processes might be assumed

to follow ARIMA models (Box and Jenkins, 1976) or Basic Structural Models (Harvey, 1989).

Let us denote the entire finite sample (1 ≤ τ ≤ N) of data by y (or Y for the logged data),

conceived of as a column vector. Note that y may often be reasonably close to a lognormal distri-

bution in practice, and so we suppose for the moment that Y is Gaussian. Then the conditional

expectation of the signal at time τ given the observed data is identical to the minimal MSE linear

estimator, which is typically what model-based approaches to signal extraction compute. That is,

model-based approaches are able to compute Ŝτ = E[Sτ |Y ]; however, we wish to know E[sτ |y],

which we denote by ŝτ . The latter quantity is approximated by exponentiating the former, even

though this typically results in underestimation. The following result is well-known, but we record

it for easy reference.

Proposition 1 Given the above notations,

exp{E[Sτ |Y ]} ≤ E[exp{Sτ}|y].

The same holds for T and I in place of S.

In other words, exp Ŝτ undershoots ŝτ , the MSE optimal estimate. This underscores the bias

problem in signal extraction for multiplicative component decompositions. More generally, given

any estimate s̃τ of the signal sτ , the error is s̃τ − sτ . The bias is then defined to be the average

error, i.e.,

Bτ = E[s̃τ ]− E[sτ ].

For example, the bias inherent in the basic model-based approach is Bτ = E exp{Ŝτ} − Esτ ≤
EE[sτ |Y ]− Esτ = 0 by Proposition 1.

If we wish to evaluate a signal extraction method, we can generate a synthetic time series with

known components tτ , sτ , iτ , and apply the method to obtain s̃τ for each τ . Then the plot of

s̃τ − sτ for τ = 1, 2, · · · , N can be used as a proxy for the bias, assuming that the error process

is ergodic. Figure 1 below illustrates the trend bias problem, which in this case arises because of

large seasonal factors (this example is discussed further in Section 4).

Now when the original data y is lognormal, one can compute the exact value for E[sτ |y]; it is

equal to exp{Ŝτ + MSEŜτ/2} (see Proposition 2 of the Appendix). However, if the data is not
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lognormal, this will be incorrect. Another concern is that such exact conditional expectation esti-

mates do not have the recovery property, which states that the product of all estimated components

should yield y. In other words, if we replace the components with estimated components in (2) or

(1), we still obtain the logged data or the data respectively. The recovery property is automatic

in the additive domain, since Ŝτ + T̂τ + Îτ = Yτ is a property of conditional expectations. If we

use the exponential of these estimates in the multiplicative decomposition, it is interesting that we

recover the data, even though each estimate is downward biased from the conditional expectation

estimate:

exp{E[Sτ |Y ]} · exp{E[Tτ |Y ]} · exp{E[Iτ |Y ]} = exp{E[Sτ |Y ] + E[Tτ |Y ] + E[Iτ |Y ]} = expYτ = yτ .

Note that by Proposition 1, the product of E[sτ |y], E[tτ |y], and E[iτ |y] will be greater than or equal

to yτ . While the recovery property may seem merely a nuisance to the statistical practitioner, it

is extremely important from the perspective of a statistical agency that interacts with the general

public; over- or under-recovery will be perceived as an arbitrary inflation or deflation of the numbers.

In summary, it is desirable for a seasonal adjustment method to have low signal extraction

bias. Also, the seasonal adjustment method should have the recovery property, as well as having

low error according to some objective function. Typically, statisticians use MSE as the objective

function, though this has the drawback that the resulting estimates have signal extraction errors

that depend on the level of the series, so that the error may be larger for more recent years when the

data is trending upwards. The alternative penalty function Relative Mean Squared Error (RMSE)

does not have this problem. Appendix A.1 provides some details on alternative penalty functions,

such as RMSE and Mean Squared Log Error (MSLE).

3 Model-Based X-11

The MBX-11 algorithm is a nonlinear model-based signal extraction method, based on the idea of

replacing X-11 seasonal and trend filters with model-based filters. There is an extensive literature on

attempts to match X-11 filters with parametric filters – see Cleveland and Tiao (1976), Burridge

and Wallis (1984), Planas and Depoutot (2002), and Chu, Tiao, and Bell (2007) for example.

These authors generally compare specific X-11 filters with parametric filters chosen from a class of

convenient and relevant models (such as the Box-Jenkins Airline model). Moreover, the focus is

on the additive X-11 algorithm, which is appropriate for (2). McElroy and Sutcliffe (2006) shows

that if one replaces the X-11 filters with the appropriate model-based filters, then the algorithm

converges at exponential rate to the model-based seasonal and trend estimates. We give a brief

description here, since it is pertinent to our development of the multiplicative components case.

Consider the so-called “reduced decompositions” of the form

Y S
τ = Sτ + Iτ Y T

τ = Tτ + Iτ . (3)
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These are called reduced decompositions, because they leave out the trend and seasonal components

(respectively) altogether. Given the component models obtained from a canonical decomposition

routine or structural approach applied to the full decomposition (2), we can compute seasonal and

trend extraction filters for the reduced decompositions quite easily. These are the matrices FS
SI

and F T
TI for the Y S and Y T decompositions respectively; their formulas can be found in Appendix

A.2. Then FS
SI can be substituted for the X-11 seasonal filters, and F T

TI can replace the Henderson

trend filters. The model-based version of the additive X-11 algorithm is

Ŝ(0) is any given vector (4)

for i = 1 to convergence

T̂ (i) = F T
TI(Y − Ŝ(i−1))

Ŝ(i) = FS
SI(Y − T̂ (i))

end for

Those experienced with the X-11 algorithm (see Ladiray and Quenneville (2001) for a definitive

treatment) will recognize that the first two iterations of (4) closely parallel the seasonal adjustment

portion of the B, C, and D iterations of X-11. Indeed, the philosophy behind the X-11 filters is

that one first gets a crude trend from data that is known to be seasonal, using a pure trend filter

(it is a centered 12-term moving average), and then follows up with a crude seasonal (a so-called

3 × 3 or 3 × 5 depending on the B, C, or D iteration), which acts as if the data is trendless,

even though the previous 2 × 12 moving average could not have removed all the trend from the

data. We have simplified the discussion by leaving out the extreme value adjustment portion. The

point is, this twofold smoothing process boils down to iteration one of the above algorithm (4) with

nonparametric filters. The next pass through this algorithm we use the same filters, though X-11

switches to a Henderson trend and a seasonal filter that depends upon the signal to noise ratios.

As shown in McElroy and Sutcliffe (2006), the seasonal and trend iterates then converge to Ŝ(∞)

and T̂ (∞), which are given by

Ŝ(∞) = (1− FS
SIF

T
TI)

−1
FS

SI(1− F T
TI)Y = E[S|Y ]

T̂ (∞) = (1− F T
TIF

S
SI)

−1
F T

TI(1− FS
SI)Y = E[T |Y ]

respectively (here 1 denotes the identity matrix). The convergence of this model-based analogue

of the additive X-11 algorithm is interesting, and prompts a similar type of approach for the

case of multiplicative components. In X-11 the iteration scheme is adapted to (1) using the same

nonparametric filters; below we formulate this algorithm with the same model-based filters utilized

in (4). For column vectors a and b, we denote by a ÷ b the component-wise division; also let 1
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denote a vector of ones. The model-based version of the multiplicative X-11 algorithm is

ŝ(0) = 1 (5)

for i = 1 to convergence

t̂(i) = F T
TI(y ÷ ŝ(i−1))

ŝ(i) = 1 + FS
SI(y ÷ t̂(i) − 1)

end for

This bears a close analogy with both (4) and the multiplicative X-11 algorithm, but notice that

1 has been inserted into the seasonal iterate. The reasoning is that the seasonal iterate should be

centered around 1, so that it can be viewed as a percentage multiplier of the trend. This centering

is not appropriate for the trend iterate, and is unnecessary since 1 is an eigenvector with unit

eigenvalue for filters that pass constants. (That is, for a filter F such that F1 = 1; this is satisfied

by model-based trend filters where (1−B) is a factor of the trend differencing operator, including

Henderson filters, 2×12 MAs, and all the X-11 seasonal filters.) The estimated irregular component

is defined by î = y ÷ (t̂ · ŝ), from which it follows that recovery is automatic for this procedure. Of

course the seasonally adjusted component is just y÷ ŝ. Algorithms (4) and (5) together constitute

MBX-11.

The convergence of the multiplicative algorithm is not guaranteed, and is somewhat sensitive

to the initialization; 1 is the most obvious choice, since it describes a crude multiplicative seasonal.

Other initializations that we considered were 1 + FS
STIY and exp{FS

STIY }, where FS
STI is the filter

matrix such that E[S|Y ] = FS
STIY . A partial analysis of the algorithm’s convergence is included

in the Appendix. Code for MBX-11 was written in Ox, and utilizes SsfPack (Koopman, Shephard,

and Doornik, 1999) to do the Kalman Smoothing algorithm. It is easy to write down the reduced

model filter matrices F T
TI and FS

SI directly without using state space representations, although in

our implementation we use state space algorithms due to their numerical efficiency.

4 Empirical Studies

4.1 Synthetic Series

In this section we evaluate the MBX-11 method, assessing its trend bias performance on 54 synthetic

series. These series are generated by multiplying known trend, seasonal, and irregular component

series, all of which are the output of either X-12-ARIMA or TRAMO-SEATS. Then several methods

were evaluated on these series: (1) MBX-11, (2) the exponential Model-Based (MB) method, and

(3) a bias-corrected version (BC) of the exponential Model-Based estimate. We do not consider the

lognormal estimate discussed in Section 2 because it does not have the recovery property. We next
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describe the synthetic series, the implementation of the methods, the measures of performance, and

finally the results.

Three estimated trends with varying characteristics were taken from TRAMO-SEATS, and

another three trends (from the same original series) were taken from X-12-ARIMA. Each of these

were paired with one of three estimated seasonals from TRAMO-SEATS and X-12-ARIMA, such

that there was one of each type of component, model-based and nonlinear. This yields 18 possible

pairings, and 3 Gaussian white noise irregular components were simulated with different variances,

and exponentiated. All components were then multiplied to form the input series, which was of

length 144. Note that the same exercise could be performed by simulating trend, seasonal, and

irregular components from Gaussian ARIMA processes, and something like this is considered in

the Case Studies below. Also note that defining our target components as the output of other

algorithms means that our “signals” are quite a bit smoother than conventional signal extraction

theory would suppose.

The first step for all the methods is to log-transform the data and obtain a fitted model. We

chose the Box-Jenkins Airline model for our model class in order to fix our comparisons, and

the parameter estimates were then obtained via maximum likelihood. There were no convergence

problems in the maximum likelihood estimation procedure for any of the 54 synthetic series. Models

for the seasonal, trend, and irregular components were then determined via the method of canonical

decomposition – this is another motivation for the choice of the Airline model, since a decomposition

is guaranteed for much of the parameter space of this process. In this case, all of the fitted models

have canonical decompositions, and from the component models the various filter matrices are

determined. These can be obtained from a State Space Form of the fitted Airline model, or can be

calculated directly as described in Appendix A.2. These matrix filters were then used to run the

multiplicative MBX-11 method, as well as to compute the MB estimate – which is just the MSLE

optimal estimate of the given component, i.e.,

ŝMB = exp{E[Sτ |Y ]} t̂MB = exp{E[Tτ |Y ]} îMB = exp{E[Iτ |Y ]}.

The BC method starts with MB estimates for the components; then ŝMB is normalized by its

average over all full years, and îMB is divided by its own average. In order to compensate for these

normalizations, we multiply t̂MB by the product of these two averages. The resulting component

estimates are t̂BC , ŝBC , îBC ; in many cases, this resolves most of the downward bias of the type

seen in Figure 1. All three methods have the recovery property.

For MBX-11, we report results using the initialization s(0) = 1; we also ran the algorithm with

the initializations 1 + FS
STIY and expFS

STIY (see Section 3), but the results were the same (i.e.,

the algorithm converged to the same estimates independent of the initialization). The convergence

criterion used is the following: we form the ratio of consecutive trend iterates (for each τ in the

sample), subtract one, and compute the vector 2-norm. If this quantity is less than a given threshold
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(.01 in our implementation), then the algorithm has converged.

In order to assess performance, we focus on trend estimates and compare them to the true

underlying trend. We form the quantity t̂÷ t− 1 as the relevant error process, and report the root

mean square, where the mean is the average over all times τ . (The relative mean error proved to

be an unreliable measure of accuracy in practice, since trend estimates that oscillated about the

target trend – in such a way that the oscillating errors canceled – would often have lower scores

than trend estimates that were closer more of the time.)

In all cases MBX-11 converged, with anywhere between 4 and 18 iterations. The Airline model

parameters were generally within the accepted range of values, such that a canonical decomposition

existed. The empirical RMSE values were similar for all three methods, with MBX-11 being favored

for 21 series, BC for 18 series, and MB for 15 series. Some further exploration of the methods is

given below.

4.2 Simulated Case Studies

Given that the bias behavior of MBX-11 is marginally superior to that of BC (and MB), we next

investigate two concocted examples to see what can go wrong with MB and BC, and how MBX-11

handles these cases. Series A is generated (with sample size 144) from a stochastic trend, seasonal,

and irregular, where the trend is an integrated random walk (the initial values and innovation

variance were chosen suitably to generate a plausible-looking stochastic trend). The seasonal is

generated as U(B)sτ − 12 is white noise, where the innovation variance is taken to be fairly large

relative to the initial values. This process then has the property that the average over any twelve

consecutive months is close to unity; however, upon taking logs the annual average of log sτ is

not close to zero, and in our particular simulation is biased downwards. This construction of the

seasonal actually produces the downward trend bias in the MB method. The irregular is just

exponential Gaussian white noise, and Series A is obtained by multiplying the three components.

We apply the MB, BC, and MBX-11 methods just as described in Section 4.1 – using estimated

Airline models – and Figure 1 shows the bias of the MB method. Figure 2, in contrast, shows that

the multiplicative factor of the BC method has resolved the bias; also the MBX-11 automatically

produces virtually the same trend estimate. Some discussion of why this happens is given below.

Series B is generated in a similar fashion, but now there is a regime-change in the seasonal.

This was obtained by generating two seasonal patterns as discussed above, but with two different

innovation variances. The regime-change comes exactly half-way through the series, at time point

72. A stochastic trend very similar to that of Series A was used. The three methods are applied,

and Figure 3 displays the trend estimates. All of the methods report a kink in the middle of the

trend, which is a spurious result due to the regime-change. The MB method is clearly downward-

biased, and is worse in the latter half of the series. The BC method attempts to correct by shifting
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the trend upwards, and ends up matching the latter half of the series reasonably well; but then

it overestimates the trend in the first six years. The MBX-11 method comes closest to giving an

accurate trend estimate across the whole span.

The reason for the bias in the MB estimate in Series A is as follows. The stochastic seasonal

satisfies the approximate equation ∆Ss ≈ ∆S1, where ∆S is defined in Appendix A.2, and corre-

sponds to the seasonal summation operator U(B). The MB approach, in contrast, is predicated on

the assumption that the logged seasonal satisfies the approximate equation ∆SS ≈ 0. Hence the

MB seasonal estimate does not have an average annual value close to one; the resulting discrepancy

is compensated by the MB trend estimate, with the result that there is a constant off-set – the

trend is downwardly biased. The fix that BC offers – namely, to compute this constant offset by

determining the long-run annual average of the seasonal estimate – rectifies the bias problem in

this case. The MBX-11 seasonal estimate generally has an annual average close to unity, because

the seasonal step in (5) enforces that the seasonal estimates is centered about 1. Hence there is

less bias in the resulting trend estimate.

However, the solution that BC offers is dependent on there being a constant offset from unity

in the annual averages of the seasonal estimate; if there is a sudden change in the seasonal factors

(like in a regime-change), then the trend bias in the MB method is no longer constant. This is seen

in Figure 3, where the quantity of the trend bias in the MB method differs according to which half

of the series is considered. The BC method finds a single offset factor, which is really the average

of the two offset factors – one for the first regime and one for the second regime – that are needed

to correct the bias. The MBX-11 does not require the identification of regimes and bias-correction,

since the algorithm automatically centers the seasonal around unity. Of course, trend estimation for

all the methods could be improved by considering one regime at a time; but this requires dispensing

with half of the data (or implementing a complex seasonal regime-switching model).

These two synthetic constructions – series A and B – demonstrate one of the sources of trend

bias in real series. Essentially, this is due to a discrepancy between how the seasonal s and log

seasonal S behave. The former has annual averages close to unity, but the latter need not have

annual averages close to zero; yet this is commonly assumed by MB signal extraction techniques.

Using the first order Taylor Series approximation log(1 + x) ≈ x for x close to zero, it follows that

for seasonals sτ tightly clustered (over time) about unity, the resulting log seasonals Sτ will be

tightly clustered about zero. However, if the seasonal factors are large, then there is no guarantee

that the sum of Sτ is close to zero.

By incorporating the correct annual averaging behavior into the seasonal estimation, the MBX-

11 obtains estimates that often have less trend bias. Based on our studies, this trend bias only

seems to arise from the definition of the seasonal; it does not arise from the trend, since both t and

T have similar definitions – the second (or first) difference is close to zero. Although increasing

the variation in the irregular component results in a higher trend signal extraction error in general,
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the irregular is not the key factor in producing biased trends. The key factor seems to be how

the seasonal is defined, and the extent of the problem depends directly on how large the seasonal

factors are relative to the trend.

4.3 Data Example

As a real data example, we consider the M01029 series of fertilizer consumption (eleven southern

U.S. states, thousands of short tons) covering January 1922 through December 1943. The series

is plotted in Figure 4; due to its extreme seasonal pattern, it will referred to as the Spiky series.

We consider the multiplicative component decomposition for the log Spiky series (in this case, the

seasonal movements are so large that we will analyze the original data in logs; for the MB method,

this amounts to fitting an Airline model to the log-log data). On this series, we applied the three

methods (MB, BC, and MBX-11) using an Airline model fitted to the log-logs. Although it may

be possible to find better models for the data, we note that the trend bias problem is generally

independent of the particular SARIMA model; it instead has to do with how the seasonal component

is defined. For this series, the estimated seasonal factors (coming from any of the methods) are

extremely large, being comparable to those of Series A above. Moreover the amplitude of the

seasonal factors changes considerably, which means the behavior of Spiky is somewhat similar to

that of Series B.

A note on the components decomposition for this case: since we use (1) for the log data, this

amounts to an “exponential” components decomposition for the original data. That is, letting the

original data be denoted x with log x = y, we have

x =
(
(et)s)i

,

where exponentiation is component-wise. In other words, the trend is et, the seasonal is s, and

the irregular is i, and these are related to the data x by the above equation. In particular, the

nonseasonal component would be (et)i. We display and discuss results for the Spiky series in the

log domain.

In comparing the three trend estimates (Figure 4), of course we do not have the true trend to

determine our accuracy. Note that the MB trend is uniformly lower than the BC and MBX-11

trends, which is probably an indication of its bias – this is expected, due to the large seasonal

factors involved. The BC trend closely matches the MBX-11 trend, as in the Series A case study,

but is lower in the beginning and higher at the end. As with Series B, when there is large evolution

in the seasonal factors, the use of a single constant in the BC method to correct for bias is too

simplistic. The MBX-11 trend tends to handle the bias issue automatically. Whichever of the two

trends, BC or MBX-11, that is preferred, there is little difference in their overall levels.
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5 Conclusion

Trend bias can be a serious issue for many seasonal time series. This paper first provides a theo-

retical basis for defining and understanding trend bias, and also gives some practical indications as

to when it can be expected to generate large distortions. In particular, we show that MB methods

generate downward-biased trend estimates, with serious discrepancies appearing when the seasonal

factors have large fluctuations.

The MBX-11 algorithm addresses the trend bias problem by estimating the trend, seasonal,

and irregular components in the original domain, without using a logarithmic transform. Because

MBX-11 uses model-based filters in its nonlinear iteration scheme, it is more flexible than the X-11

algorithm and has a sounder theoretical basis. The BC method does indeed correct trend bias – so

long as the bias is systematic across time, i.e., represents an approximately constant multiplicative

offset. When this bias is not systematic – which arises when there is a lot of change in the seasonal

factors over the years – then the BC method does not perform as well, and the MBX-11 method is

preferable. However, it is noted that convergence of the MBX-11 algorithm is not guaranteed, and

this can be a serious drawback for some series.

Acknowledgements. The author would like to acknowledge many fruitful discussions with An-

drew Sutcliffe, who originally suggested the MBX-11 algorithm for seasonal adjustment.

Appendix

Proof of Proposition 1. By Jensen’s Inequality,

exp{E[sτ |y]} = exp{E[sτ |Y ]} ≤ E[exp sτ |Y ] = E[Sτ |Y ] 2

This shows the bias in the exponential estimate exp{E[sτ |y]}. Another problem with this type

of estimate is that the signal extraction error depends on the level of the time series, and thus

tends to be larger at the end of the sample where the trend is higher. In particular, we have

exp{E[sτ |y]} − es = es(exp{E[sτ − s|y]} − 1). In the case that the log data is Gaussian we can

compute the exact conditional expectation estimate, but the resulting estimator still has the above

problem, that the error depends on the level of the series. Let Ŝτ = E[Sτ |Y ].

Proposition 2 Assume that Y and Sτ have a joint multivariate normal distribution. Then

E[sτ |y] = exp{Ŝτ + MSEŜτ/2}

Proof of Proposition 2. Recall that if G is Gaussian with mean µ and variance σ2, then expG

is lognormal with mean exp{µ + σ2/2}. Because Y and St are jointly Gaussian, it follows from
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multivariate normal theory that the conditional distribution of the signal is

Sτ |Y ∼ N (Ŝτ ,MSEŜτ ),

i.e., it has a normal distribution with mean Ŝτ and variance MSEŜτ . See Theorem 3.2.4 of Mardia,

Kent, and Bibby (1979) for details. Hence sτ |y has a lognormal distribution with mean equal to

E[sτ |y] = exp{E[Sτ |Y ] + V ar[Sτ |Y ]/2} = exp{Ŝτ + MSEŜτ/2}. 2

A.1 Penalty Functions

Using the MSE as a penalty function produces the conditional expectation as an optimal estimate.

However, for multiplicative components data this penalty function can be problematic, because the

error depends on the level of the series (see the discussion before Proposition 2). In order to avoid

this, it is natural to consider relative mean squared error. This quantity is important to analysts

working with multiplicative components data, as they are often interested in percent changes and

percent error.

The choice of penalty function is dependent on the algebraic structure of the data as well as the

practitioner’s goals for conducting signal extraction. For example, relative mean squared error and

mean squared log error are appropriate for multiplicative component decompositions (1), whereas

traditional mean squared error is sensible for additive decompositions (2). We examine the following

penalty functions: Relative Mean Squared Error (RMSE), Mean Squared Log Error (MSLE), and

Mean Squared Error (MSE). These are defined as follows:

PRMSE(X̂, X) = E[(X̂/X − 1)
2
]

PMSLE(X̂, X) = E[(log X̂ − log X)
2
]

PMSE(X̂, X) = E[(X̂ −X)
2
]

The following proposition gives the optimal estimators for each penalty function.

Proposition 3 Suppose that given a random vector y of information, we wish to predict a random

variable X optimally with respect to a penalty function P , i.e., we need to find g(y) such that

P (g(y), X) is minimal. These are given by

gRMSE(y) = E[X−1|y]/E[X−2|y]

gMSLE(y) = exp{E[log X|y]}
gMSE(y) = E[X|y]

whenever such quantities are finite; moreover, these minimizers are unique.
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Proof of Proposition 3. The MSE case is standard (see Bickel and Doksum (1977)), but we

present the proof of the RMSE case for completeness. The MSLE is quite similar. Define

Q(c) = E[(c/Y − 1)2]

and so long as this is finite, the unique minimum is achieved at c = E[Y −1]/E[Y −2] by calculus (the

function is quadratic in c). If we replace the E operator by E[·|X = x] in Q and the minimizer, the

result is still valid, for any fixed vector x. Hence

E[(g(x)/Y − 1)2|X = x] ≥ E
[(

E[Y −1|X = x]
E[Y −2|X = x]Y

− 1
)2

|X = x

]

for any g(x), and the inequality is preserved by taking expectations on both sides, which yields

PRMSE(g(X), Y ) ≥ PRMSE

(
E[Y −1|X]
E[Y −2|X]

, Y

)

as desired. Strict inequality holds except at the minimizer. 2

If we apply these penalty functions to signal extraction, say for the seasonal, then we obtain

ŝRMSE
τ = E[s−1

τ |y]/E[s−2
τ |y], ŝMSLE

τ = exp{E[Sτ |Y ]}, and ŜMSE
τ = E[Sτ |Y ]. So we see that, by

switching our penalty function for (1) from MSE to MSLE, we obtain an optimal estimate that has

the property of recovery. An alternative formula for the RMSE estimator is

ŝRMSE
τ = exp{Ŝτ} E[exp{Ŝτ − Sτ}|y]

E[exp{2(Ŝτ − Sτ )}|y]
, (A.1)

which follows from elementary properties of conditional expectations. From this formula it follows

that the RMSE estimator is scale invariant. If we assume that y is lognormal, then (A.1) produces

ŝRMSE
τ = exp{Ŝτ − (3/2)MSEŜτ} and E[(ŝRMSE

τ /sτ − 1)2] = 1− exp{−MSEŜτ}.

A.2 Details of MBX-11

We provide a few additional details about the MBX-11 algorithm. In general we suppose that Yτ is

an integrated process such that Wτ = δ(B)Yτ is stationary, where B is the backshift operator and

δ(z) is a polynomial with all roots located on the unit circle of the complex plane (also, δ(0) = 1 by

convention). This δ(z) is referred to as the differencing operator of the series, and we assume it can

be factored into relatively prime polynomials δS(z) and δT (z) (i.e., polynomials with no common

zeroes), which are differencing operators for the seasonal and trend components respectively. The

differenced seasonal and trend are denoted

US
τ = δS(B)Sτ UT

τ = δT (B)Tτ , (A.2)

and are mean zero stationary time series that are uncorrelated with one another. We let d be the

order of δ, and dS and dT are the orders of δS and δT ; since the latter operators are relatively

prime, δ = δS · δT and d = dS + dT .

13



Now we can write (A.2) in a matrix form, as follows. Let ∆ be a (n−d)×n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d).

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




The matrices ∆S and ∆T have entries given by the coefficients of δS(z) and δT (z), but are (n−dS)×n

and (n− dT )× n dimensional respectively. This means that each row of these matrices consists of

the coefficients of the corresponding differencing polynomial, horizontally shifted in an appropriate

fashion. Hence

W = ∆Y US = ∆SS UT = ∆T T (A.3)

where W , US , UT , S, and T (and I) are column vectors of appropriate dimension. Now the

so-called reduced decompositions (3) Y S and Y T can likewise be differenced:

WS = ∆SY S = US + ∆SI W T = ∆T Y T = UT + ∆T I.

Let ΣX denote the covariance matrix for any (stationary) random vector X. The the matrices FS
SI

and F T
TI take the following form:

FS
SI = 1− ΣI∆

′
SΣ−1

W S∆S

F T
TI = 1− ΣI∆

′
T Σ−1

W T ∆T ,

where 1 denotes the n× n identity matrix. This is proved in McElroy and Sutcliffe (2006), where

it is also shown that

FS
STI = (1− FS

SIF
T
TI)

−1
FS

SI(1− F T
TI)

F T
STI = (1− F T

TIF
S
SI)

−1
F T

TI(1− FS
SI).

Now the multiplicative MBX-11 algorithm need not converge, though we can show that for data

consisting of a deterministic trend and seasonal, the recursive equations in (5) are solved by the

exact components. Hence for series with fairly stable trends and seasonals and moderate irregulars,

the algorithm is likely to converge (by the term “stable”, we refer to components that change very

little over time, and hence are close to being deterministic). The trend t is deterministic if ∆T t = 0,

and the seasonal s is deterministic if ∆Ss = ∆S1. This latter condition just states that any annual

average of the seasonal equals 1. Then (s, t) solve the equations

t̂ = F T
TI(y ÷ ŝ)

ŝ = 1 + FS
SI(y ÷ t̂− 1).

14



To check this, observe that y = s · t by assumption, so F T
TI(y ÷ s) = F T

TIt = t, using the formula

for F T
TI and the property that ∆T t = 0. Secondly,

FS
SI(y ÷ t− 1) = FS

SI(s− 1) = s− (1− FS
SI)s− FS

SI1 = s− (1− FS
SI)1− FS

SI1 = s− 1,

using the fact that (1−FS
SI)s = (1− FS

SI)1, which follows from the condition on s and the form of

FS
SI .

Of course, we are not interested in series with purely deterministic trends and seasonals, as

these never arise in practice. Based on extensive testing of our programs, convergence is faster

for more stable Airline models (i.e., with seasonal and nonseasonal θ’s closer to unity), and the

accuracy is higher as well. The general problem of obtaining solutions (ŝ, t̂) to the above nonlinear

system is not tractable analytically, and iterative approaches such as described by (5) must be used

in practice.
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Figure 1: Series A with stable stochastic trend and large seasonal factors. The left panel includes
the seasonal, whereas the right panel omits the seasonal to better display the bias. The trend
estimate in both panels is from the MB method.
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Figure 2: Series A with trend estimates from MBX-11 (left panel) and BC (right panel).
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Figure 3: Series B with trend estimates from MBX-11, MB, and BC.

Time

1925 1930 1935 1940

3
4

5
6

7

Time

1925 1930 1935 1940

5.
0

5.
5

6.
0

MBX−11 Trend
MB Trend
BC Trend

Figure 4: Spiky series (left panel) in log scale, and trend estimates from three methods (right
panel).
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