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Abstract 

 
This paper provides examples that illustrate the severe analytic distortions of many 
widely used masking methods that have been in use for a number of years.  The masking 
methods are intended to reduce or eliminate re-identification risk in public-use files.  
Although the masking methods yield files that do not allow reproduction of the analytic 
properties of original, confidential files, in a number of situations they sometimes allow 
small amounts of re-identification using elementary methods and widely available 
software. 
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1.  Introduction 
 
Microdata are much more useful for ad hoc analyses than tables in publications.  Because 
of the need for public-use microdata, statistical agencies have often adopted methods to 
mask data to prevent or reduce the risk of re-identification in public-use files.   
Agencies have adopted a number of methods because of their ease of implementation 
without regard to whether the methods have been clearly justified in terms of preserving 
analytic properties in very particular situations with an individual data set or in general.  
Part of the difficulty arose because there were no clear cut methods and software for 
creating models or justifying non-trivial analytic properties when many of the methods 
were introduced in the 1960s and 1970s.    
    In this paper we demonstrate the sometimes severe degradation of a number of these 
widely used methods.  These easy-to-implement methods include single-variable 
swapping, naively applied truncating, straightforward random sampling, rounding, rank 
swapping, single-variable microaggregation, and multi-variable microaggregation.   After 
an extensive literature search and many informal communications, we have been unable 
to find any papers (with one very recent exception: Burkhauser, Feng, and Jenkins 2007) 
in which the analytic properties of possible or actual public-use files have been clearly 
justified (Winkler 2004, 2005).  By clearly justified, we mean that the correspondence 
between certain aggregates in the masked, public-use data and aggregates in the original, 
confidential or the ability to support analyses such as regression or loglinear modeling is 
clearly shown.  If there are limitations in the masked data, there are often no clear 
explanations of what few analyses are or are not possible. 
   A lone exception to the lack of analytic validity for the easy-to-implement methods is 
recent work introducing a new truncation methodology that allows a narrowly focused 
but important application.  Burkhauser et al. (2007) provide convincing evidence that, if 
truncation is applied in a particular time-consistent manner, then it is possible to compute 
P90/P10 indexes and Gini indexes with data that are truncated with the new methodology 



that are consistent with the comparable indexes that can be computed from the original, 
non-truncated data.  These types of indexes are used in measuring income-inequality 
trends.  As we will point out later, the new truncation methodology will not help in 
typical, single database applications where truncation is known to (sometimes severely) 
distort applications (e.g., Lane 2007, Figure 1). 
   The much more recent literature on modeling and synthetic-data generation (Fienberg 
1997; Kennickell 1997; Abowd and Woodcock 2002, 2004; Reiter 2002, 2005; 
Raghunathan, Reiter, and Rubin 2003, Dandekar, Cohen and Kirkendal 2002) has much 
more clearly demonstrated some of the limitations of synthetic data to support more than 
a few analytic properties.  With synthetic data, we must justify very specifically what 
analytic properties are preserved.  Reiter has succinctly observed that specific properties 
that are not included in the model will not be included in the synthetic data.  He has 
further observed that some properties may not be included in the model due to the 
simplifications needed for the modeling and the lack of data needed for accurate 
modeling.  Other methods such as additive noise (Kim 1986; Fuller 1993; Yancey et al. 
2002), Data Shuffling (Muralidhar and Sarathy 2006a,b), and Post Randomization 
(Gouweleeuw et al. 1993) have also justified a few analytic properties in masked files 
and the limitations of the masked files for general analyses. 
    The methods of creating models are not often adopted because of the perceived or 
actual difficulty in creating suitable models.  The inability to model in a manner that 
preserves analytic characteristics and significantly reduces re-identification risk may 
change.  Winkler (2007a, 2008) introduced general discrete-data 
modeling/edit/imputation methods for cleaning up data to improve quality.  The methods 
can also be used to create synthetic data (Winkler 2007b) that preserves analytic 
properties while significantly reducing re-identification risk.  They are no more difficult 
than standard methods of loglinear modeling (Bishop, Fienberg, and Holland 1975) and 
imputing for missing data under standard assumptions (Little and Rubin 2002).  The 
methods are consistent with hot-deck assumptions that are widely used in surveys and 
can be extended to non-ignorable nonresponse in situations where models of the 
nonresponse mechanism are available.  The new methods (Winkler 2007a, 2008) are 
much easier to implement than hot-deck, allow preservation of joint probabilities in a 
principled manner and preservation of a number of analytic characteristics (including 
variances).  Typically hot-deck is naively applied without testing how collapsing can 
severely distort joint probabilities. 
    In this paper, we focus on methods for which there are no clearly demonstrated 
justifications that the methods preserve analytic properties (Winkler 2004, 2005) for a 
large number of real-world survey data situations.  The methods include single-variable 
swapping, naïve truncating, sampling, rounding, rank swapping, single-variable 
microaggregation, and multi-variable microaggregation.  The difficulties with single-
variable swapping, truncating, and rounding have been noted by economists.  Various 
advocates of methods such as microaggregation (Domingo-Ferrer and Mateo-Sanz 2002) 
have noted potential analytic problems but have not tried to establish a small number of 
situations in which the methods might be applied to preserve approximately one or two 
analytic properties. 
   We note that, if some of the easy-to-apply methods are applied with substantial care in 
a few specific situations, then the methods may yield partially valid analyses.  We have 



not been able to find clear justifications of situations in which an individual method, 
while not being general applicable, might be applied to data that is in a particular form 
that is amenable to the method.  We caution that the methods cannot be routinely applied 
and expected to yield even partially valid analytic properties (as the examples will 
illustrate). 
   The outline of this paper is as follows.  Following this introduction, we provide the 
examples with explanatory remarks.  The artificial data represent general continuous data 
or general multivariate normal data.  Fuller (1993), using methods that he originally 
introduced for errors-in-variables analyses, showed that that it is often sufficient to 
consider multivariate normal data with covariance matrix I or Σ.   The advantage of such 
artificial data is that it is often easier to preserve some analytic properties than with actual 
real data.  If the methods distort the masked artificial microdata, then they are even more 
likely to distort real microdata.  In the third section, we introduce some elementary 
methods for re-identification that can be used for bounding worst-case situations.  The 
advantages of the methods are that they are also easy-to-implement and are based 
primarily on the analytic properties on the masked files.  We again use the artificial 
multivariate normal data to demonstrate re-identification as in Fuller (1993) or Winkler 
(1998).  Because of the smoothness of multivariate normal data, it contains relatively 
fewer outliers than comparable real-world continuous data.  If it is possible to re-identify 
with the artificial multivariate normal data, then it will be even easier to re-identify with 
real-world data.  The fourth section provides discussion of more-difficult-to-implement 
alternative methods for which analytic properties of masked microdata have been 
demonstrated.   In the final section we provide concluding remarks.  
 

2.  Examples with Explanation 
 
In this section we provide examples of the deleterious effects of some widely used 
masking methods.  We only deal with continuous data.  Winkler (2007b) deals with a few 
situations of discrete data.  As Fuller (1993) has shown, in many situations (such as 
additive noise or measurement-error problems), general continuous data can often be 
considered multivariate normal with mean zero and covariance matrix equal to the 
identity matrix I.  This is because general multivariate data Y0 can often be transformed 
to approximate normality Y1 and the mean of the data can be subtracted.  The data Y1 
can further be transformed to Y2 = )1(2/1 YCov−Σ  where 2/1Σ  is the square root of 
Cov(Y1) that is obtained via the Cholesky or Singular Value Decompositions.   
   For ease of understanding, we generate multivariate normal data corresponding to Y1 
rather than Y2.  Whereas Y1 may allow easier preservation of analytic properties than 
with Y0, it is often more difficult to re-identify in Y1 than in Y0.  With real data Y0, 
some outliers will often stick out more from the overall point cloud than with 
approximately multivariate normal data Y1.  The point of the artificial data is that it may 
be easier to preserve analytic properties in the masked version of the artificial data and 
re-identification risk may be lower than with real data. 
 
Artificial Data 
For most of the following examples, we use a 4-field data set that is generated using SAS.  
The data set consists of 1000 records of which only the first 100 are used in some 



analyses.  The first two fields, X1 and X2, are strongly pairwise correlated and the last 
two, X3 and X4, are somewhat pairwise correlated.  The values of the fields are in the 
following ranges: 1≤x1≤100; 17≤x2≤208; 1≤x3≤100; 61≤x4≤511.  The correlations are 
based on normal, homoscedastic error. 
 
 
Table 1.  Correlations of Original Data 
                
                          x1            x2            x3            x4 
           x1       1.000       0.895       0.186      -0.102 
           x2       0.895       1.000       0.218      -0.065 
           x3       0.186       0.218       1.000       0.329 
           x4      -0.102      -0.065      0.329       1.000 
 
 
Random Blanking 
The first method involves random blanking of values of a single field in any record.  We 
randomly blank 5% and 25% of x1s, x2s and x3s with no simultaneous blanking.   This 
method is sometimes referred to as local suppression.   SAS computes correlations based 
on the available pairs. 
  The correlations in Table 2a,b are based on pairs of values of fields that are present in 
records.  While blanking is very easy to implement, it causes moderate-to-severe 
distortions in most of the correlations.  Some correlations are somewhat the same because 
of the simplistic manner in which blanking was done.  Any other analytic properties of 
the files such as coefficients in regression analyses would be even more severely 
distorted.  With actual survey, the blanking would need to be done in a manner that best 
reduces re-identification risk.  The less simplistic blanking would likely increase the bias 
of simple statistics such as correlations and regression coefficients. 
 
 
Table 2a.  Correlations of Blanked Data (available number of pairs) 
                 5% Blank Rate among x1, x2, and x3 
 
                         x1            x2            x3            x4_ 
           x1       1.000       0.884       0.219      -0.103 
                         96            92            90            96 
           x2       0.884       1.000       0.122      -0.091 
                         92            96            90            96 
           x3       0.219       0.175       1.000       0.302 
                          90            90            94            94 
           x4      -0.103      -0.091       0.302       1.000 
                         96            96            94           100_ 
 
 
 
 
 
 



Table 2b.  Correlations of Blanked Data (available number of pairs) 
                 25% Blank Rate among x1, x2, and x3 
 
                         x1            x2            x3            x4_ 
           x1       1.000       0.875       0.271      -0.125 
                         80            54            55            80 
           x2       0.875       1.000       0.122       0.045 
                         54            74            49            74 
           x3       0.271       0.122       1.000       0.331 
                          55            49            75            75 
           x4      -0.125       0.045       0.331       1.000 
                         80            74            75           100_ 
 
 
Truncation 
With naïve truncation, all values of a variable X above a certain bound B are replaced 
with the upper bound B.  More recent truncation methods often chose a value B1 that 
separates the upper 0.5% or upper 3% tail of the distribution (that varies better with 
inflation from year to year) and uses the average AV1 of the X values above the truncation 
point as the replacement value.  The more recent method preserves totals and will have 
slightly lesser deleterious effect on simple statistics such as correlations than the simplest 
truncation method for which we provide empirical examples.   
   For this example, we use CPS data from approximately 1992 and a second data source 
that has been matched to the CPS.  In the second source, we have modeled the upper tail 
of the distribution of values and replaced the true values with synthetic values that are 
drawn from the modeled distribution.  The synthetic data in the tail of the second 
distribution will not alter the results of the effects of truncation.  We use a subset of size 
~26,000 with cpswage and wage above 5. 
 
Table 3.  Data Characteristics for 26418 Records 
 ______________________________________________ 
 Variable          Mean     Std Dev    Minimum     Maximum 
 wage              36007      46100             11          3932720 
 cpswage         35144      29098             11           434999__ 
 
 
Table 4.  Distortions in Correlation Due to Truncation 
 
          Income Truncation    Correlations between 
          Value                         Wage and CPSWage 
          None                                    0.623 
          400,000                               0.768 
          200,000                               0.823  
          100,000                               0.862 
          _50,000                               0.883________ 
 
 



If both values are above the truncation point T, then the original value is 
replaced by T.  If T=400,000, then two wages above 400,000 would each be replaced 
by 400,000. 
 
 
Table 5.  Regressions with Different Truncation Values 
         _____________________________________ 
            Income                          
          Truncation          R2        Wage and CPSWage  
          _Value_______________ Intercept   Slope _ 
          None                 0.388           1346       0.986 
          400,000             0.590          4420       0.885 
          200,000             0.678          4740       0.863 
          100,000             0.742          4307       0.863 
          _50,000             0.780          3085       0.886__ 
 
 
   We see that truncation has very deleterious effects on the analytic properties.  With this 
particular (mostly real) data, the characteristics of the data above the truncation value are 
substantially different than those above the truncation value.  We note that this type of 
analytic degradation would likely be observed with any artificial data.  It has also been 
noted by Lane (2007, Figure 1) with real data. 
   Although there are sophisticated methods for filling in the truncated values from a 
hypothesized distribution (Little and Rubin 2002, Feng et al. 2006), such filling-in 
methods are not necessarily easy to implement.  If the agency producing the truncated 
data also gives better information about the (smoothed) distribution for the truncated 
values, then many users would be able to improve on the basic filling-in methods because 
they have better information.  It is not clear how easily the filling in could be performed 
in multivariate situations where the filling-in involves pairs of variables that are not 
necessarily correlated as there are in the above example. 
   The reason that individuals use truncation is to reduce re-identification risk.  If 
someone has a relatively high income (upper 0.5% tail of a distribution) and is in a 
database that contains other (quasi-)identifying information such as age (or age range), 
sex, race, and a geocode such as State or large metropolitan area, then that individual and 
other characteristics in the database associated with the individual may easily be re-
identified.  If a large number of incomes need to be truncated in a large number of 
subdomains, then analytic properties will necessarily be much more seriously affected 
than in the above empirical example. 
   The new truncation methodology of Burkhauser et al. (2006) allows the comparison of 
P90/P10 and Gini indexes over a number of time periods.  Their truncation method is 
based on modeling the distributions over all the time-periods that are used in an analysis 
and choosing a common truncation point based on a fixed proportion of the records in 
each time period.  Their method differs from the conventional truncation in which a 
truncation value is chosen and used for several years and then a new (typically) higher 
truncation value is chosen is used for several more years.  Each of the truncated values is 
replaced by the mean of the values being truncated rather than the value at the truncation 



point.  For any given year (i.e. database), their method will not solve the problems 
affecting correlations and regressions as illustrated in the above example. 
 
 
Sampling 
Sampling can reduce re-identification risk when the records that are sampled lie in the 
interior of point clouds of continuous variables.  If a record is an outlier in a population, 
then it will also be an outlier in the sample and much more likely to be re-identified.  If a 
record is an outlier in an uncontrolled random sample, then it is quite likely to be an 
outlier in the population when the number of variables is greater than 10.  By an 
uncontrolled random sample, we mean a sample that has no explicit controls that would, 
say, prevent the sampling of population outliers. 
   In this subsection, we describe a number of degradations that sampling induces.  The 
degradations are well-known to many sampling experts but may not be widely known to 
others.  Sampling experts can sometimes better assure analytic properties in files with 
methods that control various aggregates so that the sampled files preserve the aggregates 
(after estimation procedures are followed).  Alternatively, the sampling may sometimes 
be repeated until some properties are assured in a particular sample.  In the discussion of 
section 4, we specifically consider re-identification when certain of the easy-to-use 
masking methods are combined with sampling.   
   Because most public-use files have 20 or more variables, it is very difficult to get a 
representative sample (particularly at the 1% or 10% rates that are often used).  By 
representative we mean that the sample will support many of the analytic properties of 
the entire population.  If we have a skewed variable x and take a 1% sample, then almost 
no samples will contain the 10 largest values of x.  If we take a 10% sample, then almost 
half of the samples will not contain the 10 largest values of x.  This means that the effect 
of sampling with some continuous variables can be like the effect of truncation in one of 
the previous examples.  The value 10 is chosen for convenience and may vary according 
to the data and the perceived analytic characteristics that need to be approximately 
preserved. 
   If we have discrete variables, then it seems likely that most 1% (and some 10%) 
samples will not contain all of the patterns that are present in the entire population and 
the analytic results will be compromised.  By a pattern, we mean a particular set of 
values that occur for the set of variables.  If a file is sufficiently large to allow 1% 
sampling, then the majority of patterns that occur 40 of fewer in the original population 
will not occur in any fixed sample.  If these patterns or a large subset of them are needed 
to preserve certain analytic properties, then the analytic properties will almost certainly 
not be present in some of the samples. 
   If the producer of the public-use file has the situation of 20 or more variables, then the 
producer will have a very difficult time of justifying analytic properties with many of the 
1% (and possibly many of the 10%) random samples.  A potential solution is to keep 
drawing random samples, until a particular sample can be justified in terms of analytic 
properties.  After the sample is justified, then the 20-variable records can be examined 
carefully to determine those that are potential outliers in different combinations of 
variables and may need additional masking to reduce re-identification risk.  The 
additional masking, however, may severely distort analytic properties.   



Rounding 
Another easy-to-implement method is rounding for which we also use the SAS rounding 
procedure.  The naïve intuition is that, while rounding makes it more difficult to re-
identify, rounding does not seriously compromise analytic properties.  We will comment 
on re-identification again when we consider more sophisticated generalizations of 
masking that include rounding as a special case. 
 
 
Table 6a.  Correlations after Rounding.  Base 10. 
 
                         x1            x2            x3            x4_ 
           x1       1.000       0.887       0.170      -0.115 
           x2       0.881       1.000       0.205      -0.062 
           x3       0.170       0.205       1.000       0.315 
           x4      -0.115     -0.062       0.315       1.000 
 
 
Table 6b.  Correlations after Rounding.  Base 50.  
         
                         x1            x2            x3            x4_   
           x1       1.000       0.739       0.096      -0.173 
           x2       0.739       1.000       0.183      -0.107 
           x3       0.096       0.183       1.000       0.289 
           x4      -0.173     -0.107       0.289       1.000 
 
 
Table 6c.  Correlations after Rounding.  Base 100.  
   
                         x1            x2            x3            x4   
           x1       1.000       0.688       0.141       0.025 
           x2       0.688       1.000       0.092       0.057 
           x3       0.141       0.092       1.000       0.320 
           x4       0.025       0.057       0.320       1.000 
 
 
With Round 100, most variables only take 2, 3, or 5 different values.  In the first situation 
(Table 6a), correlations are slightly distorted; in all remaining situations of rounding, 
correlations are severely distorted.  For instance, in Table 6b, the correlation between x1 
and x2 is 0.739 and between x1 and x3 is 0.096; in Table 1, the correlations are 0.895 and 
0.186, respectively.  Although slight rounding can preserve simple analytic properties in 
some situations, we also need to be concerned with re-identification. Although rounding 
to base 100 is very extreme with the empirical data of Table 1, it may be necessary to 
reduce re-identification risk.  Very elementary re-identification methods are covered in 
the next section and in the discussion.  Although we do not cover specific re-
identification risk for rounding, we do cover re-identification risk for rank swapping and 



single-variable microaggregation (both covered below) that are each known to generalize 
rounding.  
 
 
Perturbation Methods 
With perturbation methods we change values of certain variables in a more sophisticated 
manner to make re-identification more difficult.  The intent is to possibly preserve one or 
two analytic properties.  In the following we consider the easiest methods.  The ability of 
additive noise, general perturbation (Muralidhar and Sarathy 2002, 2006a,b), blanking 
and imputation, and general models to create synthetic data have been justified 
elsewhere.   
 
1.  Swapping 
2.  Rank Swapping 
3.  Microaggregation 
 
4.  Additive Noise 
5.  General Perturbation  
6.  Blanking and Imputation (Partial Model) 
7.  Create General Model and Draw Synthetic Data 
 
 
Swapping 
With this procedure, called single-variable swapping, we swap values of individual 
variables independent of other variables. The ideas of single-variable swapping were 
originally developed by Dalenius and Reiss (1982).  Fienberg and MacIntyre (2005) 
provide a recent overview.   
   In the following, the first three of the variables are swapped. 
 
 
Table 7a.  Correlations after swapping (10% rate)  
 
                        x1            x2            x3            x4__   
           x1       1.000        0.010       0.100       0.104 
           x2       0.010       1.000      -0.039        0.039 
           x3       0.100      -0.039       1.000        0.290 
           x4       0.104       0.039       0.290        1.000 
 
 
Table 7b.  Correlations after swapping (100% rate)  
 
                        x1            x2            x3            x4__   
           x1       1.000      -0.876       0.936      -0.942 
           x2      -0.876       1.000      -0.980       0.935 
           x3       0.936      -0.980       1.000      -0.956 
           x4      -0.942       0.935      -0.956       1.000 



 
   The 10% swapping rate means that 10% of the values of each variable are swapped 
arbitrarily with other values of the records.  We observe that correlations are almost 
instantly destroyed with swapping even at the 10% swapping rate.  For instance, in Table 
7a, the correlation between x1 and x2 is 0.010 and the correlation between x1 and x3 is 
0.100; in Table 1, the correlations are 0.881 and 0.170, respectively.  Re-identification 
rate after 100% swapping is effectively 0.  At 10% swapping, the re-identification rate 
will typically be substantially greater than 0.  If values of two variables (among x1, x2, 
x3, and x4) are sufficient to re-identify (by comparing the original file directly with the 
swapped version of the file), then there is greater than 99% probability that two or less 
values in any record would be swapped.  Among 1000 records, we would expect to re-
identify at least 990 records. 
  An alternative to single-variable swapping is to swap several variables simultaneously 
across records.  We will call this method group swapping.  As an instance, if a record Xi 
= (xi1, xi2, …, xik, yi1, yi2, …, yil) has its y –values swapped as group with the y-values in 
Xj=(xj1, xj2, …, xjk, yj1, yj2, …, yjl).  If the swapping is on the entire file or only within a 
set of subdomains that partition the entire file, then the means and correlations of the y-
variables will be preserved.  If the group swapping of the y-variables is within 
subdomains, then the means and correlations of y-variables will also be preserved on the 
subdomains.  The correlations across x and y variables will show the severe deterioration 
as in the single-variable swapping situations.  We still need to be careful because two or 
more of the y-variables may be sufficient to re-identify in some of the records just as we 
can re-identify with two variables in the example of the previous paragraph. 
   In some situations, individuals may perform very limited group swapping to reduce 
analytic deterioration.  Limited swapping might best be applied to only a set (or subset) 
of the most easily re-identified pairs of records across the original file X and the masked 
file Y.  The swapping was limited to a set of subdomains that partitioned the files X and 
Y.  Even a very limited group swapping rate of less than 0.005 can significantly affect 
analytic properties (Kim and Winkler 1995) in subdomains that were significantly 
different from the subdomains in which swapping was controlled.  By controlled to 
subdomains, we mean that the group swapping of a set of values in a record must be done 
with another record in the same subdomain. 
 
 
Rank Swapping 
In ranking swapping, values of fields are swapped across records within a specified 
proportional range according to an independent sort of the values (Moore 1997).  The 
procedure is: 
 
   Begin with the set of records  X = (x1, …., xn).  Sort each continuous variable xi. 
   Randomly swap values of xi within a p-percent range according to the rank ordering.   
 
   The difference between ordinary swapping in the previous section and rank swapping is 
that rank swapping puts restrictions on the range of values (in terms of the ordered 
distribution) in which swapping can occur.  Rank swapping at the rate p=100% is the 
same as single-variable swapping.  Swapping at a 10% rate means that a 10% of values of 



a variable are swapped with 10% of the values of the variables in the entire range of the 
distribution of values. 
   If x1 has 1000 values, then after sort of x1 get values that we rename (y1,1, …, y1,1000).  If 
p% is 5%, then we must randomly swap any kth value yi,k with values between yi,k-50 and 
yi,k+50.  The swapping is done without replacement.  That is, each swap represents a pair 
of values that, after being swapped, are not eligible to be swapped again.  The 5% range 
represents 50 records in either direction.  The tails of the distributions (i.e., either lower 
or upper) must be dealt with via heuristics.  
   As the value of p goes to 0, the amount of distortion in the rank-swapped (masked) file 
Y decreases. 
 
 
Table 8a.  Correlations after Rank Swap 5% 
 
                         x1            x2            x3            x4_ 
           x1       1.000       0.883       0.199      -0.063 
           x2       0.883       1.000       0.206      -0.060 
           x3       0.199       0.206       1.000       0.366 
           x4      -0.063     -0.060       0.366       1.000 
 
 
Table 8b.  Correlations after Rank Swap 10% 
 
                         x1            x2            x3            x4_ 
           x1       1.000       0.854       0.171      -0.077 
           x2       0.854       1.000       0.169      -0.052 
           x3       0.171       0.169       1.000       0.364 
           x4      -0.077     -0.052       0.364       1.000   
 
 
Table 8c.  Correlations after Rank Swap 20% 
  
                        x1            x2            x3            x4__ 
           x1       1.000       0.733       0.121      -0.163 
           x2       0.733       1.000       0.152      -0.077 
           x3       0.121       0.152       1.000       0.306 
           x4      -0.163     -0.077       0.306       1.000 
 
 
We observe that rank swapping at a 5% rate approximately preserves correlations.  At 
10% and 20% rank swapping rates, deterioration of correlations is substantial.  For 
instance, in Table 8b, the correlation between x1 and x2 is 0.854 and between x1 and x3 
is 0.171; in Table 1, the correlations are 0.881 and 0.186, respectively.   In section 4, we 
will show that it is possible to get quite high re-identification rates with rank-swapped 
files.   
 



Microaggregation 
Microaggreation replaces values of variables with a single value such as an average or 
median that is within the subrange of the values of the variable.  It has substantial 
similarity to rank swapping and is also quite easy to implement. 
 
Single-ranking k-microaggregation.  X = (x1, …., xn).  Sort each continuous variable xi.  
Group values into successive groups of size k (or more but less than 2k-1).  Replace the 
values in each group by the group-mean or group-median.  Repeat for each variable.   
   Because it is known that single ranking microaggregation can yield very high re-
identification rates (Winkler 2002, Muralidhar 2003 private communication, Muralidhar 
and Sarathy 2006a), individuals have introduced methods for multivariable 
microaggregation.  Domingo-Ferrer and Mateo-Sanz (2002) noted that the single-variable 
microaggregation can cause modest distortion in regression coefficients with small values 
of k.  We will cover re-identification methods for microaggregated files in section 3. 
 
Multivariable Microaggregation 
In this procedure, all variables in X=(xij) are used in a clustering procedure to determine a 
set of cells in which each cell contains between k and 2k-1 records.  The procedure for 
creating a k-microaggregated file is known to be NP Hard but heuristic procedures may 
be used (Domingo-Ferrer and Mateo-Sanz 2002).  Typically each x-variable Xj is 
transformed into a common range and the metric used is the standard Euclidean metric on 
Rn. 
   Although the empirical data X are not described in detail, the data X are taken from a 
large file with many variables in which subsets had characteristics similar to the 
characteristics of the data in Table 1.  Only four variables are considered.  The file is a 
100-record subset of a larger file.  The file is somewhat similar to the artificial data used 
for most of the empirical examples.  The data are divided into 10 clusters.  To produce 
masked data Y, each record in a cluster is replaced by its centroid (average of the 10 
records).  This is 10-microaggregation. 
   The two correlation tables (9 and 10) demonstrate that k-microaggregation will not 
preserve correlations.  For instance, in Table 9, the correlation between x3 and x4 is 0.95; 
in Table 10, the correlation between x3 and x4 is -0.305.  It is likely that higher moments 
are also seriously compromised.  The file of the empirical example is merely an extract of 
a file in which two variables are chosen that are (highly) correlated and a third variable 
that is relatively uncorrelated with the first two. 
 
 
Table 9.  Extracted File – Original Correlations   
 
                         x1            x2            x3            x4_ 
           x1       1.000      -0.274       0.316       0.273 
           x2      -0.274       1.000       0.044       0.039 
           x3       0.316       0.044       1.000       0.935 
           x4       0.273       0.039       0.935       1.000 
 
 



Table 10.  10-Microaggregated File – Correlations 
 
                         x1            x2            x3            x4_ 
           x1       1.000      -0.300       0.347      -0.361 
           x2      -0.300       1.000       0.041       0.096 
           x3       0.347       0.041       1.000      -0.305 
           x4      -0.361       0.096     -0.305       1.000 
 
 
   Most public-use files have twenty or more variables.  If we have a substantial number 
of variables, then we can divide the variables into a number of groups G1, …, Gs where 
the variables in each group are relatively (somewhat) correlated with each other and the 
correlation across groups is much weaker.  The groups G1, …, Gs could be obtained via a 
general clustering algorithm.  We could repeat the multivariable k-microaggregation 
procedure for each subgroup and produce a public-use file Y.  Analytic properties are 
also unlikely to be effectively preserved with the cluster-group-microaggregate-within-
group procedure.  Nin et al. (2008) introduce methods for placing variables in groups that 
better preserve certain analytic properties after microaggregation.  There are still re-
identification issues related to the group-then-microaggregate procedures that we will 
deal with in the next section. 
 
Summarizing comments 
We have demonstrated that several of the widely used, easily implemented masking 
methods distort analytic properties to the point where the masked files are unusable for 
some (or most) analyses.  We are unaware of any situations where the most basic of the 
easily applied methods have been applied to certain specific types of data and several of 
the analytic properties of the masked data have been justified in comparison to the 
original, confidential microdata.  By justifying analytic properties, we mean that a 
masked file will allow approximate reproduction of one or two analytic properties 
(statistics) beyond the simple reproduction of means and covariances from the original, 
confidential file. 
 
 

3.  Elementary Methods for Evaluating Re-identification Risk 
 
In this section we introduce methods of evaluating re-identification risk that are quite 
straightforward to implement.  The methods provide an upper bound that is useful for the 
providers of the masked microdata.  The methods are intended to deal with ‘worst case’ 
scenarios.  An advantage of the methods is that they often delineate subsets of records 
that appear easy to re-identify because the records are outliers in some sense that is 
unexpected in the original analyses by the data providers. 
   The most straightforward method of investigating re-identification risk is for an agency 
to use various types of clustering software (or more powerful nearest neighbor or record 
linkage software) to compare original data X with the corresponding masked data Y.  
Although this will give re-identification rates that are too high, the agency can extrapolate 
the re-identification rates downward by assuming that only outliers in the original data X 



may be re-identified.  With certain types of masking, records in the interior of X may be 
difficult to distinguish from each other and corresponding records in the interior of Y 
may be difficult to distinguish from each other and from records in X. 
   This methodology of directly comparing X with Y is much more straightforward than 
alternatives based of cryptographic protocols (Chawla et al. 2005) or Dwork (2006), for 
various modeling methods (Elamir and Skinner 2006) and (Skinner and Shlomo 2007) 
that are based on distributional characteristics and loglinear models, for statistical models 
(Reiter 2005) that differ from the aforementioned models of Skinner and others, and for 
methods that involve the collection of (possible) intruder data Z from public sources and 
direct re-identification between Y and Z.  We touch on these methods somewhat in the 
discussion. 
 
   As SAS procedures are widely available and understood, we describe primarily analytic 
means of re-identification using elementary procedures available in SAS.  Each original 
data record Xi. and each masked data record Yj. can be thought of as a point in Rn.  An 
intruder might have additional data Zk. that corresponds to both Xi.and Yj. that contains 
identifying information such as name, address, and date-of-birth.  By comparing Zk with 
Yj., the intruder might determine that certain individuals were likely on the original file 
Xi.  In our situation, we compare Xi. directly with Yj.  Because our data Xi. are possibly of 
higher quality than the data Zk. of the intruder, re-identification will be easier and we can 
better evaluate the risk of re-identification. The methods of re-identification are 
supplemental to the (similarly) analytic methods that we describe in the next section and 
are far simpler than the record linkage methods.  In the discussion of section 3, we 
describe some of the weaknesses of the re-identification methods in that they may not be 
representative of some real world situations.  We begin by describing nearest neighbor. 
 
Nearest-Neighbor 
Using matrix or array notation we have  
 
  X = (xij) original data, Y=(yij) masked data 
 
   As a simplistic procedure, we compare each record (row) of X with every row in Y.  If 
X has n rows and Y has m rows, we do n × m comparisons.  Using the standard Euclidean 
metric, for each row (xi0,j) denote the three closest neighbors by (yi01,j), (yi02,j) and (yi03,j).    
If (xi0,j) corresponds to one of (yi01,j), (yi02,j) and (yi03,j), assume that a re-identification has 
taken place.   The worst situation is when (xi0,j) corresponds to (yi01,j) (i.e., closest y-
record). 
   Some agencies might have a re-identification policy that states that a re-identification 
has occurred if one of the closest 3 y-records correspond to the x-record.  Or they might 
state that might consider the closest 5 or 10 y-records.  In the first case, we might crudely 
state that an x-record has a 1/3 chance for being re-identified.  In the later cases, we might 
state that an x-record has a 1/5 or 1/10 chance of re-identification. 
   Although there are nearest-neighbor software packages available on STATLIB, we 
wish to use less powerful procedures in SAS that provide a crude approximation.  We 
choose the SAS procedure according the analytic properties of the data.  We will deal 



with increasingly more sophisticated examples and methods for masking data and for re-
identification later. 
  In the following, we perform lazy person’s nearest-neighbor via SAS clustering.  To do 
this we combine X and Y records in one file.  As Y files, we use the different variants of 
the rounded files. 
 
    proc fastclus data=d1 maxc=50 maxiter=100 out=d2; 
      var x1 x2 x3 x4;   
 
The simplistic SAS clustering procedure yields the following re-identification rates with 
the rounded data given in Tables 6a,b,c.   
 
 
Table 11.  Re-identification Rates with Rounded Data  
    __________________________________________ 
    Round 10 – 100% against highest nearest-neighbor. 
    Round 50 - ~100% against highest nearest neighbor.  
    Round 100 - <5% against highest nearest neighbor._ 
 
 
   The clustering is designed so that each original record in X is clustered (or matched) 
with one record in Y in a manner that minimizes the total sum of squares of the 
differences between the pairs of records in X and in Y.  Although the clustering 
procedure is quite effective with this data, this clustering is known to be less 
sophisticated (i.e., powerful) than nearest-neighbor matching.  If X were a 10% sample of 
a larger file X1 and Y is produced by the rounding X, then we would still have substantial 
re-identification with the clustering procedure.  If we increased the number of variables, 
decreased the sampling proportion, and used nearest- neighbor matching or record 
linkage, then the re-identification rates would still be substantial.  We describe this 
further in the case of micro-aggregation described below for which re-identification is 
typically much more difficult than in the situation of rounding. 
 
   We summarize: While rounding moderately or significantly reduces analytic properties, 
re-identification risk can remain high.  The re-identification risk is based on the fact the 
points in Rn can still be quite far apart.  To preserve analytic properties, restrictions on the 
locations of the points in Rn may need to be substantial.  The set of restrictions over the 
entire set of X and Y data along with minimally knowledgeable use of clustering (crude 
nearest neighbor) yields re-identification.  If we were to increase the number of variables 
to six or eight, then the re-identification rate would increase very significantly from the 
re-identification rate with four variables. 
 
   Some individuals believe that it is not useful to compare a masked version with the 
original version of the file directly.  The direct comparison can be useful because the data 
provider can determine unexpected re-identifications as in Kim and Winkler (1995).  Kim 
and Winkler only considered those records as being re-identifications that were outliers in 
the various subdomains in which they were needed to maintain analytic properties.  Non-



outliers were not considered re-identifications because the sampling fraction was low.  In 
the discussion, we will deal with the sampling-fraction situation by referring to work by 
Winkler (1998) in which substantial re-identification (above 50% of true matches 
determined) occurs at 10% sampling rates with only six variables.   
   If we use the fast clustering procedure with the rank-swapped data in Tables 8a,b,c, re-
identification at the three rates (5%, 10%, 20%) is effectively zero.  Can we conclude that 
rank swapping effectively protects against re-identification?  No.  We may need to try 
different re-identification procedures.  We try to manually re-identify using our 
knowledge of how a rank-swapping file is produced.  The 5% rank swapped (i.e., 
masked) file Y is produced from file X by swapping values within a 5% range according 
to sort ordering. 
   In the following we describe how to do the re-identification manually.  Software would 
do the re-identification more quickly, particularly on larger files. 
 

Procedure for quick re-identification in rank-swapped or microaggregated files 
Take files Y and X.  Assume the unique identifier in Y is different than in X or put one in 
if it is missing.  Create four copies Xs1, Xs2, Xs3, and Xs4 of X where Xsi is created by 
sorting X according to variable Xi, respectively.  Choose any record y in Y.  For the first 
variable y1o in y, find the corresponding 5-10 records in Xs1 that correspond to y1o.  If 
there are more than 10 records, choose an alternative y1o.  For y1o, write down the 
unique identification numbers A1o corresponding to the x-records in Xs1.  Take a 
different yi-variable that is relatively uncorrelated with y1.  Take yio from record y and 
compare it with Xsi.  Write down the unique identification numbers Aio corresponding to 
yio.  Typically, the intersection Aio∩A1o will contain the desired single unique identifier 
that relates y to a unique x-record. 
 
   With rank swapping and the above procedures with only two variables, we can 
sometimes achieve nearly 100% re-identification rates.  We observe that we can use the 
analytic characteristics to manually re-identify.  In section 4, we will note additional re-
identification for files that have valid analytic properties.  Nin et al. (2007a) provide a 
rank-swapping method that is enhanced with a random swap that somewhat reduces re-
identification risk.  Their empirical work (also work in Nin et al. 2007b) confirms the re-
identification risk with rank swapping and with single-variable microaggregation. 
   If we have a number of variables that we divide into several groups G1, …, Gk in 
which there is relatively higher correlation between variables within groups and relatively 
lower correlation across groups, then it is likely that multi-variable microaggregation 
within groups will still yield moderate re-identification risk in many situations.  The re-
identification could be done with a procedure that mimics the above single-variable re-
identification procedures.  If the original file has 10,000 records, there are three groups 
G1, G2, and G3, and we 100-multi-variable microaggregate in each group, then any 
given record will be associated with 100 records A1o, A2o, and A3o in each of groups 
G1, G2, and G3, respectively.  If the intersection of A1o, A2o, and A3o is a unique 
record (which it typically will be), then a re-identification occurs.  Nin et al. (2008) 
provide methods for systematically improving the clustering of the variables that enter 
groups G1, …, Gk to enhance analytical properties but demonstrate that re-identification 
risk can still be moderate or greater. 



 
Summarizing comments 
We have provided an indication that some re-identification may be possible with these 
files that have been masked with these elementary methods.  Our methods were primarily 
to use the analytic properties of the files to demonstrate situations where some records 
could be re-identified.  Much more powerful re-identification methods that very 
specifically use analytic properties to construct new metrics in nearest-neighbor or record 
linkage software are likely to re-identify at higher rates.  Better use of analytic knowledge 
of the characteristics of a population file will raise re-identification even further. 

 
 

4.  Discussion 
 
The discussion consists of a critique of the re-identification risk and a listing of some 
masking methods for which analytic properties have been justified.   
   Putting a large number of analytic restraints on synthetic data may necessitate that the 
synthetic data agree exactly with the original, confidential microdata.  As an example, a 
file of economic data for businesses (i.e., continuous data) contains twelve variables that 
are known to (approximately) be normal.  If users want the public-use data have twelve 
variables to preserve means and covariances on a number of subdomains and the some of 
the subdomains contain 30 or fewer records, then the number of analytic constraints 
exceeds the number of degrees of freedom.  The only data that can preserve the analytic 
properties on the small subdomains are the original microdata. 
 
4.1.  Re-identification Risk 
 
Many individuals have assumed that sampling provides subsets of a population with 
automatically justified analytic properties and severely reduced re-identification risk.  If 
the masked, public-use file X1 has variables that are distorted in certain ways and the 
intruder file Y has distortions that naturally occur in the values of the differing variables, 
then re-identification risk is substantially reduced (or eliminated).   
   These beliefs may be somewhat valid in a narrow range of situations but are misplaced 
in general because of several factors.  Most public-use files X1 are created from 
confidential files X that are typically believed to be of high quality and contain 20 or 
more variables.  Historical beliefs were that intruders would not have most of the 
variables in the public-use file and most re-identification would be via naïve, exact 
comparison methods.  Sweeney dramatically demonstrated that many public use files 
could not be considered confidential because they contained ZIP code, date-of-birth, and 
sex that uniquely identified as much as 87% of the population using readily available 
voter-registration data.  The point is that three variables (in files having sometimes more 
than 100 variables) allowed easy manual re-identification.  Sweeney also demonstrated 
how to obtain publicly available data that could assist in re-identification of small 
numbers of records in some files using manual methods only. 
   Kim and Winkler (1995) demonstrated that a very small proportion of records could be 
re-identified because of analytic restrictions of the public-use files on some subdomains.  
Their conservative assumption was that outliers in the subdomains (even at small 



sampling rates) would be outliers in the original population.  They demonstrated that 6-8 
quantitative variables on the subdomains (defined by several discrete variables) were 
often sufficient for re-identification.  With multivariate normal data as in Fuller (1993), 
Winkler (1998) compared a 10% sample file that had been masked with additive noise to 
the original population file.  In the six-variable situation, Winkler was able to identify 
more than 70% of the records with probability greater than 50%.  If analytic properties 
need to be maintained on subdomains and there are 10 or more variables, then it seems 
that moderate re-identification can occur with sampling fractions approaching 1%. 
   We note that the re-identification would be substantially more straightforward with 
either rounding or with single-variable micro-aggregation than with additive noise.  This 
is due to the more straightforward (and structured) way that rounding and single-variable 
micro-aggregation induce changes in the masked file.  With each individual in the 
masked file, it is quite straightforward to reconstruct approximately the distribution of the 
original, confidential values of the variables.  The approximately reconstructed 
distributions can, in turn, be used to created metrics that significantly increase re-
identification rates.  We note that the metrics measure how far a value of a masked value 
of a variable can deviate from the other masked values of the same variable and from the 
values in the original distribution.  As we showed earlier, the re-identification can, in fact, 
be performed manually (but re-identification is often much faster with appropriate 
software). 
  Yancey et al. (2002) showed that new metrics developed by Kim and Winkler (1999) 
allowed higher re-identification rates (still small) than what Kim and Winkler (1995) had 
originally obtained with different metrics.  The first point is that sampling can only 
protect records that are in the interior of point clouds where the point clouds are only 
based on a few variables.  The second point is that more sophisticated re-identification 
metrics on some variables will allow additional re-identification.  It is almost impossible 
to anticipate the multiple methods that an intruder will use in re-identifying on a 
particular file. 
 
4.2.  Masking Methods with Justified Analytic Properties 
 
In the following, by justified analytic properties, we mean the ability to support one or 
two sets of analyses that are supported by the original microdata.  The authors that have 
justified the analytic properties of their microdata have also been careful to note that it 
can often only be used for a pre-specified set of analyses.  The have typically noted 
specific limitations on the set of analyses. 
   Methods for producing analytically valid synthetic data from valid models have been 
clearly been justified in most literature.  These include Latin Hypercubes (Dandekar et al. 
2002), Blank-and-Impute (Kennickell 1997; Woodcock 2002, 2004) and pure synthetic 
data (Reiter 2002, 2005; Raghunathan et al. 2003).  Various methods for creating 
partially synthetic data have also been justified (Muralidhar and Sarathy 2002, 2006a,b, 
2007; Little and Liu 2002, 2003; Reiter 2005). 
   Other justified methods are additive noise (Kim 1986), mixtures of additive noise 
(Yancey et al. 2002), general perturbation (Muralidhar and Sarathy 2002, 2006a,b) and 
the Post Randomization Method (Gouweleeuw et al. 1998; Van Den Hout and Van der 
Heijden 2002; De Wolf 2006).  The Post Randomization method is more difficult to 



implement and its ability to provide valid analytic properties appears to hold in a narrow 
range of situations. 
 
4.3.  Two Principles of Masking Methods 
 
  We can summarize our main two points about masked, public-use microdata as follows. 
 
   1.  Individuals should first justify the analytical properties of a public-use file X1.  
  
   2.  With an analytically valid public-use file X1, individuals should then apply effective 
re-identification methods to assure that risk is within acceptable levels.   

 
 

4.  Concluding Remarks 
 
This paper provides examples that demonstrate that many of the widely used, easy-to-
implement masking procedures do not yield microdata that preserve analytic properties 
from original, confidential microdata.  
 
 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion 
(of work in progress).  Any views expressed on (statistical, methodological, technical, or operational) 
issues are those of the author(s) and not necessarily those of the U.S. Census Bureau.  The author 
acknowledges a number of comments by Philip Steel and Rolando Rodriquez that led to improvement in 
the exposition.   
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