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1. Introduction

The Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program produces
poverty estimates for various age groups for states, counties, and school districts. For states the age
groups are 0-4, 5-17, 18-64, and 65+. Through 2006 the state estimates have come from a regression
model with state random effects (Fay and Herriot 1979) applied to direct state estimates from the
Current Population Survey (CPS) Annual Social and Economic Supplement (ASEC, formerly known
as the CPS March income supplement).1 The models borrow information from regression variables
related to poverty that are constructed from administrative records data and from poverty estimates
from the previous decennial census. Estimates are identified by the “income year” (IY), which refers
to the year for which income is reported in the ASEC.  From IY 2000 on, the CPS ASEC sample size
has been about 100,000 addresses.2 Further information is available on the SAIPE web site at
http://www.census.gov/hhes/www/saipe/index.html. For simplicity, in what follows we shorten
references to “CPS ASEC” to just “CPS.”

From 2000-2004 demonstration surveys fielded to test data collection procedures for the
American Community Survey (ACS) have also provided state poverty estimates. The ACS asks
essentially the same questions as previous decennial census long form surveys, and is replacing the
long form, but with the data collection spread continuously throughout the decade, rather than at a
single point in time.  The demonstration surveys of ACS had sample sizes on the order of 700,000
to 800,000 addresses, significantly larger than the CPS. 

The full implementation of the ACS sample started in January 2005, with a national annual
sample size of approximately 3 million addresses. Poverty estimates for states (as well as for
counties and other places with populations of 65,000 or more) are now available from the 2005 ACS
and, more recently, the 2006 ACS. Further information on the ACS may be found at
http://www.census.gov/acs/www/.

ACS poverty estimates differ from CPS poverty estimates as discussed in Bishaw and Stern
(2006) and Nelson (2006). ACS has tended to produce higher poverty rates, with those at the
national level exceeding those from CPS by statistically significant amounts. Also, Nelson (2006)
reports significant results of chi-squared tests of the equality of the distribution of poverty across
states from the ACS and CPS estimates. That is, there is evidence that the distribution of poverty
differs between the ACS and CPS estimates. The reasons for these differences are not fully
understood, but some known reasons to expect differences arise from ways that the ACS procedures
for collecting income data differ from those of the CPS. One relevant point is that ACS collects
income data continuously with a reference period of the previous 12 months (at the time income is
reported) whereas the CPS collects income data in February–April with a reference period of the
previous calendar year. Annual ACS state estimates use data collected over a full year, and thus
involve income reports that cover different 12 month time frames extending over a period of nearly
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two years (23 months). These timing differences suggest some alternatives for joint modeling of the
ACS and CPS data that will be examined later in this paper.

In this paper we report the results of an empirical study investigating the potential benefits to
state poverty models of using data from both the CPS and ACS via a bivariate model. Our initial
efforts (Huang and Bell 2004) combined CPS data with data from ACS demonstration surveys for
2000 and 2001. Here we add similar results for IY 2002 and also report the results of combining
CPS data (for IY 2004) with full production 2005 ACS estimates.  We assess the potential benefits
of using both data sources by comparing prediction error variances from the bivariate model with
those from corresponding univariate models applied to the CPS or ACS data separately. We focus
mostly on the potential of the bivariate models to reduce prediction error variances for the CPS
equation, but present results for the ACS equation as well. In the first case the targets are the “true”
state poverty ratios (underlying population quantities) being estimated by the CPS data, in the
second case the targets are the “true” state poverty ratios being estimated by the ACS data. As noted
above, these two targets are different.

Our empirical results suggest that use of the ACS data has some potential to reduce prediction
error variances below those of the CPS univariate state poverty ratio models, but there are two
qualifications. First, the results vary over states, with some states actually showing increased
variances. Second, we tried alternative bivariate models for using the ACS  survey data, and results
varied across the alternative models. Models that made more restrictive assumptions yielded
apparently greater improvements in prediction error variances. The validity of these results depends,
though, on the more restrictive model assumptions holding. Therefore, we also examined statistical
tests (chi-squared tests) of these restrictions. The most restrictive assumptions (such as assuming no
difference between what CPS and ACS are estimating) were rejected. Results from the ACS
demonstration survey data and the full production ACS 2005 data lead to similar conclusions about
the  potential for reducing CPS equation prediction error variances by borrowing information from
ACS data.

Other results show that there is essentially no potential for using CPS data to improve prediction
error variances in the ACS equation (below those from the ACS univariate model). The sampling
error in the CPS estimates is simply too large relative to that in the ACS data for the CPS data to
provide useful additional information about state poverty as estimated by ACS.

Section 2 presents the alternative models we examined for the CPS and ACS state poverty ratios.
The prediction error variances for our models are posterior variances computed via a Bayesian
approach, which is also discussed in Section 2. Section 3 contains the empirical results from using
ACS demonstration survey data (for IY2000–2002), including the prediction error variance
comparisons, results of the chi-squared tests, and comparisons of point estimates from alternative
models. Section 4 contains the empirical results from using the full production ACS 2005 data and
CPS data for IY 2004 in our models. Finally, Section 5 summarizes our results and draws
conclusions.
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2. Alternative Models for State Poverty Ratios

To incorporate information from both  CPS and ACS data we use a general bivariate regression
model with random effects. Bell (2000) discussed this model in the context of county poverty
models. Section 2.1 discusses the general bivariate model, and Section 2.2 some alternative
(restricted) bivariate models, as well as the univariate model currently used in SAIPE production.
Section 2.3 then discusses Bayesian treatment of the models, i.e., how we obtain posterior means
and variances for the state poverty ratios.

2.1 General Bivariate Model 

For any given year and age group, let Y1i  and  Y2i  be the “true poverty ratios” (number poor /
population) for state i that are being estimated by the CPS and ACS, respectively, for i = 1,ÿ,51
(including the 50 states and the District of Columbia). As noted earlier, due to data collection and
possibly other differences between the CPS and ACS, we assume that Y1i … Y2i, in general. Let y1i
and y2i be the direct sample estimated poverty ratios for state i from the CPS and ACS, respectively.
Then we have

y1i = Y1i  +  e1i

y2i = Y2i  +  e2i,

where the sampling errors e1i  and e2i are assumed to be independently distributed as  N(0, vji),  j =
1,2. The vji are assumed known, though they are actually estimates of the true sampling variances.
In the case of CPS, the direct variance estimates are smoothed using a sampling error model (Otto
and Bell 1995) to get the v1i. In the case of ACS, we use the direct sampling variance estimates as
the v2i. Finally, we assume Cov(e1i, e2i) = 0, because the CPS and ACS are independent samples.

Our model for the true poverty ratios is:

Y1i = "1 + xi' $1 + u1i

Y2i = "2 + xi' $2 + u2i

where the "’s and $’s are regression parameters, xi'  is a row vector of  regression variables, and 
(u1i , u2i)N are independently and identically normally distributed with zero means. Note the same
vector of regression variables xi' is used in both the CPS and ACS equations. We let

Var(u1i) = s11,  Var(u2i) = s22,  and  Corr(u1i , u2i) = D.

The regression variables in xi' include pseudo state poverty rates constructed from Internal Revenue
Service (IRS) tax data, tax non-filer ratios constructed from IRS data and state population estimates,
Supplementary Security Income (SSI) state participation rates (for age 65+ only) constructed from



3 Starting with IY 2004 two changes were made to the regression variables in the state poverty ratio models
for ages 0-4, 5-17, and 18-64. First, we added state participation rates in the food stamp program. Second, we
replaced the Census 2000 state poverty ratios by corresponding “census residuals” obtained by regressing the Census
2000 estimates on the other regression variables defined for IY 1989. These changes are discussed in connection
with the IY 2004 estimates on the SAIPE web site. The model for the 65+ poverty ratios remained unchanged.
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Social Security Administration data and state population estimates, and Census 2000 state poverty
ratios.3 For more information see the SAIPE web site mentioned earlier.

Noninformative prior distributions for the model parameters are assumed as follows:

$ = ("1, $1N, "2, $2N)N is distributed as multivariate N(0, cI), with c large,

s11 and s22 are independently distributed as Uniform (0, m1) and Uniform (0, m2), with m1 and
m2 large, and

D  is distributed as Uniform (-1, 1).

The values of c, m1, and m2 were chosen to be sufficiently large so that the priors could effectively
be regarded as flat on (!4, +4) and (0, +4) as appropriate. We used c = 1,000 for all age groups and
chose values for m1 and m2 separately for each age group so that the likelihood (for the univariate
models discussed below) was effectively zero beyond m1 and m2. (E.g., for age 5-17, this led to
choosing m1 = m2 = 20.)

2.2 Alternative Models

Bivariate Model A is the general bivariate model discussed above with no restrictions on the
model parameters (except 0 # s11 # m1, 0 # s22 # m2, and  |D| # 1.)

Bivariate Model B1 assumes that the CPS and the ACS estimate the same state poverty ratio,
that is, Y1i = Y2i . (For Model A this implies the constraints "1 = "2, $1 = $2, and  u1i  = u2i, which
in turn imply that s11 = s22 and D = 1.)

Bivariate Model B2 assumes that the CPS and ACS models have the same regression
parameters ("1= "2 and $1 = $2), but with different model errors  (u1i … u2i , so that s11 … s22 and
D  … 1, in general).

  
Bivariate Model B3 assumes that, excluding the intercepts, the regression coefficients in the
CPS and ACS regression equations are the same ($1 = $2).

Univariate Models U: If D = 0, then Model A reduces to separate univariate regression models
and we fit the CPS and ACS equations separately.

Through IY 2004 (results released in November 2006), the univariate model using the CPS equation



4 As of this writing, current plans call for switching the production SAIPE state estimates from using CPS
data to using ACS data.

5 Actually, Model B1 was not implemented, because, as will be seen in Section 3.2, even the less restrictive
Model B2 is rejected by chi-squared tests.

6 Note that we actually discarded the simulations of ("1, $1, "2, $2) and used only those for (D, s11, s22 ); thus,
we were using simulations of (D, s11, s22 ) from their marginal posterior distribution. This was done because equations
(1) and (2) use exact analytical results in dealing with the regression parameters ("1, $1, "2, $2), which is more
numerically accurate than are calculations that use the simulations of the regression parameters.
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has been the SAIPE production state model.4 If D … 0 then a bivariate model has potential benefits
compared to the univariate model.

2.3 Bayesian Inference for the Models

For each  model above,5 we used Gibbs sampling via WinBUGs Version 1.4 (Spiegelhalter, et
al. 2003) to simulate 10,000 sets of model parameters (D, s11, s22, "1, $1, "2, $2) from their joint
posterior distribution given the data.(Note for Univariate Model U, D = 0 so there is no need to
simulate D.)  Many empirical runs were carried out to check the convergence of the MCMC runs
using WinBUGs, and it was  decided that single chain runs of 10,500 simulations with the first 500
simulations discarded was sufficient to achieve convergence. The posterior means and variances of
Y1i from the CPS equation were approximated by averaging results over the simulations of (D, s11,
s22) to approximate the following formulas under each model respectively:6

E(Y1i  | y) = ED, s11, s22|  y [E(Y1i  | y, D, s11, s22)] (1)

Var(Y1i | y) = ED, s11, s22| y [Var(Y1i | y, D, s11, s22)] + VarD, s11, s22| y [E(Y1i | y, D, s11, s22,)] (2)

where y  = {(y1i , y2i), i = 1,ÿ,51} is the observed data. In (1) and (2), E(Y1i  | y, D, s11, s22) and
Var(Y1i | y, D, s11, s22) can be readily calculated from standard formulas that account for the effects
of uncertainty about $.  (See, e.g., Bell 1999.) ED, s11, s22| y[•] and VarD, s11, s22| y[•] were approximated
by taking the sample mean and variance across the simulations of the terms as indicated. The
analogous calculations were also made to obtain the posterior means and variances of the Y2i, the
true poverty ratios in the ACS equation.

Tables 2.1 and 2.2 show posterior means and standard deviations of the parameters (D, s11, s22 )
from the Gibbs sampling via WinBUGs of 10,000 simulations from bivariate Models A and B3 for
IYs 2000-2002. Table 2.3 shows corresponding results for the model parameters (s11, s22) from
univariate Model U (for which D is set to 0). Notice that in most cases the posterior means and
standard deviations for (s11, s22) for a given year are fairly close across all three models (though some
larger differences show up for age 0–4). Notice also that the standard deviations for s11 and s22 are
not small relative to their posterior means (so their posterior coefficients of variation are large), and
that the posterior standard deviations for D are not small relative to the width of the interval (!1,1).
This reflects considerable uncertainty about these model parameters. This uncertainty can also be
seen from estimates of the posterior densities for (D, s11, s22 , $) from Model A, which are plotted in
Figure 1 for age 5-17 in IY 2000.  In fact, in regard to D, in no case does the posterior for D give
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conclusive evidence that D > 0 (i.e., the 95 percent highest posterior density intervals for D always
include negative values). Plots of the posterior densities of the regression coefficients from Model
A shown in Figure 1 also show considerable uncertainty, more so for the first four coefficients
shown (which refer to the CPS equation) than for the last four coefficients (which refer to the ACS
equation). This is because the lower level of sampling error in the ACS estimates leads to more
precise estimates of the ACS equation regression coefficients. Also note that the posterior densities
of the regression coefficients appear reasonably normal. (The notation in Figure 1 of
beta[1],...,beta[8] corresponds to the regression parameters $ = ("1, $1N, "2, $2N)N.)

Table 2.1 Posterior means and standard deviations of the parameters of Model A

IY 2000
age  0-4 5-17 18-64     65+

 D  0.53 
 (0.38) 

 0.29 
 (0.46) 

 0.34 
 (0.41) 

! 0.20   
(0.47) 

s11  2.92 
 (2.23) 

 0.81 
 (0.70) 

 0.23 
 (0.19) 

 0.76
(0.71)

s22  2.24 
 (1.21) 

 1.26 
 (0.58) 

 0.48 
 (0.17) 

 0.66
(0.30)

IY 2001
age 0-4 5-17 18-64 65+

 D 0.17
(0.53)

0.54
(0.33)

0.49
(0.40)

!0.07
(0.53)

s11 1.80
(1.70)

1.85
(1.21)

0.18
(0.16)

0.39
(0.40)

s22 1.53
(0.97)

0.92
(0.45)

0.37
(0.13)

0.38
(0.21)

IY 2002
age 0-4 5-17 18-64 65+

 D 0.44
(0.40)

0.25
(0.50)

0.56
(0.29)

0.32
(0.44)

s11 3.40
(2.40)

0.84
(0.80)

0.36
(0.24)

1.40
(0.98)

s22 1.47
(0.91)

0.77
(0.43)

0.58
(0.19)

0.25
(0.17)
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Table 2.2 Posterior means and standard deviations of the parameters of Model B3

                                  IY 2000
age 0-4 5-17 18-64 65+

 D 0.56
(0.37)

0.34
(0.46)

0.40
(0.42)

!0.15
(0.48)

s11 2.89
(2.23)

0.74
(0.63)

0.20
(0.17)

0.73
(0.67)

s22 2.44
(1.26)

1.20
(0.58)

0.47
(0.17)

0.63
(0.29)

                                               IY 2001
age 0-4 5-17 18-64 65+

 D 0.07
(0.53)

0.59
(0.32)

0.45
(0.41)

0.02
(0.55)

s11 2.04
(1.92)

1.73
(1.12)

0.17
(0.16)

0.32
(0.34)

s22 1.63
(1.03)

0.90
(0.45)

0.38
(0.14)

0.35
(0.19)

                        IY 2002
age 0-4 5-17 18-64 65+

 D 0.39
(0.41)

0.25
(0.49)

0.55
(0.28)

0.28
(0.44)

s11 3.70
(2.55)

0.84
(0.76)

0.37
(0.24)

1.30
(0.94)

s22 1.50
(0.94)

0.79
(0.43)

0.59
(0.19)

0.27
(0.19)
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Table 2.3 Posterior means and standard deviations of the parameters of Model U

                                                                   IY 2000
age 0-4 5-17 18-64 65+

s11 2.50
(2.11)

0.81
(0.69)

0.24
(0.20)

0.80
(0.69)

s22 2.09
(1.15)

1.24
(0.57)

0.46
(0.17)

0.63
(0.28)

             IY 2001
age 0-4 5-17 18-64 65+

s11 1.84
(1.73)

1.79
(1.23)

0.16
(0.15)

0.41
(0.41)

s22 1.52
(0.97)

0.90
(0.45)

0.36
(0.13)

0.38
(0.21)

                                     IY 2002
age 0-4 5-17 18-64 65+

s11 3.38
(2.46)

0.86
(0.78)

0.36
(0.25)

1.45
(1.00)

s22 1.45
(0.92)

0.76
(0.41)

0.58
(0.18)

0.26
(0.18)

3. Empirical Model Comparisons Using ACS Demonstration Survey Data (2000-2002)

Our primary focus here is on whether using ACS demonstration survey data in conjunction with
the CPS data can reduce prediction error (posterior) variances of Y1i, the “true” poverty ratio as
estimated by CPS? The first four subsections here present empirical results directly relevant to this
question. First, in Section 3.1 we compare posterior variances of Y1i from bivariate Model A with
those from the CPS univariate model. We find Model A generally provides small improvements on
average, though we also find a few instances where it produces large increases in posterior variance.
Section 3.2 then presents results of chi-squared tests of the restrictions imposed on the regression
coefficients by Models B2 and B3, testing if these more restrictive models are consistent with the
data. The tests reject Model B2 (and by implication, also the more restrictive Model B1), while we
fail to reject Model B3. Section 3.3 thus compares posterior variances of Y1i from Model B3 with
those from the univariate model U to see what improvements may result from use of the more
restrictive bivariate Model B3. We find larger average improvements in posterior variance than with
Model A, though we still find a few instances of large posterior variance increases. Section 3.4
examines the mathematical reasons for the occasional large posterior variance increases, and notes
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the instances from our models in which these occur. Section 3.5 reports summary results on
estimates of Y2i and on corresponding posterior variances, where Y2i is the “true” poverty ratio
estimated by ACS. Section 3.6 examines the effects on point estimates from the bivariate models
of shifting the ACS data  one year ahead. Finally, Section 3.7 compares point estimates of poverty
ratios for individual states from the alternative models.

To compare posterior variances we examine their relative percentage differences under an
alternative model with those from the univariate model U. For example, we compare posterior
variances from Model A with those from the univariate model U by computing (y1 = (y11,ÿ,y1,51)N)

100 1 1

1
×

−Var , Var ,  Model U)
Var ,  Model U)

1

1

( | ( |
( |

.
Y Y

Y
i i

i

y y
y

 Model A)

3.1 Posterior Variance Comparisons for Model A – CPS Equation 

Table 3.1 summarizes the comparisons of the posterior variances of the state poverty ratios Y1i
from Model A with those from the univariate model using the relative percentage differences as
defined earlier. We see, for all three years and across all age groups at most only small
improvements in posterior variances on average from use of the bivariate model A. For age 0-4 in
IY 2000, and age 18-64 in IY 2001, using Model A actually produces a small average increase in
posterior variance.7 The min values in Table 3.1 show that some states show more substantial
variance reductions than others, while the max values show that some states show substantial
variance increases. Appendix A shows more detail from these results, presenting the frequency
distribution of the percentage differences in posterior variances between Model A and Model U.
These tables show that substantial variance increases for states are relatively rare, while small to
moderate variance reductions predominate (except for age 0-4 in IY 2000). The instances of
substantial variance increases with Model A are noted in Section 3.4, and the reasons for this are
discussed.

The best cases for variance reductions from the bivariate Model A are for age 18-64 in IY 2000,
age 5-17  in IY 2001, and age 18-64 in IY 2002. Even for these cases the average variance
reductions are small, and for most individual states the percentage differences in posterior variances
are small or moderate at best. For the other cases, it is difficult to claim any overall advantage from
using bivariate Model A. Also, the fact that the age group showing the most improvement varies
over the three years is not encouraging.
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Table 3.1 Relative percent differences of posterior variances: Model A versus univariate model
(means are unweighted averages of percent differences across the 50 states and DC)

IY 2000

Age Mean Min Max
0-4  2.1    !10.4 29.8
5-17 !2.8 !12.1 17.1
18-64 !5.6 !14.7 18.4
65+ !4.4 !12.9 18.9

IY 2001

Age Mean Min Max
0-4 !2.7 !12.2 32.0
5-17 !5.3 !13.9 8.3
18-64 1.3 !10.2 40.8
65+ !3.3 !11.9 15.8

IY 2002

Age Mean Min Max
0-4 !2.9 !10.4 4.0
5-17 !3.4 !12.7 52.4
18-64 !11.2 !21.2 7.6
65+ !3.7 !9.8 10.1

3.2 Chi-Squared Tests of Model Restrictions

Section 2.2 presented three alternative bivariate models (B1, B2, and B3), all of which impose
restrictions on the general bivariate Model A. The restrictions implied by Models B2 and B3 can be
tested by testing the following null hypotheses:

H2: "1 = "2,   $1  =  $2 (Model B2)
H3: $1  =  $2 (Model B3) 

Hypothesis H2 postulates equality of all the regression coefficients in the CPS and ACS equations.
Hypothesis H3 postulates this equality apart from the intercept terms. We test these hypotheses
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against the alternative hypothesis of Model A holding with no restrictions. While we will not
explicitly test Model B1 (CPS and ACS estimate the same poverty ratios), note that if H2 is rejected
so, by implication, is the more restrictive Model B1.

To test the hypotheses H2 and H3 we formulate chi-squared statistics using the posterior means
and covariance matrices of the regression coefficients under Model A. From a Bayesian perspective,
this is equivalent to checking if the null hypothesis values (here zero) of the differences of the
regression coefficients from the two equations lie within a given highest posterior density (HPD)
region of the parameter space. Thus, the chi-squared statistics check if the restrictions under H2 and
H3 are reasonably consistent with the posterior distribution of the regression parameters under the
general Model A.

More specifically, the chi-squared statistic for testing H3 is

P2 = (b1 ! b2)N[Var (b1 ! b2)]-1 (b1 ! b2)

where b1 and b2 are the posterior means of $1 and $2, while Var(b1 ! b2) is the posterior covariance
matrix of  $1 ! $2 .   We assume that, under H3, the posterior distribution of  $1 ! $2 is approximately
normal with mean vector 0 and covariance matrix Var (b1 ! b2). The chi-squared statistic has three
degrees of freedom for ages 0-4, 5-17, and 18-64, and four degrees of freedom for age 65+ (the
difference being due to the additional inclusion of the SSI participation rate in xi' for age 65+). For
testing H2 an analogous statistic is used that also involves the intercepts, "1 and "2, and which has
four degrees of freedom for ages 0-4, 5-17, and 18-64, and five degrees of freedom for age 65+. We
compare P2 to five percent critical values from the chi-squared distribution; these are 7.8, 9.5, and
11.1 for three, four, and five degrees of freedom, respectively. For H3, this corresponds to checking
if the zero vector lies in the 95 percent HPD region of the parameter space of $1 ! $2.

The results of the Chi-squared tests for IYs 2000 - 2002 are given in Table 3.2 below. Values
that are significant at the five percent level are shown in bold. First note that we reject the hypothesis
H2 for ages 5-17 and 18-64 for IYs 2000 and 2001, and for ages 0-4 and 5-17 for IY 2002.
Moreover, in most cases where H2 is not rejected, the chi-squared statistic is close to being
significant at the five percent level. These results suggest that assuming all the regression
parameters, including the intercepts, are the same between the CPS and ACS equations is not
tenable, so we should reject Model B2 and, by implication, the more restrictive Model B1. These
results are expected given the overall level difference between the CPS and ACS poverty estimates
that was discussed earlier and in the reports of Bishaw and Stern (2006) and Nelson (2006). On the
other hand, we fail to reject H3 for all age groups. This suggests that perhaps the regression
parameters other than the intercepts can be assumed to be the same in the CPS and ACS equations,
so we might consider using Model B3 instead of Model A. The consequences of this for posterior
variances are examined in the next section.
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Table 3.2  Chi-Squared statistics for testing hypotheses H2 and H3 for IYs 2000 - 2002

IY 2000

Age  0-4 5-17 18-64  65+

H2 8.4 35.3 44.1 8.6

H3 5.5 2.5 2.5 5.2

IY 2001 

Age  0-4 5-17 18-64  65+

H2 7.7 18.6 12.2 0.7

H3 7.0   0.4  2.5 0.6

IY 2002

Age 0-4 5-17 18-64 65+

H2 11.2 16.9  7.9 10.1

H3 6.4  3.7  3.8  3.2

3.3 Posterior Variance Comparisons for Model B3 – CPS Equation

Posterior variances for Model B3 were computed as discussed in Section 2.3, i.e., using
equations (1) and (2) with the simulations of (D, s11, s22) obtained under Model B3, and with
E(Y1i  | y, D, s11, s22) and Var(Y1i | y, D, s11, s22) computed to account for the Model B3 restriction,
$1 = $2. Table 3.3 presents summaries of the relative percent differences of the resulting posterior
variances of Model B3  from those for the univariate model ; these results can be compared to those
of Table 3.1. Doing so we see that the average variance reductions from Model B3 are substantially
larger than those from Model A. Also, the largest variance reductions are about 50 percent or more,
and while there are some variance increases, the maximum increases from use of Model B3 are not
as severe as those from Model A ( except for age 0-4 in IY 2001-2002). Note also that for age  5-17
all states show variance reductions with Model B3 for IYs 2000-2001. However, for IY 2002, there
is one state for which the posterior variance for age 5-17 increases 44.3 percent with use of
Model B3.
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Table 3.3 Relative percent differences of posterior variances: Model B3 versus univariate model
 (means are unweighted averages of percent differences across the 50 states and DC)

IY 2000

Age Mean Min Max
0-4 !13.5 !48.9 24.3
5-17 !23.6 !52.2 !6.3

18-64 !26.8 !51.0 2.4
65+ !22.0 !50.7 11.9    

IY 2001

Age Mean Min Max
0-4 !10.2 !54.5 34.5

5-17 !21.2 !45.8 !4.5
18-64 !18.9 !54.1 34.9
65+ !38.5 !67.8 0.4

IY 2002

Age Mean Min Max
0-4 !9.0 !52.3 9.1

5-17 !19.5 !51.4 44.3
18-64 !19.4 !46.3 2.5
65+ !21.3 !53.2 -5.4

The larger variance reductions under Model B3 than under Model A are presumably due to increased
precision in the estimation of the regression coefficients under Model B3’s assumption that, apart
from the intercepts, the regression coefficients are common to both equations. Given the
substantially lower sampling variances from ACS, under this assumption the ACS data should
provide relatively more information for estimation of the common regression coefficients than does
the CPS data. So there appears to be more potential for improvement from using the ACS data to
improve estimation of the regression coefficients (if the assumption that they are common to both
equations holds) than from using the ACS data to improve prediction of the state random effects
(which is done by all the bivariate models.)

Note one important qualification to these results. The posterior variances quoted from Model B3
assume that the Model B3 restriction of $1 = $2 holds exactly (and that the other model assumptions
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are true, these being the assumptions for Model A). We determined that the assumption $1 = $2 was
plausible by performing the chi-squared tests of Section 3.2. So to decide to use Model B3, we had
to actually estimate Model A and perform the tests of $1 = $2. If we then quote posterior variances
calculated as if Model B3 were known to be true we would not be accounting for this estimation and
testing and we would thus understate our uncertainty about the true poverty ratios. One way around
this dilemma is to use an informative prior distribution with mean zero for $1 ! $2. Such a prior
might be developed from estimation results for previous years.

3.4 Investigating Large Posterior Variance Increases for the Bivariate Models

Tables 3.1 and 3.3 above showed there were some instances of moderate to large posterior
variance increases  from use of either bivariate Model A or the restricted bivariate Model B3 instead
of the univariate model. Table 3.4 shows all the instances of posterior variance increases for the
bivariate models that were 15 percent or greater. Increases just above 15 percent are not of that much
concern; increases exceeding 25 percent (shown in bold in the table) are of more concern. Of
particular concern is the approximate 50 percent increase for age 5-17 for Alaska in IY 2002 for
model A and 44% for model B3. In this section we examine what can lead to such large posterior
variance increases. For concreteness, most of the discussion here focuses on the general bivariate
Model A.

Table 3.4 Large ($ 15 percent) posterior variance increases from the bivariate models
compared to the univariate model (increases of 25 percent or more are in bold)

Age Model IY 2000 IY 2001 IY 2002

0-4
A OR(24%),HI (29%),

 WA (30%)
AK (32%), NC (15%),
TN (23%)

B3 OR(19%),WA(24%),
HI(16%)

AK(35%),TN(18%),
NC(16%)

5-17
A SD (17%) AK (52%), NC (18%)

B3 AK (44%)

18-64
A AZ (17%), HI(18%) AK (40%), KS (40%),

NC (41%), OR (32%)

B3 AK (28%), KS (35%)

65+
A OK (19%) IL (16%)

B3



8 This is obvious if the regression parameters are known, but it can also be shown that the contribution to
Var(Y1i | y, D, s11, s22) from uncertainty about the regression parameters is less for bivariate Model A than for the
univariate Model U.
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The posterior variance of Y1i for a given model is obtained from equation (2) above, which we
repeat here for convenience:

Var(Y1i | y) = ED, s11, s22| y [Var(Y1i | y, D, s11, s22)] + VarD, s11, s22| y [E(Y1i | y, D, s11, s22,)] (2)

where ED, s11, s22| y [•] and VarD, s11, s22| y [•] are taken with respect to p(D, s11, s22 | y), the marginal
posterior distribution of the model error correlation and variance parameters, (D, s11, s22), for the
respective model. The first term in equation (2) is smaller for the bivariate model than is the
corresponding term for the univariate model because, conditional on any values of the parameters
(D, s11, s22), the variance conditional on y = (y1, y2) is lower than the variance conditional on just y1,
that is, Var(Y1i | y, D, s11, s22) # Var(Y1i | y1, D, s11, s22).8 Therefore, increases in posterior variance
from using the bivariate model must come from an increase in the second term. This term reflects
uncertainty about the parameters (D, s11, s22). For many states the first term in (2) is much larger than
the second, but occasionally the second term makes a substantial contribution. Sometimes this
substantial contribution from the second term in (2) is much larger for the bivariate than for the
univariate model, leading to a substantial increase in posterior variance from using the bivariate
model. We now examine why this occurs.

Let = E(Y1i | y, D, s11, s22) and = E(Y2i | y, D, s11, s22). (We use this notation generically for$Y i1
$Y i2

both bivariate Model A and the univariate models. For the latter we should more properly fix D at
zero and condition on only y1 or y2 rather than y.) We obtain expressions for and from$Y i1

$Y i2

expressions for the expectations of Y1i and Y2i conditional on all model parameters. For Y1i this is

E(Y1i  | y, $, D, s11, s22)  =  ("1 + xi' $1)  +  c1i × [y1i ! "1  ! xi' $1]  + c2i × [y2i ! "2  ! xi' $2] (3)

and an analogous expression holds for E(Y2i  | y, $, D, s11, s22). In equation (3), c1i and c2i depend on
the model error correlation and variance parameters (D, s11,  s22 ) as well as on the sampling error
variances of the CPS and ACS estimates (the latter depend on i). (For the univariate CPS model
c2i  = 0 so the last term in (3) disappears.) To obtain an expression for we take the expectation$Y i1

of (3) over the conditional posterior distribution of  $ given (y, D, s11, s22). That is, we compute
= E$ | (y,D, s11, s22) [E(Y1i  | y, $, D, s11, s22)], which yields$Y i1

 (4)$ ( $ ' $ ) [ $ ' $ ] [ $ ' $ ].Y x c y x c y xi i i i i i i i1 1 1 1 1 1 1 2 2 2 2= + + × − − + × − −α β α β α β

There is an analogous expression for . In equation (4)  =  E(["1 , $1] | y, D, s11, s22) and$Y i2 [ $ , $ ]α β1 1

 = E(["2 , $2] | y, D, s11, s22) are generalized least squares (GLS) estimators of the regression[ $ , $ ]α β2 2

parameters given the covariance matrix of the data determined by (D, s11, s22) and the sampling error
variances. Although these GLS estimators are thus functions of the unknown parameters (D, s11, s22),



9 We quote standardized residuals here, and use them subsequently in the plots, rather than the ordinary
regression residuals, to clarify which of the residuals might be classified as somewhat extreme. The standardized
residuals are defined as r1i / (^s11 + v1i).5 and  r2i / (^s22 + v2i).5 where ^s11 and ^s22 are the posterior means of s11 and s22.
The use of standardized residuals does not change the results of the comparisons made here: plots using the ordinary
residuals have similar appearances to those using the standardized residuals.
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their dependence on (D, s11, s22) may not be very great over the range of the appreciable posterior
density, since the sampling error variances for most states are much larger than the model error
variances (at least for the CPS equation). We therefore assume that uncertainty about (D, s11, s22)
produces little uncertainty about the regression parameters, so that can be approximately regarded$Y i1

as given by equation (4) with the GLS estimators of the regression parameters taken as fixed. A
similar analysis applies to .$Y i2

With this assumption, and ignoring posterior covariance between c1i and c2i, we have the
approximation (with an analogous expression for VarD, s11, s22 | y [ ] )$Y i2

VarD, s11, s22 | y [ ] . Var(c1i) × [r1i]2   +  Var(c2i) × [r2i]2 (5)$Y i1

where r1i  =  and  r2i  =  are the GLS regression residuals for they xi i1 1 1− −$ ' $α β y xi i2 2 2− −$ ' $α β
CPS and ACS equations. While this is at best a crude approximation, equation (5) nonetheless
suggests that VarD, s11, s22 | y [ ] could be (i) large for both Model A and univariate Model U if the$Y i1

CPS equation regression residual, r1i , is large, and (ii) large for Model A if the ACS equation
residual, r2i , is large. (Recall that c2i = 0 in the CPS univariate model, so for this model the second
term in (5) is zero.) Empirical results bear this out. We focus on the results for age 5-17 poverty
ratios in IY 2002. First, we note that, for both the CPS and ACS equations, the residuals from Model
A are approximately the same as the residuals from Model U. We now examine the results for three
states: one for which r1i  is small but r2i is large; one for which r1i is large but r2i is small; and one
for which r1i and r2i are both somewhat large.9

• For Alaska, r1i  is small (std. res. = !.3) but r2i is very large (std. res. = !3.1). This leads to
very large values of VarD,s11, s22 | y [ ] and VarD, s11, s22 | y [ ] in the bivariate Model A, and$Y i1

$Y i2

to a large value for VarD, s11, s22 | y [ ] in the univariate model (ACS equation). In the CPS$Y i2

univariate model for y1i, VarD, s11, s22 | y [ ] is small because r1i is small and c2i = 0.$Y i1

• For Maine,  r1i is large (std. res. = 2.2) but r2i is small (std. res. = .5). The large value of  r1i

leads to large values of VarD, s11, s22 | y [ ] in both the bivariate Model A and in the univariate$Y i1

model, and also to a  moderately large value of VarD, s11, s22 | y [ ] in the bivariate model. The$Y i2

small value of r2i leads to a small value of VarD,s11,s22 | y [ ] in the ACS univariate model (for$Y i2

which c1i = 0.) The value of VarD, s11, s22 | y [ ] in the bivariate model is not nearly as large$Y i2
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as are the values for Alaska and North Carolina, and it is not much larger than the values for
some other states. This is because the estimate of  does not depend much on the CPS data$Y i2

y1i, because y1i has such high sampling error variance compared to the ACS data y2i.

• For North Carolina, r1i (std. res. = 1.4) and r2i (std. res. = 2.1) are both somewhat large,
though not as large in magnitude as are r1i for Maine and r2i for Alaska. The result for North
Carolina  is large values for VarD, s11, s22 | y [ ] and VarD, s11, s22 | y [ ] in both bivariate Model$Y i1

$Y i2

A and the  univariate models. Actually, North Carolina’s value for VarD, s11, s22 | y [ ] in the$Y i1

univariate model is smaller than those for a few other states (besides Maine), but these other
states also have large values of r1i.

To sum up the results for the posterior variances for Y1i (CPS equation): For Alaska the posterior
variance from the bivariate Model A (Var(Y1i | y) = 1.24) is much higher than the posterior variance
from the univariate model (Var(Y1i | y1) = 0.81) because the former is inflated due to the large value
of r2i but the latter is not. In contrast, for Maine the posterior variance for Y1i from the bivariate
Model A (1.04) is slightly lower than that from the univariate model (1.09), since r2i is small but r1i
is large and inflates both posterior variances. Meanwhile, for North Carolina the somewhat large
value of r1i  inflates both the bivariate and univariate model posterior variances for Y1i, but the
former is further inflated by the large value of r2i (to Var(Y1i | y) = 1.13) while the latter is not
(Var(Y1i | y1)  = .96).

We see that if r2i is large then VarD, s11, s22 | y [ ] can be large for the bivariate Model A but not$Y i1

the univariate model, and it appears to be in these cases that Var(Y1i | y) from the bivariate Model
A can be substantially larger than Var(Y1i | y1) from the univariate model. If  r1i is small this will
accentuate the difference in posterior variances between the bivariate and univariate models, as was
the case for the 5-17 poverty ratio estimate for Alaska in IY 2002.

To further illustrate how the potential for improvement of the posterior variance with a bivariate
model depends on the regression residual from the ACS equation, Figures 2-4 plot, for IYs 2000-
2002, percent differences of the bivariate Model A and univariate model posterior variances against
ACS equation standardized residuals (Figures 2.a, 3.a, and 4.a) and squared standardized residuals
(Figures 2.b, 3.b, and 4.b). In the plots, points below the horizontal dotted line are instances where
the bivariate model A had a lower posterior variance, while points above the horizontal dotted line
are instances where the bivariate model A had a higher posterior variance. In Figures 2.a, 3.a, and
4.a we see a quadratic pattern that might be expected from equation (5), if we also take into account
that (i) differences in the first term of equation (2) involve expectations of Var(Y1i | y, D, s11, s22) !
Var(Y1i | y1, D, s11, s22), which does not depend on the ACS equation residuals, and (ii) both bivariate
Model A and univariate model posterior variances may be similarly inflated by the first term in
equation (5), which depends on the CPS equation residuals. We can also note in Figures 2.a, 3.a, and
4.a how the largest increases in posterior variances from use of bivariate Model A generally
correspond to ACS equation standardized residuals exceeding 2 in absolute value. The plots in
Figures 2.b, 3.b, and 4.b convey much the same information, but help clarify the relation by
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suggesting an approximate linear dependence of the posterior variance difference on the squared
standardized residuals from the ACS equation.

3.5 Posterior Variance Comparisons for the ACS Equation of the Bivariate Models

To put the results of Sections 3.1 and 3.3 in context, Appendix B presents tables showing the
average posterior means and variances from Models A and B3, as well as those from the univariate
models, for the CPS and ACS equations. The tables also show the average direct survey estimates
and their average sampling error variances. The latter are the average variances one would have
from each data source if modeling was not used to improve the estimates. The tables show the
substantially lower variances of the ACS direct estimates compared to those for CPS, due to the
larger sample size of the ACS demonstration surveys. (This difference, of course, increases with the
full production ACS data examined in Section 4.) They also show the results noted earlier that the
univariate models achieve substantial variance reductions in the CPS equations compared to the
direct estimates, and that further reductions under Models A and B3 are not as large.

We now focus on the posterior variances for the ACS equations. The tables in Appendix B show
that the average posterior variance for the ACS equation from a given model is substantially lower
than the corresponding average posterior variance for the CPS equation. This makes sense since the
ACS model-based estimates start with the ACS direct estimates, which have lower variance than the
CPS estimates, and we then use the model to improve them. In fact, in some cases (e.g., 5-17 in
IY2001, and 18-64 and 65+ in IY2002) the direct ACS estimates have an average sampling variance
comparable to or lower than that of the average posterior variance for the CPS univariate model.

Comparing now average posterior variances from the ACS univariate models to the average ACS
sampling error variances, we see substantial average improvement from the univariate models. The
percentage reductions in variance from modeling the ACS data (not shown) are less than those for
modeling the CPS data, but are still substantial. This makes sense given the lower variances of the
ACS direct estimates – there is less opportunity to improve them. Using bivariate Model A achieves
generally negligible improvements in average posterior variances for the ACS equations (compared
to the somewhat larger though still small average variance improvements from using bivariate
Model A for the CPS equation that were discussed in Section 3.1). Using bivariate Model B3 also
achieves little, if any, improvement in posterior variances for the ACS equation (in contrast with the
results for the CPS equation, for which Model B3 seems more promising.) A general conclusion
from these results is that, because of the higher variance of the CPS direct estimates, the bivariate
models cannot usefully borrow information from them to improve estimates in the ACS equation.

3.6 Effects on Bivariate Model Results from Shifting the ACS Estimates by One Year
 

Appendix C provides tables comparing results (point estimates and posterior variances) for the
CPS equation from the univariate model with two sets of results from the bivariate models: one set
uses ACS data collected in the IY (these results are the same as in Appendix B); the other uses ACS



10 The ACS demonstration survey conducted in 2000 was known as the Census 2000 Supplementary
Survey, or C2SS.

11 These effects observed for ages 0-4 and 5-17 can be seen by comparing posterior variances for the two
versions of the univariate model for each age group, since these differences are due entirely to differences in the
posterior distribution of the model parameters. For age groups 18-64 and 65+ the posterior distribution of s11 differs
little depending on which two years of ACS data are used for all models considered.
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data collected one year later. It makes sense to explore the latter alternative since the ACS data
collected in IY+1 involve income reports for a period of almost two years from the start of IY to
nearly the end of IY+1. Thus, for example, for IY 2000 we have previously been modeling ACS
200010 estimates with the CPS estimates for IY 2000, but we could alternatively use the ACS 2001
estimates, instead of the ACS 2000 estimates, in the model. Similarly, we have so far modeled
ACS2001 estimates with CPS estimates for IY 2001, but we could use the ACS2002 estimates
instead. The tables in Appendix C provide results from both these options for CPS equation
estimates for IYs 2000 and 2001.

Comparisons of the CPS equation average point estimates for a given model in Appendix C
show little difference depending on which year of ACS data is used. (Comparisons of individual
state point estimates are made in the next section.). Comparisons of the average posterior variances
for a given model show mostly small differences, and some of these for ages 0-4 and 5-17 are partly
due to differences in the posterior distribution of the model parameters, particularly s11.11 In any
case, the tables in Appendix C do not show a consistent pattern suggesting that shifting the ACS data
used in the models by one year would yield consistently lower or higher posterior variances.

3.7 Comparing Individual State Poverty Ratio Point Estimates from Alternative Models

Results given in section 3.5 show that ACS poverty ratio estimates tend to be higher than CPS
poverty ratio estimates, on average, and this difference persists when comparing ACS with CPS
model-based estimates for a given model. On the other hand, the average estimates from the
different models for a given equation, ACS or CPS, generally do not differ greatly, and are not too
different from the average of the direct estimates. While these results on the average behavior are
interesting, the question arises as to whether estimates for individual states may differ appreciably
depending on the model chosen? We now turn to this question.

Figures 5, 6, 7, and 8 plot individual state poverty ratio estimates (for given CPS equations) from
bivariate Models A and B3 against corresponding univariate model estimates for ages 0-4, 5-17, 18-
64, and 65+, respectively, for IYs 2000, 2001, and 2002. Two sets of estimates are shown for the
bivariate models for IYs 2000 and 2001 – one set from the models that use ACS data collected in
the IY, and one set from the models that use ACS data collected in IY+1. On each page of plots
those on the left are for bivariate Model A while those on the right are for bivariate Model B3, and
those on top use ACS  IY data while those on the bottom use ACS  IY+1 data.  (For IY 2002 only
one set of estimates are plotted since, at the time of this work, for IY 2002 we had only results using
models with ACS SS02 data.) Each plot also contains a y = x line to help judge how close the
bivariate model estimates are to the univariate model estimates.



12 Notice that we have now shifted the ACS data ahead one year relative to the CPS IY, in contrast to most
of the analyses of Section 3. From Section 3.6 this should have little effect on the results, and the ACS 2005 data are
about as comparable to the CPS IY 2004 data as would be the ACS 2004 data. One reason for this shift is that the
CPS estimates for IY and the ACS IY+1 data are released at about the same time, namely August of IY+1.
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Focusing first on the plots for bivariate Model A, we notice that the plotted points almost always
cluster tightly around the y = x line, showing that use of Model A has little effect on the point
estimates relative to those from the univariate model. (There is somewhat more variation for age 0-4
in IY 2000, but still not that much.) That this holds both for the plots of estimates from models using
ACS IY data and those using ACS IY+1 data shows that also the choice of whether to use the ACS
IY or ACS IY+1 estimates in the model makes little difference to the state point estimates.

With two qualifications and one major exception, the same conclusions can be drawn from the
plots of point estimates from bivariate Model B3 against the univariate model estimates. One
qualification is that in some cases the points appear to cluster about a line close to but different from
y = x, e.g., with the Model B3 estimates higher than the univariate model estimates at the low end
of poverty ratios, and with the reverse true at the high end. This is due to different regression
coefficients being used in the CPS equation under Model B3. Since Model B3 assumes the same
regression coefficients (apart from the intercepts) in both the CPS and ACS equations, and the ACS
direct estimates have much lower sampling error than the CPS direct estimates, the estimated
regression coefficients are weighted more strongly towards those from the ACS equation (e.g., those
that would be obtained from the ACS equation under Model A). While this effect is not “statistically
significant,” as shown by the results of Section 3.2, it is enough to make the Model B3 point
estimates appear to visibly shift  relative to those from the univariate model. The second
qualification is that in the plots of Model B3 versus univariate model estimates the points do not
cluster as tightly about a line – there is more variation over states around whatever line would best
fit the points plotted. Still, this variation is not very large.

The one major exception mentioned above is the point way above the y = x line in the Model
B3 plots for age 0-4 for IY 2000, and the corresponding point above the y = x line among the high
poverty ratio estimates for IY 2001. These points are for Washington, DC. The exact reason why
these points stick out as outliers in the plots is unclear because similar results are not obtained for
the other age groups or for Model A. However, we have observed that DC is unusual in comparison
to the 50 states in regard to its regression variables – something perhaps not surprising given that,
unlike any of the 50 states, DC is entirely an urban area. This distinction may have something to do
with these results, but the results still deserve further scrutiny.  

4. Empirical Model Comparisons Using Full Production ACS 2005 Data

In the previous sections, we used bivariate models incorporating both CPS data for IYs 2000-
2002 and ACS demonstration surveys data for suitably comparable years. In this section, we present
some empirical results from bivariate models using CPS data for IY 2004 and data from the full
production 2005 ACS,12 again making comparisons with corresponding results from univariate
models. For ages 0-4, 5-17, and 18-64 the models involve two changes to the regression variables



from those used before: addition of the state food stamp participation rate, and replacement of the
Census 2000 state poverty ratio estimates for the age group with corresponding “census residuals.”
(These changes were mentioned in footnote 2 of Section 2.1.) For age 65+ the models remained the
same as before. Our goal in the analyses of this section is to assess the benefits to using a bivariate
model combining CPS and full production ACS data over the corresponding univariate models.
Recall that the full production ACS survey has a much larger sample size (3 million addresses)  than
the pre-2005 ACS demonstration surveys (700,000 – 800,000 addresses). The direct variance
estimates of the state age-group poverty rates of the full production 2005 ACS are about  half of
those from the pre-2005 ACS demonstration surveys. For the large states these full production ACS
variances are quite small, implying very reliable direct estimates (of Y2i).

4.1 Posterior Variance Comparisons for Model A – CPS equation

The posterior means and standard deviations of the model parameters (D, s11, s22) from the Gibbs
sampling via WinBUGs based on 10,000 simulations from bivariate Models A and B3, and of the
model parameters (s11, s22) from Model U (where D is set to 0), for IY 2004, are shown in Tables
4.1.a – 4.1.c, respectively. As with the earlier results using ACS demonstation survey data, the
standard deviations for s11 are not small relative to their posterior means, reflecting considerable
uncertainty in this parameter. Note that the posterior standard deviations for s22 from these models
using ACS 2005 data are smaller than those from the models using ACS demonstration survey data
(in Tables 2.1 – 2.3). The posterior standard deviations for D, however, are still substantial, and are
not necessarily smaller than those for IYs 2000 – 2002. Notice also that the posterior means of D are
fairly close to zero except for age 65+, which would suggest that we will get little improvement from
use of the bivariate model in IY 2004 for the first three age groups.

Table 4.1.a Posterior means and standard deviations of the parameters of Model A (IY 2004)
age 0 - 4 5 - 17 18-64 65+

 D -0.01
(0.46)

0.17
(0.37)

0.03
(0.28)

 0.50
(0.37)

s11 2.50
(2.26)

1.64
(1.17)

0.74
(0.41)

0.64
(0.55)

s22 1.51
(0.60)

0.60
(0.25)

0.26
(0.08)

0.38
(0.13)

Table 4.1.b Posterior means and standard deviations of the parameters of Model B3 (IY 2004)
age 0 - 4 5 - 17 18-64 65+

 D 0.05
(0.48)

0.15
(0.36)

-0.00
(0.28)

 0.56
(0.34)

s11 1.93
(1.85)

1.71
(1.22)

0.75
(0.42)

0.66
(0.51)

s22 1.46
(0.57)

0.61
(0.25)

0.26
(0.08)

0.38
(0.12)
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Table 4.1.c Posterior means and standard deviations of the parameters of Model U (IY 2004)
age 0 - 4 5 - 17 18-64 65+

s11 2.91
(2.36)

1.76
(1.17)

0.78
(0.42)

0.60
(0.54)

s22 1.49
(0.60)

0.59
(0.24)

0.26
(0.08)

0.38
(0.12)

   
Table 4.2 summarizes the comparisons of the posterior variances of the state poverty ratios Y1i

(CPS equation) from Model A with those from the univariate model using the relative percentage
differences as defined in Section 3. We see, for all age groups for IY 2004, only small improvements
in posterior variances on average from use of the bivariate Model A. The min values show that some
states show somewhat larger variance reductions than others, though still not very much. The max
values show that some states show variance increases, though we do not see any extremely large
increases of the sort observed for a few cases in Section 3.4. Appendix D shows more detail from
these results, presenting the frequency distribution of the percentage differences in posterior
variances of between Model A and Model U. The table in Appendix D shows that substantial
variance increases for states are relatively rare, while small to moderate variance reductions
predominate for IY 2004.

Table 4.2 Relative percent differences of posterior variances : Model A versus univariate model
(means are unweighted averages of percent differences across the 50 states and DC)

IY 2004

Age Mean Min Max
0-4 !8.1 !15.8 10.0
5-17 !4.8 !12.0 9.8
18-64 !2.3 !6.5 17.6
65+ !5.2 !17.1 24.6

The max relative percent difference of posterior variance in Table 4.2 occurs for age 65+ for
Rhode Island. It shows a 24.6 percent increase in posterior variance, with standardized residuals of
-2.29 in the ACS equation and -0.93 in the CPS equation.  For age 18-64, the max relative percent
variance increase of Model A versus the univariate model is 17.6 percent for NY, with a
standardized residual of  -2.61 in the ACS equation.
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4.2 Chi-Squared Tests of Model Restrictions

Section 3.2 presented results for IYs 2000 – 2002 on chi-squared tests of model restrictions
corresponding to the alternative bivariate models B2 and B3. We applied the same procedures to the
CPS IY 2004 and ACS 2005 data. Recall that we are testing the following null hypotheses:

H2: "1 = "2,   $1  =  $2 (Model B2)
H3: $1  =  $2 (Model B3) 

Because the food stamp participation rate has been added as a regression variable to the models for
ages 0-4, 5-17, and 18-64, the tests of H3 now have four degrees of freedom, and the tests of H2
have five degrees of freedom, for all four age groups. The five percent critical values from the chi-
squared distribution are  9.5 and 11.1 for  four and five degrees of freedom, respectively.

The results of the Chi-squared tests for IY 2004 are given in Table 4.3. Values that are
significant at the five percent level are shown in bold.

Table 4.3  Chi-Squared statistics for testing hypotheses H2 and H3 for IY 2004

Age 0-4 5-17 18-64 65+

H2 5.5 24.6  19.3 2.5

H3 0.2  6.7  5.3  2.2

                             
For IY 2004, we reject the hypothesis H2 for ages 5-17 and 18-64 but not for 0-4 and 65+. The latter
results do differ some from those obtained earlier, which showed most tests of H2 at least close to
significant at the 5 percent level. Still, the significant results for ages 5-17 and 18-64 suggest
rejecting model B2. The tests of H3, however, are all insignificant, consistent with the earlier results,
again suggesting that we might assume regression coefficients other than the intercepts to be the
same in both equations.

4.3 Posterior Variance Comparisons for Model B3 – CPS Equation

Posterior variances for Model B3 were computed as discussed in Section 2.3, i.e., using
equations (1) and (2) with the simulations of (D, s11, s22) obtained under Model B3, and with
E(Y1i  | y, D, s11, s22) and Var(Y1i | y, D, s11, s22) computed to account for the Model B3 restriction,
$1 = $2. Table 4.4 presents summaries of the relative percent differences of the resulting posterior
variances of Model B3  from those for the univariate model; these results can be compared to those
of Tables 3.4 and 4.2. Doing so we see that the average variance reductions from Model B3 are
again substantially larger than those from Model A. Also, Model B3 avoids the large variance
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increase for Rhode Island for age 65+ that occurred with Model A. Compared to the results for IYs
2000 – 2002, the average posterior variance reductions are greater for ages 0-4 and 65+, and not as
large for ages 5-17 and 18-64. Overall, though, the results seem reasonably consistent with those for
the earlier years, noting that no large posterior variance increases happened to occur in IY 2004.

Table 4.4 Relative percent differences of posterior variances: Model B3 versus univariate model
(means are unweighted averages of percent differences across the 50 states and DC)

IY 2004

Age Mean Min Max
0-4 !38.9 !66.0 !12.9

5-17 !16.2 !50.8 10.4
18-64 !10.2 !40.8 14.4
65+ !32.5 !63.6 1.4

4.4 Posterior Variances for the ACS Equation of the Bivariate Models

To put the results of Sections 4.1 and 4.3 in context, Appendix E presents a table showing the
average posterior means and variances from Models A and B3, as well as those from the univariate
model, for the CPS IY 2004 and ACS 2005 equations. The table also shows the average variances
of the direct survey estimates; these are the average variances one has from each data source if
modeling is not used to improve the estimates. The table shows the substantially lower variances of
the full production ACS 2005 direct estimates compared to those for the CPS IY 2004 direct
estimates, due to the much larger sample size of the 2005 ACS. Also, if we compare the average of
the ACS 2005 direct variance estimates in Appendix E with corresponding entries for 2000-2002
from the tables in Appendix B, we see that the ACS 2005 direct variance estimates for poverty rates
are about half or less than those from the ACS demonstration surveys because of the much larger full
production sample size (3 million compared to 700,000 addresses).

       We now focus on the posterior variances for the ACS equations. The table in Appendix E  shows
that  the average posterior variance for the ACS equation from a given model is substantially lower
than the corresponding average posterior variance for the CPS equation for each age group.  This is
because the ACS model-based estimates start with the ACS direct estimates, which have much lower
variance than the CPS direct estimates, and then use the model to improve them. In fact, for all four
age groups, the average sampling variance of the direct ACS 2005 estimates is lower than the average
posterior variance of the univariate modeled estimates from the CPS equation for IY 2004.

Comparing average posterior variances from the 2005 ACS univariate models to the average 2005
ACS sampling error variances, we still see substantial improvement from modeling in terms of



13 When this analysis was done we had available ACS state poverty rate estimates but not ACS state
poverty ratio estimates. The former are uniformly larger than the latter: the numerators of the two are identical but
the denominator of the poverty rate is the poverty universe, which excludes some persons and thus is smaller than
the total age-group population, thus making the poverty rate larger than the poverty ratio. This difference is small,
however, compared to the inherent difference between the CPS and ACS estimates.

14 Recall from Section 2.2 that Model B1 assumes CPS and ACS estimate the same thing (Y1i = Y2i), Model
B2 assumes all regression parameters are the same between the CPS and ACS equations, and Model B3 assumes that
regression parameters apart from the intercept are the same between the CPS and ACS equations ($1 = $2).
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percentage variance reduction. (Note, though, that in some cases, particularly for age 18-64, the
average variance of the direct ACS estimates might be regarded as sufficiently small as to not be in
need of reduction.) Using either bivariate Model A or B3 achieves negligible (or no) improvements
in average posterior variances for the ACS equations, as was the case with the ACS demonstration
survey data.

         Results  in Appendix E also show that the ACS 2005 poverty rate estimates13 tend to be higher
than the CPS IY 2004 poverty ratio estimates, on average, and this difference persists when
comparing ACS with CPS model-based estimates for a given model (except for age 65+). On the
other hand, the average estimates from the different models for a given equation, ACS or CPS,
generally do not differ greatly, and are not too different from the average of the direct estimates.

5. Summary and Conclusions
  
 

Our goal in this paper was to examine the potential benefits of jointly modeling state poverty ratio
estimates from the CPS ASEC and ACS (demonstration surveys or full production) to improve
model-based estimates of poverty ratios. We focused primarily on results for the CPS equation, but
also examined results for the ACS equation. We examined alternative bivariate models for doing this
using CPS estimates for IYs 2000 – 2002 with ACS data from the ACS demonstration surveys of
these years, and also using CPS estimates for IY 2004 with full production ACS 2005 data. The
models included regression variables constructed from administrative records data and Census 2000
poverty ratios (or Census 2000 residuals for IY 2004), along with state random effects and sampling
error components. We can summarize the results from our empirical study as follows:

1. In comparing the general bivariate Model A with the CPS univariate model, there is, at best,
a small average improvement in state posterior variances (of Y1i) for most age groups and
income years. Results are variable for individual states, with some states showing larger
improvements, but a few showing substantial variance increases. Overall, these results do not
suggest worthwhile benefits from using a bivariate model to bring in the ACS data.

2. For many of the combinations of age-group and IY, chi-squared tests rejected the restricted
bivariate Models B2 and B1, giving evidence that these models should not be used. The chi-
squared tests failed to reject Model B314, however, for all four age groups and all the IYs
considered. This suggests that one might try using Model B3 to obtain reductions in posterior
variance relative to the univariate model.



26

3. In fact, Model B3 had substantially lower posterior variances (for the CPS equation), on
average, than did the general bivariate Model A. Model B3 did not, however, eliminate the
occasional large posterior variance increases found for Model A. Also, in order to decide to
use Model B3, we had to estimate Model A and test whether $1 = $2. Quoting posterior
variances as if Model B3 is known to be true thus understates statistical uncertainty.

4. The occasional moderate to large posterior variance increases from use of bivariate Models
A or B3 correspond to large regression residuals from the ACS equation.

5. Use of either of the bivariate models makes no improvements of substance in estimates for
the ACS equation. There is too much sampling error in the CPS direct estimates for them to
convey much useful information for estimation in the ACS equation.

6. Use of bivariate Model A seems to produce point estimates very similar to those from the
univariate model (both CPS and ACS equations). Use of bivariate Model B3 produces slightly
different point estimates for the CPS equation, due to obtaining somewhat different estimates
of the regression parameters, but these differences are not very large (and are not statistically
significant according to the chi-squared tests of Section 3.2 and 4.2).

7. Full production 2005 ACS state estimates have substantially lower sampling error variances
than the estimates from the ACS demonstration surveys. However, the empirical results for
the CPS equation using full production ACS 2005 data lead to similar conclusions as with
using  ACS demonstration survey data in regard to potential benefits from using these data
in a bivariate model.

8. The average direct sampling variance of the full production ACS 2005 estimates is about half
of  the average posterior variance of the CPS univariate model-based estimates for all four
age groups.

9. The average posterior variance of the univariate model-based estimate from the ACS 2005
equation is about half or less of the average sampling variance of the ACS 2005 direct
estimates for all four age groups.

These conclusions bring out two trade-offs involved in a decision of whether or not to use the
ACS data to attempt to improve estimates from the CPS equation via a bivariate model:

• Use of bivariate Model A can be expected to yield, at best, only small average improvements
in posterior variance, and this is at the expense of a potential for occasional large posterior
variance increases (when the regression residual in the ACS equation is large.)

• Use of bivariate Model B3 can be expected to yield larger apparent improvements in posterior
variance, but use of Model B3 assuming it to be true may understate the statistical



27

uncertainty. Also, use of Model B3 does not eliminate the potential for large posterior
variance increases.

Potential resolutions of these two trade-offs can be considered:

• Results from the ACS equation could be examined for large regression residuals. When these
occur the estimates for the corresponding states could be obtained from the CPS equation
univariate model rather than from a bivariate model. There are some concerns as to whether
this is really a “statistically principled” approach. It is perhaps easiest to justify if the
instances of use of the univariate model are rare, corresponding only to distinct outliers in the
ACS equation. The logical extension of this idea – compute posterior variances under both
the univariate and bivariate model and for each state choose the model that produces the
lowest posterior variance – seems definitely not statistically principled.

As a more sophisticated generalization of the above approach, one could consider using a
model assuming a long-tailed distribution for one of the random errors (model error or
sampling error) in the ACS or CPS equation in an attempt to deal with potential outliers.
Huang and Bell (2006) pursued this approach using a t-distribution and had some limited
success with one of the examples considered here – the large standardized residual for age
5-17 for Alaska in IY 2002.

• Rather than assume bivariate Model B3 to be exactly true, we might put an informative prior
distribution centered around 0 on the differences of the regression coefficients between the
CPS and ACS equations (excepting the intercepts for the two equations, which would still be
given flat priors). This might reap some of the benefits of Model B3 without making the
assumption that the regression coefficients are exactly the same in the two equations.
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Appendix A: Frequency distributions over states of the relative percentage differences
of the state posterior variances (CPS eq.) from bivariate Model A and the univariate model

Table A.1: CPS IY 2000 (with ACS 2000)
Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-20 to -15  0  0  0  0

-15 to -10  1  2 14 10

-10 to -5  4 15 18 18

-5 to 0 13 23 14 15

 0 to 5 23  7  0  3

 5 to 10  6  3  2  3

10 to 15  1  0  1  1

15 to 20  0  1  2  1

20 to 25  1  0  0  0

25 to 30 2  0  0  0

Table A.2: CPS IY 2001 (with ACS 2001)
Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-20 to -15  0  0 0  0

-15 to -10  3  9 1  2

-10 to -5 19 21 15 18

-5 to 0 17 16 18 24

 0 to 5  9  3  4  4

 5 to 10  0  2  7  1

10 to 15  1  0  2  1

15 to 20  0  0  0  1

20 to 25  1  0  0  0

25 to 30  1  0  0  0

30 to 35 0 0 1 0

35 to 40 0 0 2 0

40 to 45 0 0 1 0
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Table A.3: CPS IY 2002 (with ACS 2002)
Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-25 to -20  0  0 2  0

-20 to -15  0  0 12  0

-15 to -10  1  3 18  0

-10 to -5 11 24 12  20 

-5 to 0 29 20  5 27

 0 to 5 10  2  1  3

5  to 10  0  0  1  0

10 to 15  0  0  0  1

15 to 20  0  1  0  0

20 to 25  0  1  0  0

25 to 30   0   0   0   0 

30 to 35  0  0  0  0

35 to 40  0  0  0  0

40 to 45  0  0  0  0

  45 to 50  0  0  0  0

50 to 55  0  1  0  0

55 to 60  0  0  0  0
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Appendix B: Comparing point estimates and corresponding (error) variances
of state poverty ratios from direct and alternative model-based estimates

 using CPS (IYs 2000-2002) and ACS (2000-2002) demonstration survey data
(entries are unweighted averages across the 50 states and DC)

Age 0-4
2000 2001 2002

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

CPS equation

  Direct estimate 17.70 11.79  17.89 11.63 18.43 12.00

  Univariate Model 17.84   2.73 17.80 2.29 18.31  3.25

  Bivariate Model A 17.83   2.80  17.79  2.24 18.33        3.16

  Bivariate Model B3 17.80   2.29  17.64 1.96 18.08        2.85

ACS equation     

  Direct estimate 18.72 4.08 18.17   3.48  19.34        3.99

  Univariate Model 18.77  1.49 18.09 1.16 19.27  1.20

  Bivariate Model A 18.75 1.49 18.09 1.15 19.27        1.18

  Bivariate Model B3 18.73 1.49 18.07 1.15 19.29        1.14

Age 5-17
2000 2001 2002

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

CPS equation

  Direct estimate 13.22  4.91  13.52  4.96 14.29  5.15

  Univariate Model 13.29 1.00 13.53 1.54 14.27 1.05

  Bivariate Model A 13.29 0.97  13.54 1.47 14.27        1.01

  Bivariate Model B3 13.35  0.73  13.51 1.19 14.30        0.81

ACS equation     

  Direct estimate 15.54  1.83 15.26 1.52 15.61        1.59

  Univariate Model 15.45 0.76 15.04 0.57 15.60 0.56

  Bivariate Model A 15.46 0.76 15.05 0.56 15.60        0.56

  Bivariate Model B3 15.45 0.71 15.05 0.54 15.61        0.54   
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Age 18-64
2000 2001 2002

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

CPS equation

 Direct estimate   9.29 1.14  9.95 1.19 10.36 1.08

  Univariate Model  9.36 0.26  9.94 0.21 10.37 0.32

  Bivariate Model A  9.37 0.25  9.95 0.22 10.39        0.29

  Bivariate Model B3  9.41  0.19  9.95 0.16 10.43        0.25

ACS equation     

  Direct estimate 10.67 0.36 10.54 0.31 10.85        0.34

  Univariate Model 10.62 0.20 10.49 0.16 10.82 0.20

  Bivariate Model A 10.61 0.20 10.49 0.16 10.82        0.20

  Bivariate Model B3 10.60 0.19 10.49 0.16 10.80        0.20  

Age 65+
2000 2001 2002

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

CPS equation

 Direct estimate 10.03 3.99  10.24 4.05 10.43 4.16

  Univariate Model 10.04  0.94 10.25 0.68 10.48 1.31

  Bivariate Model A 10.04 0.90  10.25 0.66 10.48        1.26

  Bivariate Model B3 10.00  0.70  10.23 0.39 10.54        1.00

ACS equation     

  Direct estimate 10.73 1.16 10.30 0.75  9.82        0.83

  Univariate Model 10.62 0.39 10.27 0.27  9.69 0.22

  Bivariate Model A 10.62 0.40 10.27 0.27  9.68        0.21

  Bivariate Model B3 10.62 0.38 10.27 0.25  9.68        0.22  
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Appendix C: Comparing point estimates and corresponding error variances
of CPS equation state poverty ratios from alternative model-based estimates

using ACS demonstration survey data for the IY and shifted one year
(entries are unweighted averages across the 50 states and DC)

Age 0-4

Model (CPS and ACS eqs.)

CPS IY 2000 CPS IY 2001

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

  with ACS data from: ACS 2000 ACS 2001

    Univariate Models 17.84   2.73 17.80 2.29

    Bivariate Model A 17.83   2.80 17.79  2.24 

    Bivariate Model B3 17.80   2.29 17.64 1.96

  with ACS data from: ACS 2001 ACS 2002

    Univariate Models 17.84   2.71 17.80   2.34

    Bivariate Model A 17.83   2.76 17.79   2.20

    Bivariate Model B3 17.82   2.16 17.64   1.79

Age 5-17

Model (CPS and ACS eqs.)

CPS IY 2000 CPS IY 2001

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

  with ACS data from: ACS 2000 ACS 2001

    Univariate Models 13.29 1.00 13.53 1.54

    Bivariate Model A 13.29 0.97 13.54 1.47

    Bivariate Model B3 13.35 0.73 13.51 1.19

  with ACS data from: ACS 2001 ACS 2002

    Univariate Models 13.29 1.02 13.53 1.55

    Bivariate Model A 13.30 1.05 13.54 1.47

    Bivariate Model B3 13.32 0.84 13.54 1.17
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Age 18-64

Model (CPS and ACS eqs.)

CPS IY 2000 CPS IY 2001

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

  with ACS data from: ACS 2000 ACS 2001

    Univariate Models  9.36 0.26  9.94 0.21

    Bivariate Model A  9.37 0.25  9.95 0.22

    Bivariate Model B3  9.41 0.19  9.95 0.16

  with ACS data from: ACS 2001 ACS 2002

    Univariate Models  9.36 0.26 9.94 0.22

    Bivariate Model A  9.38 0.24 9.94 0.20

    Bivariate Model B3  9.42 0.20 9.94 0.15

Age 65+

Model (CPS and ACS eqs.)

CPS IY 2000 CPS IY 2001

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

  with ACS data from: ACS 2000 ACS 2001

    Univariate Models 10.04 0.94 10.25 0.68

    Bivariate Model A 10.04 0.90  10.25 0.66

    Bivariate Model B3 10.00 0.70  10.23 0.39

  with ACS data from: ACS 2001 ACS 2002

    Univariate Models 10.04 0.95 10.25 0.68

    Bivariate Model A 10.03 0.91 10.25 0.66

    Bivariate Model B3 10.00 0.63 10.23 0.39
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Appendix D: Frequency distributions over states of the relative percentage differences
of the state posterior variances (CPS eq.) from bivariate Model A and the univariate model

Table D: CPS IY 2004 (with ACS 2005) 
Percentage
Difference

age
0-4

age
5-17

 age
18-64

age
65+

-25 to -20  0  0 0  0

-20 to -15  3  0 0  3

-15 to -10  21  1 0  14

-10 to -5 15 31 10  12

-5 to 0 6 14  33 16

 0 to 5 3  3  6  3

5  to 10  2  2  1  1

10 to 15  1  0  0  0

15 to 20  0  0  1  1

20 to 25  0  0  0  1

25 to 30   0   0   0   0 

30 to 35  0  0  0  0

35 to 40  0  0  0  0

40 to 45  0  0  0  0

  45 to 50  0  0  0  0

50 to 55  0  0  0  0

55 to 60  0  0  0  0
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Appendix E: Comparing point estimates and corresponding (error) variances
of state poverty ratios from direct and alternative model-based estimates

using CPS (IY 2004) and ACS 2005 survey data
(entries are unweighted averages across the 50 states and DC)

Age 0-4 Age5-17R Age 18-64 Age 65+

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

Poverty
Ratio

Variance
Estimate

CPS equation

  Direct estimate 19.09 13.27 14.23 4.95 10.84 1.27 9.81 4.37

 Univariate Model 19.53 3.27 14.50 1.59 10.93 0.54 9.86 0.83

  Bivariate Model A 19.55 3.02 14.51 1.51 10.94 0.52 9.84 0.79

  Bivariate Model B3 19.62 1.91 14.65 1.29 10.99 0.47 9.72 0.53

ACS equation     

  Direct estimate 20.90 1.80 16.93 0.80 11.77 0.12 9.94 0.32

 Univariate Model 20.91 0.77 16.20 0.31 11.78 0.07 9.88 0.15

  Bivariate Model A 20.91 0.77 16.20 0.31 11.78 0.07 9.87 0.15

  Bivariate Model B3 20.90 0.75 16.19 0.31 11.77 0.07 9.88 0.15



Figure 1: Posterior Densities forModel A Parameters - IncomeYear 2000 - Age 5-17
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Figure 2. Posterior Variance Percent Differences, IY 2000

a. Var % diff for models A and U vs ACS std residuals
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Figure 2. Posterior Variance Percent Differences, IY 2000

b. Var % diff for models A and U vs ACS squared std residuals
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Figure 3. Posterior Variance Percent Differences, IY 2001

a. Var % diff for models A and U vs ACS std residuals
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Figure 3. Posterior Variance Percent Differences, IY 2001

b. Var % diff for models A and U vs ACS squared std residuals
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Figure 4. Posterior Variance Percent Differences, IY 2002

a. Var % diff for models A and U vs ACS std residuals
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Figure 4. Posterior Variance Percent Differences, IY 2002

b. Var % diff for models A and U vs ACS squared std residuals
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Figure 5. Poverty Ratio Estimates: Age 0-4

a. IY2000 CPS equation alternative vs univariate estimates



univariate model estimates

B
iv

ar
 A

 e
st

im
at

es
 (

w
ith

 S
S

01
)

10 15 20 25 30

10
15

20
25

30

univariate model estimates

B
iv

ar
 B

3 
es

tim
at

es
 (

w
ith

 S
S

01
)

10 15 20 25 30

10
15

20
25

univariate model estimates

B
iv

ar
 A

 e
st

im
at

es
 (

w
ith

 S
S

02
)

10 15 20 25 30

10
15

20
25

30

univariate model estimates

B
iv

ar
 B

3 
es

tim
at

es
 (

w
ith

 S
S

02
)

10 15 20 25 30

10
15

20
25

Figure 5. Poverty Ratio Estimates: Age 0-4

b. IY2001 CPS equation alternative vs univariate estimates
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Figure 5. Poverty Ratio Estimates: Age 0-4

c. IY2002 CPS equation alternative vs univariate estimates
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Figure 6. Poverty Ratio Estimates: Age 5-17

a. IY2000 CPS equation alternative vs univariate estimates
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b. IY2001 CPS equation alternative vs univariate estimates
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c. IY2002 CPS equation alternative vs univariate estimates
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Figure 7. Poverty Ratio Estimates: Age 18-64 

a. IY2000 CPS equation alternative vs univariate estimates
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b. IY2001 CPS equation alternative vs univariate estimates
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c. IY2002 CPS equation alternative vs univariate estimates
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Figure 8. Poverty Ratio Estimates: Age 65+

a. IY2000 CPS equation alternative vs univariate estimates
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